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In this note it will be proved that some kinds of Lie groups (including semi-

simple Lie groups) have an everywhere dense subgroup which is algebraically

isorαorphic to the free group generated by two elements (Theorem 8),

In § 1 characterizations of Lie groups which are approximated by discrete

subgroups11 are given. This section is closely connected with a part of the results

of Malcev [4] and Matsushima [5], and some theorems are slight modifications

of them (Theorems 2 and 3)3

In §2 a sufficient condition for Lie algebras to be generated hy two ele-

ments is given, and in § 3 the main theorem is proved,

The writer owes very much to Messrs, Y. Matsushima, M* Gotδ? and S Mu-

rafcami for their discussions and suggestions during the preparation of this note,

§ L Lie groups approximated hy discrete subgroups

THEOREM 1. Let G be an n-ditnensional local Lie group and U a neighborhood

of the identity e of G$ in which a canonical coordinates system is introduced,

Let II be a discrete subset of G satisfying the following conditions,

1) If V is any neighborhood of e such that W~ιCU9 then for any x7

yEi Vf\H, %y~ιϊΞlL

2) // contains hu h2? , . . , ft«, which are linearly independent in U (with

respect to the coordinates system in U).

The?t G is a nilpotent Lie group,

Proof, It is easily seen that if x and y are elements of U} then

(1) \xyx~ιy"ι\^ m i n ( | * | , \y\),

where \x\ is the euclidean distance between e and x in£Λ Let p be the point of

H which is not equal to e and \p\^ \x\ for every x E H* Then by (1) p is

commutative with every element of H, in particular

hiphc* =p ( i = 1 , 2 , . , . , n ) a

Hence

Received Oct, 26, 1950,
5) Cf. Definition 1, This notion is introduced by H, Tόyama [7].
2> Let xλ be the one-parameter subgroup passing x such that xι — x. We use this notation

throughout this note,
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By the same argument as above, we can deduce

p-*hpp = *ίμ ( i = l , 2 , Λ . .9n).

Hence p is contained in the center of G. Since H is a finite set, it is easy*

to see that G/pλ is an (n - 1)-dimensional local Lie group satisfying the condi-

tions of our Theorem. By the assumption of the induction, G/pλ is a nilpotent

Lie group and pλ is contained in the center of G. Hence G is also nilpotent

DEFINITION 1. A locally compact group G is said to be approximated by dis-

crete subgroups if there is a sequence of discrete subgroups Dn (n = 1,2,. . . ,}

of G satisfying the following condition (A).

(A) For any open set O of G, there exists an integer I {depending on O) such

that OC\Dn is not empty for every n ^ 7.

COROLLARY. Let G be a Lie group approximated by discrete subgroups. Then

G is nilpotent.

Proof is immediate from Theorem 1.

DEFINITION 2. Lie algebras are said to be rational if the structure con-

stants are all rational numbers under the appropriated basis. Lie groups are

said to be rational if Lie algebras corresponding to G are rational.

The following two Lemmas are well known.

LEMMA 1. Let G be a rational, nilpotent, and simply connected Lie group.3)

Then the space of G is homeomorphic to a Euclidean space, i.e., we can in-

troduce in G a cartesian coordinates system {x\ . . . , xn) satisfying the following:

conditions:

1) The multiplication functions,/'(ΛΓ1, . . . ,xn; y\ . . . 9y
n) {i = 1,2, . . . 9n)>

expressed in these coordinates are polynomials of x1,. . . 9x
n y\ . . . ,yn with

rational coefficients.

2) g(t) = (tx*9 - . Jxtι) with fixed (x\ . . . ,xn) is a one parameter subgroup

of G.

LEMMA 2. Let x\ . . . , χn be a coordinates system of G satisfying the condi-

tions of Lemma 1. If x is an element of the center of G, then

χ.y-χ + y

for every element y of G.

DEFINITION 4. The coordinates system satisfying the conditions of Lemma ϊ

It is known that there exist nilpotent Lie algebras which are not rational.
Malcev[4].



DENSE IMBEDDING OF FREE GROUPS 65

is said to be rational An element x = (x\ . . . , xn) is said to be rational {in

the rational coordinates system) if x* ( ? = ! , . . . , n) are rational numbers. A

subgroup D is said to be rational [in the rational coordinates system) if all the

elements of D are rational elements.

THEOREM 2O Let G be an n-dimensional, nilpotent, simply connected, and

rational Lie group. Introduce a rational coordinates system in G\ Suppose that

there is given a rational discrete subgroup D. Then G is approximated by discrete

subgroups Dm containing D. Moreover, for every Dm? there exist dΛ

{m\ , . . , dn

κm)

in Dm such that every element d of Dm can be written uniquely as

d=<ftm)ilί

9. . .,dnm)Uu.

Proof (By induction en the dimension of G). Since D is niίpotent, there

exists an element dc of D} which is commutative with every elements of /λ

Since the one-parameter subgroup passing an element: is unique in G, dc is con

tained in the center of G. We can assume without loss of generality that

dc = (1,0, . . . ,0) and x = (ξ,0, . . . ,0), (0 < ;?! < 1) is not contained in D. Lee

Z be the one-parameter subgroup passing dc. G/Z h also nilpotent, rational,

and simply connected Lie group, and by associating to the coset containing

x = (χ\ . . . , xn) the point (x2, . . . , xn) of (n - 1 )-dimensional euclidean spare,

a rational coordinates system is introduced in GIZ:X) Let 1/ be the image of

D in G/Z, Then G/Z satisfies the condition, of our Theorem replacing D by

D'. By the assumption of induction G/Z is approximated by Dm' containing D'a
Let d\, . . . 9dή-ι5) be the generators of Dm' as stated in the Theorem, and put

di - (0, di'\ . . . ,dίn) {d{ = (dC; . . . ,dίn)9 i - L2 ? . . . ,n - 1).

Then

d =Yί dim'U dih< = g if {mu . . . ,m»-i hu . . . , AΛ-i)5
< = J * = i

where f (mi, . . . >mn-\ /ii. . . . , Λ«-i) e Z, .i? = (0,^2, . . . ,gn), and (g\ . . . , ^ )

e jDm;. Since by Lemma 2 ĉ  is the first coordinate of d9 dimι = (03 m, ^/2, . . . ,

rrndi71), and the product functions are polynomials with rational coefficients, it

is verified that there exists dn = (1/M, 0, . . . ,0) ( M is an integer) such that <ρ

(mi, . . . ,ftn-i) = rf^j» A»-J with « mi,....*,.-! as an integer. If we take M

sufficiently large, the group Dm generated by du . . . ,dn contains D, and {Dm)

approximates G.

THEOREM 3.6) Let G be a nilpotent and simply connected Lie group and D

a discrete subgroup of G. Assume that there is no connected proper subgroup

4> Cί. L e m m a 2.
5) We omit the index (m) to avoid the inessential complications.
6) F o r t h e proof see Malcev [ 4 ] , or T h e o r e m of M a t s u s h i m a [ 5 ] .
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H of G containing D. Then G is rational and under the appropriated rational

coordinates system D is a rational group.

THEOREM 4. Let G = δ/Z be a connected Lie group, where Q is the universal

covering group of G, and Z is a discrete normal subgroup of Q. The necessary

and sufficient conditions for G to be approximated by discrete subgroups are the

following conditions.

1) G is nilpotent and rational Lie group.

2) Under the appropriated rational coordinates system* Z is a rational

subgroup.

Proof is immediated from the corollary to. Theorem 1 and from Theo-

rem 2,

THEOREM 5β Let G be a connected Lie group. The necessary and suffiicient

condition for G to be approximated by discrete subgroups are that there exists a

discrete subgroup D of G satisfying the following condition.

There exists a neighborhood U of e which can be identified with neighborhood

of the corresponding Lie algebra L and U Γ\D contains the basis of L.

Proof Suppose that there exist D and U satisfying the above condition.

By Theorem 1, G is nilpotent Let Q be the universal covering group of G

and D be the subgroup of G covering D. Then by Theorem 3? G and D are

rational. Hence by Theorem 2, Q is approximated by Dn containg D. Since

D contains Zy

Ί) G is approximated by discrete subgroups Dn which are the

images of Dnm

Remark. There exist rational nilpotent Lie groups which cannot be ap-

proximated by discrete subgroups* For example we can easily construct such

a Lie group whose center is one-dimensionaL

§2. Lie algebras generated by two elements

Let L be a Lie algebras over a field F of characteristic 0, L is said to be

generated by two elements a and b If the minimal Lie subalgebra containing

λa and μb (λ,u&F) is L, Let F be the algebraic closure of F, and let Σ be

the Lie algebra obtained from L by extending F to F, If L is semi-simple, so is

L, and vice versa. It is well known that the semi-simple Lie algebra L has the

following structure. Let Ή be a maximal abelian subalgebra of Z containing

a regular element and let hl9. . . ,hι (G L) be a basis of Ή* Then there exists

a system of vectors of an /-dimensional euclidean space5 whose vectors are

called root vectors. To each root vector a we can corelate an element e* of

Suppose that



DENSE IMBEDDING OF FREE GROUPS 67

2 so that hi9 . . . 9hh ea,e^9. . . constitute a basis of Z ? and the structure for-

mulaes of Z have the following form

I

where ft = ̂

a + β $? 0 is not a root*

0, a + β ^ 0 is a root,

Root vectors are distinct among each other, and if a is a root vector, then — a is

also a root vector. There exist root vectors a(1\ . . . , α ( / ) such that |> β ω, e- β

( J ) ] ,

• . . ,Ce*(ί>,£-* ιn3 form a basis of Ή.

THEOREM β, Let L be a semi-simple Lie algebra over a field F of charac-

teristic 0. Then there exist two elements a and b which generate L*

Proof. Put α = Σ «̂ and ft == Σ^Aί Then

. . 3 = Σ(«*)** .
Take ^ = (^J

5. . . , ^) such that ({cc -β)λ) * 0 for every root a and β. Then

tf, Sj9s2,. . . ,sn~ϊ-ι are iine'arly independent. Let Z,* be the minimal subalgebra

over F of Z containing them. Then Z * contains each # e , hence it contains also

Dv*λ ^-« u ) l i = 1,2, . . . , / . Thus £ * = Z.

To summarize the above results, there exist finite number of monomials

Pi(x,y) = [> . . Dry] . . . 3 such that every element of Z is a linear combina-

tion of Pi(a, h) with coefficients of F. Take a basis pu . . . , # n of Z and put

Then r** ϊ̂*e polynomials of ζ*,y;J with coefficients in F. Let Λfίf1, . . . ,ξnl y1;

. . . ,yn) be the matrix (r^) and α = ^ 0 ^ , ft = Σ * ! ί f T h e n t h e r a n k o ί

Af(«j,. . . ,an; b\ . . . , 3Λ) is ^ e Hence there* exist elements- cι

 9. . . ,c Λ , ^ J ,

. . . , dn of F such that the rank of M{c\ . . . , cn cί3

? . . . , d*) is also ^ . Then

L is generated by £ = Ύ\ c{pi, d = Σ ^ v *

Remark 1. Let Z be a Lie algebra over a field F of characteristic 0e By

LevFs theorem Z is decomposed into the form

where /*? is the radical of L and S is a serai-simple subalgebra. Associating a

linear transformation: R 3 x -> [5, #] e R for every element s of S, a representa-
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tion of S is given. The representation of S is characterized by its weights.

If the weights of this representation satisfy some conditions, the proof of Theo-

rem 6 is also applicable for these Lie algebras.

§ 3. Groups generated by two elements

A topological group is said to be generated by two elements a and b, if the

minimal closed subgroup containing a and b is G.

THEOREM 7. Let G be a connected and perfect Lie group and L the Lie alge-

bra corresponding to G. If L is generated by two elements, so is G. Moreover,

we can take the generators a and b in an arbitrary small neighborhood of the

identity e.

Proof. Since L is generated by two elements, there exist a and b in an arbi-

trary small neighborhood of e, such that aλ and bλ generate G. Denote by Hn

the closed subgroup generated by aιl-n and bι>-n, and let Hn° be the component

of the identity in Hn9 then

(1) ΆCΆC . . , WCffi'C.,

ΌHn = G.
n = J

Since Hn° is connected, there exists an integer N such that H = HN* = HJ+i = >

and so for every element h of Hn, n = 1,2, . . .

(2) h-*Hh=H.

From (1) and (2), H is a closed normal subgroup of G and G/H is approximated

by discrete subgroups Hχ+k/H, & = 0 , 1 , 2 , . . . . By Theorem 1 G/H is nilpotent,

but on the other hand G is perfect Hence G/H = {e}. This shows that G is

generated by a11** and b1'2*.

Our next aim is to take generators a and b which do not satisfy any rela-

tions. For that purpose we make some preparations.

Let A be a compact metric space and t$(A) the family of all the closed

subsets of A. Let Uζ(B) be the ε-neighborhood of BC.A. For M and N

), put
αr(Af,Λr)= inf ε.

It is well known8) that by this (Hausdorff) metric a, i$(A) becomes a com-

pact space.

LEMMA 3. Let G be a connected perfect Lie group. If a and b generate

G9 then there exists a neighborhood V of e such that any a! €= Va and U G Vb

generate G.

8> Cf. Chapter 2, §5 of Alexandroff and Hopf [1] .
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Proof. Suppose that there exists no neighborhood V of e as stated in the

Lemma. Then there exist two sequences {an} and {bn} converging to a and b

respectively, such that the closed subgroups Gn generated by an and bn are

proper subgroups of G.

Take a neighborhood U of e in which we can introduce a canonical coordi-

nates system, and put

Kn = Gn Π U.

Since iΓ«e $(£/), we can select a subsequence {Kn } of {iΓM} converging to K

G g ( [ ί ) by the above metric α. Since # and b generate G, it is not hard to

show that K = £7. Hence there exists an integer iV such that KN contains r9)

linearly independent points />,- (i = 1,2,. . . , r) of K = Z7. Let GΛ ° be the com-

ponent of the identity in GiV. Then

pΓ'G/pi C GA-
β for i = 1,2,. . . , r.

Hence G/ is the normal subgroup of G. In the factor group G/GN

Q the dis-

crete subgroup GN/GX* satisfies the conditions stated in Theorem 5, hence G/Gs

n

is a nilpotent Lie group. This is a contradiction to the fact that G is a perfect

group.

LEMMA 4. Let G be a Lie group which is not solvable and let U be a

neighborhood of e in which we can introduce the canonical coordinates system.

Suppose that there exist open sets O and Of contained in U, a monomial M{x,y)
k

= Π xmiyn£, and an element s of G satisfying the following conditions :
i = l

For every j ) G θ and q e (7, M(p, q) = ss

Then the monomial M(x,y) is trivial.

Proof. I) Suppose at first that G is a semi-simple linear group. Let Z be the

Lie algebra of matrices corresponding to the linear group G. Then Z = {Λ#* | #*

G Z , i : complex number} is a complex semi-simple Lie algebra. Every element

xe Cf can be written as (#/) λ = * λ = exp λx*, x* = (**/) E L . {# | # = exp x*,

^ ε ί } generates a Lie group S containing G. Fix ̂  = exp p*&0, q&0'9
and JC =s exp x* of G, and define

xt = exp (ίί* + (1 - t)x*)9 t: complex number,

and (ff(t))=M(xt,q).

Then f/(t) is an analytic function of t and is constant (= s/) if t is real and

sufficiently near to 1. Hence //(£) is constant for every value of t, that is,

M(x, q) = 5 for every element # = exp #*, AT* G l . Define

xλ = exp ̂ Λ:*, Λ

9 ' Let r be the dimension of
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and (g/(λ)) = M(x\q).

Then g/{λ) is an analytic function of the complex number λ and constant for

real value of λ9 hence M(x9q) = s for x = exp x*9 # * e Z . Repeating these

arguments, we can deduce that

M(x9y) = 5 for any elements x = exp x*9 y = exp y*9 x*&Σ9 y* G Z.

But every complex semi-simple Lie algebra contains a subalgebra which is

isomorphic to the unimόdular Lie algebra of degree 2. Hence it is sufficient

to prove the case when G is the unimodular group of degree 2. Put jθ)

* = {o i l " " l a °
then

* - l β i) ' \> i

Hence if Λf (jr, y) is not trivial, F(ΛΓ, y) # s for some x = exp ΛT*, .y = exp y*

of G.

(II) Suppose that G is a semi-simple Lie group. Then there exists a discrete

normal subgroup Z such that G/Z is isomorphic to a linear group. Consulting

(I) and the discreteness of Z, it is easy to prove the Lemma in this case.

(III) Let G be a Lie group which is not solvable. Let R be the radical of

G. Then G/R is semi-simple and =¥ {e}. Suppose that the monomial M(x9 y)

satisfies the conditions of our Lemma for G, then M(x9y) also satisfies the

same conditions for G/R. Hence by (II) M(x,y) is trivial.

THEOREM 8. Let G be a connected perfect Lie group. Suppose that the Lie

algebra corresponding to G is generated by two elements.n) Then G contains an

everywhere dense free group with two generaters, that is9 there exists a subgroup

F of G satisfying the following conditions.

(1) F is everywhere dense in G.

(2) F is isomorphic to a free group $ generated by two elements.
k

Proof. The element of $ is a monomial M{ξ> y) = Π ξmίηni: g = {Mn(ξ9 y)9

n = l929 } Let An = {(x,y)\Mn(x,y) = 11** y"* = e, (x9y)&GxG}9

By Theorem 6, G is generated by two elements p and q. By Lemma 3,

there exist open sets P^p and Q^Bq such that pf and qf (p'&P9 q'^Q)
10> See Hayashida [2].
J1> Consulting the remark 1 of Theorem 5S we can construct perfect Lie algebras which

can not be generated by two elements-,
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generate G. By Lemma 4, An Π (P x 0) is nowhere-dense in ? x 0 . Hence

by Baire's theorem, there exists (p, q)&P x ζ> such that (p, g ) $ U A». Let

F be the subgroup of G algebraically generated by p and q, then F satifies our

conditions.

COROLLARY. Every connected semi-simple Lie group contains an everywhere

dense free group with two generators.

REFERENCES

[1] Alexandrofϊ and Hopf, Topologie, Springer, (1935),

[2] Hayashida, On faithful representations of free groups, Kόdai Math. Sem. Rep. No. 2,

p. 27, (1949).

[3] Kuranishi, Two elements generations on semi-simple Lie groups, Kόdai Math. Sem.

Rep. Nos. 5 and 6, pp. 9-10 (1949).

[4] Malcev, On a class of homogeneous space, Izvestiya Akad. Nauk SSR. Ser. Math. 13

(1949) (in Russian).

[5] Matsushinΐa, On the discrete subgroups and homogeneous spaces of nilpotent Lie

groups (in this issue).

[6] Pontrjagin, Topological groups, Princeton, (1939).

[7] Tόyama, On discrete subgroups of a Lie group. Kόdai Math. Sem. Rep. No. 2, pp.

36-37, (1949).

Mathematical Institute,

Nagoya University






