
CORRECTIONS AND SUPPLEMENTARY TO MY PAPER

CONCERNING KRULL-REMAK-SCHMIDT'S THEOREM

GORO AZUMAYA

1. It has recently been found that my previous paper " On generalized semi-

primary rings and Krull-Remak-Schmidt's theorem/' Jap. Journ. Math. 19 (1949)

— referred to as S. K. — contained in its Theorems 19 and 20 some errors. Nev-

ertheless the writer has been able to correct them in suitable forms so that

most parts of both theorems hold, even under a weaker assumption, and also

subsequent theorems remain valid. These will be? together with some supple-

mentary remarks, shown in the present note.J)

For completeness let us recall several definitions. Let R be any (associative)

ring. An element c of R is called a root element if there exists no non-zero

element x such that xax = x, or what comes to the same, if the left ideal Re,

or equivalentiy, the right ideal cR contains no non-zero idempotenΐ element.

We denote by C the set of all root elements of R. Then in order that C forms

a two-sided ideal it is sufficient that C is additively closed, that is, the sum of

any two root elements is also root element. And, when this is the case, we say

that R possesses the radical C. R is called semi-primary if R possesses a radi-

cal (not identical with R) and every non-zero idempotent element contains a

primitive idempotent element if moreover all primitive idempotent elements

are isomorphic to each other we call R primary. R is said to be completely

primary when R possesses a radical (again not identical with R) and every non-

zero idempotent element is primitive.

Now suppose that every non-zero idempotent element in R contains a primitive

idempotent element. Then R possesses a radical (i.e. R is semi-primary) if and

only if for every primitive idempotent element e the sύbring eRe possesses a radical

{i.e. eRe is completely primary). For the proof we have only to prove the "if"

part, since eCe = eRenC is the set of all root elements of eRe,-] and we may

assume that eRe possesses the radical eCe. Suppose that there were two root

elements a, b such that a 4- b is not a root element (of R). Then R(a + b)

Received February 15, 1950.
J> We take this opportunity to correct the following errata: in the sixth line following the

proof of Theorem 16 (page 537) both m should be replaced by 9?.
-> S. K. Lemma 6.
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contains a non-zero idempotent element e, which we may by our hypothesis

assume to be primitive. Then e is expressed in a form x(a + b) whence

e = ex (a + b)e = exae -f exbe, and this is contrary to our assumption (that eRe

possesses the radical eCe). It is further to be noted that in case R has a unit

element R is completely primary if and only if the sum of any two non-regular

elements is alzvays non-regular, and indeed, when this is the case, root elements

are nothing but non-regular elements^

2. Let W be a module (with operator-domain) and let R be its (operator-) en-

domorphism ring. Suppose that Wl is decomposed into a (finite or infinite) direct

sum of directly indecomposable (allowable) submoduli mμ (μ e M):

Then there correspond mutually orthogonal primitive idempotent elements eμ in

R such that $teμ = mμ, and eμReμ may be considered, as usual, as the endomor-

phism ring of mμ. Let us denote by M{μ) the set of all indices κ&M such

that mκ is (operator-) isomorphic to mμ.

Throughout the following we assume that each mμ satisfies the following

condition:

(*)4 ) The sum of any two proper endomorphisms5) of mμ is also proper, i.e.
the endomorphism ring eμReμ of mμ is completely primary.

LEMMA 1. Under the assumption (*), let a and b be two elements of R such

that a + b = 1, the identity endomorphism. Then for any finite subset {μi}

= {βuβi, ,μs) of M we can find submoduli mj,m2,. . . ,ms so that each mμi

is mapped isomorphically upon m*, by means of either a or b, and there holds

the direct decomposition

at = m, + ϊπs + . . . + ϊπs + TJ mμ.

Proof, ae^ and beμi induce on mμi two endomorphisms whose sum is the

identity. In virtue of our assumption (*)9 either aeμi or beμi must induce an

automorphism on mμi, or what is the same, mμi is mapped by a or b isomorphi-

cally upon a submodule mx and ΪTΪJ is by eμi carried isomorphically onto mμ i .

And the latter fact means, since ]>] mμ is the kernel of eμj, the following direct
μψμ

decomposability

3> Cf. Corollary 1 to Theorem 15; there the assumption that the unit element is the only

non-zero idempotent element is superfluous; it follows automatically.

V = condition B) in S. K. Theorem 19.

^ = non-automorphisms = non-regular elements in the endomorphism ring of m μ .
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Apply next the above consideration to this direct decomposition and mμ, (in place

of the given direct decomposition (1) and mμ j). Then we obtain a second sub-

module m2 observe that rrΐj fulfills, with m μ i , the same assumption as ( * ) .

Continuing in this way we have the required submoduli.

Now we prove, as an improvement as well as a correction of S. K. Theorem

19, the following

THEOREM Lfi; Lei the direct decomposition (I) satisfy the condition (* ) above.

Then:

i) For any non-zero idempotent element f in R9 there exists at least one mμ

such that f is an isomorphism on mμ and the isomorphic image mμ/ is a (directly

indecomposable) direct summand of 3)ΐ. In particular, every directly indecompos-

able direct summand is isomorphic to one of mμ's.

ii) Given a second direct decomposition of %R into directly indecomposable

submoduli πv (pίΞΛ7):

(2) m = Σ πv,

then there exists a one-to-one mapping μ -» v{μ) of M onto N such that mμ is

isomorphic to nV(μ ), for each β e M or, in other words, the direct decomposition

of ΌSR into directly indecomposable submoduli is unique up to automorphisms.

Proof. I) if we put / ' - 1 —/, / ' is idempotent and is orthogonal to / and

Tl is the direct sum of Tlf and Wf\ Let v be any non-zero element from ΊRf

and let β\,β-, . . . ,βs be the finite number of indices such that veμί ^ 0 for

i = 1,2, . . . , s and veμ = 0 whenever βφ {βή. Then, on applying the preceding

lemma to a =- / , b - β and β\, β 2, . . . , A? , we have directly indecomposable

direct surαmands mi,m3, . . . , ms of Ίίϊ such that the module sum nϊi -f m2 + . . .

-}- ms is direct, each m, is isomorphic to mμ/ and in fact the isomorphism is in-

duced by / or /'. Suppose that this were the case for every i exclusively by / ' .

Then / ' would map mμi -f mμ, -f . . . -f- iττμίJ isomorphically upon nΐj + tri2 -f . . .

H~ iris, and this is a contradiction, since υ 3? 0, vf'-Q and 0 = ^^μi 4- ^ μ 2 -h . « .

-f ίy μ̂5 is contained in mμi + mμi, + . . . -J- mμ 3. Thus at least one mμί is mapped

by means of / isomorphically onto m, = m.̂  /

ii) Each nv is, by i), isomorphic to some mμ, and consequently the direct

decomposition (2) also satisfies the same condition as (*) . Hence we may, by

6> This theorem can readily be transferred, together with Lemma 1, to non-commutative
groups if we consider "normal endomorphisms" and make use of the notion of their
" Addierbarkeit." Cf. footnote (27) in S. K.



120 GORO AZUMAYA

interchanging (1) and (2), conclude similarly that each mμ is isomorphic to some

ttv. As M(μ), we denote by N{v), v being in N, the set of all λ&N such that

ιu is isomorphic with n v . Then our assertion means that if mμ and nv are iso-

morphic M{μ) and N(y) have the same cardinal number: M(μ) = N(v) and

to prove this we have, by symmetry, only to show that M(μ) ^ N(v).

Changing letters for convenience, let us assume that mκ and ιu are isomor-

phic. Let / v be, for each v&N, the primitive idempotent element belonging to

Πv (with respect to the direct decomposition (2)). Consider any index vo from

N(λ). Then, on applying i) to / = /V o, we can find an index μ0 G M(κ) so that

mμo is carried by /Vβ isomorphically onto πV(> (since 5R/Vo = πVo is directly indecom-

posable) we have the direct decomposition

Now let vi, v*9. . . , vs be any finite number of indices from N(λ). Then, on re-

peating the above argument s-times in the similar manner as in the proof of

Lemma 1, we can readily show the existence of s indices μifμ y,. . . ,μs in M{κ)

for which the direct decomposition

2R = πτμi -f mμ2 + . + πtμs

holds. From this follows in particular that if M(κ) is finite then N(λ) is also

finite and Wjcf^NU).

We assume therefore that M(κ) is infinite. Consider any index μ from

M(κ). Then, since for an arbitrary non-zero element u from mμ the nv-compo-

nent «/v vanishes for almost all v, there exist all the more only finitely many

indices v e N(λ) such that mμ is by means of Λ mapped isomorphically upon

Πv. We denote this finite subset of N(λ) by F(μ)9 which we associate with each

μ. Then, as was shown above, if μ runs over all indices in M(κ) the corres-

ponding F(μ) exhaust N(λ):

U F(μ) = N(λ) .

This implies, since M(κ) is infinite, that M{κ) ^N(λ), and the proof is com-

pleted.

3. Now we verify the following theorem, the first part i) of which may be

seen as an improvement of S. K. Theorem 20, i).

THEOREM 2. Under the assumption (*) above:

i) The endomorphism ring R of W is semi-primary, and every primitive

idempotent element in R is isomorphic to one of eμ's.
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ii) Every element a of R such that a = 1 (mod.C), C being the radical of

R, is an isomorphism of 3ft {into itself}, and for any finite number of indices

/Λi,μ»,. . . ,μs from M toe have the following direct decomposition:

3ft = niμjβ + mμf,α + . . . -f m μ s # + Ύ] τπ μ .
μίcμO

Proof, i) is an immediate consequence of Theorem 1, i). Indeed, that 3ft/

contains a directly indecomposable direct summand mμ/ isomorphic to mμ means

that / contains a primitive idempotent element e isomorphic to eμ such that

We = rπμ/ further, in this case, the subring eRe possesses a radical, since e^Re^

does the same by the assumption (*) and is isomorphic with eRe. These show,

as was remarked in § 1, that R is semi-primary,

ii) By virtue of Lemma 1, it is sufficient to prove that if we put 6 = 1 — a

no non-zero direct summand can be mapped isomorphicaliy by means of b onto

a direct summand. Suppose contrarily that there were two direct summands

m = 3Jte and n =3ft/, where both e a n d / are non-zero idempotent elements in

R, such that b carries m isomorphicaliy onto π. Then the isomorphism would

have an inverse isomorphism x&fRe, which fulfills obviously the relation xb

= / . But this is contrary to our assumption that b = 1 — a is in C.

We can further show that Corollary 2 to Sβ K. Theorem 19 also holds under

the assumption (*) alone:

LEMMA 2.7) Let the direct decomposition (1) satisfy the assumption ( * ) .

Then for any given primitive idempotent element e in R there exists at least one

μ such that eμeeμ is an automorphism on mμ .

Proof, if we put m = Tie, m is, according to Theorem 1, i), isomorphic to

one of mμ's and hence satisfies the same assumption as (*). Now each e^e in-

duces on m an endomorphism ee^e. The totality {ee^e; μ&M} is summable

with respect to m and the sum Σ eeμe ~ e is the identity endomorphism on m.

Let u be an arbitrary non-zero element of m and let / ί i , ^ ^ b e a finite

number of indices such that ueeμe( = ueμe) = 0 whenever μφ {μή = {μι,μ>2,

. . . ,/*?}. Then the sum d = yj ee\& 'ι% s i n c e ud = 09 a proper endomorphism

on m and satisfies eeμie 4- eeWιe + . . . + eeμse + d = e. From this follows, by

(*) for m, that 8 ) there must exist at least one μ% such that eeμie is an automor-

7) The validity of this lemma and that of the succeeding theorem under the assumption

(*) alone were communicated to the writer by T. Nakayama.
8> Generally, if m is a directly indecomposable module satisfying the same assumption as

(*) and if {ασ} be a summable system of proper endomorphisms of m then the sum

Σaσ is also proper.
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phism on tn, or what is the same, eμί and e map m and meμi isomorphically

upon meμi and m respectively. W is therefore the direct sum of meμi and the

kernel ϋR (1 — e) of e, and rneμi is a direct summand. But since meμί is contained

in the directly indecomposable module mμϊ (= 3Dteμ/), we have necessarily meμ£

— mμ /. Thus eμίeeμί is an automorphism on mμ /.

By virtue of the preceding lemma, we obtain the following

THEOREM 3.9) Under the assumption (*) above:

i) I7z£ radical C of R consists of all elements c in R such that e^cev is, for

every μ, v GΞ M, a proper homomorphism of mμ into rπ v.

ii) The residue class ring R ~ R/C modulo the radical C is a semi-irredu-

cible regular ring and may be considered as the endornorphism Ίing of the left

ideal VI Reμ ofR', further *Σ ^ μ ^s ^ae largest {left, right and) two-sided ideali0)

of R.

Proof i) That if c is in C then each eμcev is a proper homomorphism of

utμ into mv can be proved in the same way as in the proof of Theorem 2, ii),

since ev.c'e^ also in C. Suppose contrarily that an element d of R is not in C.

Then the right ideal dR contains a non-zero idempotent element e = dx, which

we may, since R is semi-primary by Theorem 2, assume to be primitive. Accor-

ding to Lemma 2, there exists an index μ such that eμeeμ = eμdxeμ is an auto-

morphism on m μ . Consider now a summable system {eμde^xeμ; v S M} of en-

domorphisms of mμ. Then it has the sum VJ e^de^xex — eμdxeμ and hence there

must exist,JJ) by the assumption (*), at least one v such that elfLde^xeμ is an

automorphism on mμ . Then eμde^ maps mμ isomorphically onto mv ? that is, eμde^

is not a proper homomorphism of mμ into m v .

ii) Let a be any element of R. For each μ, e^ae* is a proper homomorphism

of niμ, into mv except for a finite number of indices v,n) say, v = v\, v», . . . ?i>5.

Then it can readily be seen from i) of this theorem that eμa - (evae^ + eμae^2

+ . . . 4- eμaeVs) l i e s i n t h e r a d i c a l C, i . e . eμa - Iμa'e^x -j- eμae^, + . . . - } - eμaIVs.

This shows that *Σι Reμ is a two-sided ideal of i?. Every element of R induces
μ

therefore an (operator-) endomorphism of the left ideal ^ΣRIμ9 and indeed dis-
μ

tinct elements induce distinct endomorphisms. For, if a is an element of R
such that ~eμa = Q for every μ then Έv~άev = Q , whence eμae^ is a proper homo-

9 ) This theorem was given in S. K. Theorem 20, i) (in its proof, to be precise) and iii)

by assuming not only the assumption (*) but also the assumption (**) below.
J0> Cf. Corollary to S. K. Theorem 11.
5 1 ) Take account of footnote 8).
12> Because for an arbitrary non-zero element u of mμ ueμae^ vanishes for almost all v*
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morphism of mμ into mv for every μ, v, and consequently a is in C again by i)

of this theorem. Now let there be given an endomorphism of ^jRβμ, which
_ μ

makes correspond £μ -» a,L. Since £μ#μ = ϋ μ , we can take a representative # μ of

αμ so that £μ#μ = #μ. The system {#μ μ e M} is then summable and if we put

a = 5 J a* w e have eμ# = £μ(Zμ = # μ whence i"μα = α μ , which means that a induces
μ

the given endomorphism. Thus it is proved that R may be considered as the

endomorphism ring of the left ideal Σ Re* R is semi-irreducible by Corollary

to S K. Theorem 10, while R is regular by virtue of S. K. Theorem 16 because

Σ Re* is completely reducible. Every simple left ideal of R is, since R is semi-
μ ___

irreducible, expressed in the form Re by a primitive idempotent element e.

Taking a primitive idempotent representative e of e~,iv e is by Theorem 2, i)

isomorphic to some eμ9 that is, e&Re^Rn) whence I&Re^R, which implies

that (the simple left ideal) Re is contained in Y] Re* Thus 2 ^ V i s the

largest completely reducible left (whence right as well as two-sided) ideal of R\

We now impose, for the first time, the following assumption besides ( * ) :

(**)i5) j n c a s e f]τe cardinal number M of {mμ} is infinite, each mμ is finitely

generated.

We can readily see that under both the assumptions (*) and (**) S. K.

Theorem 20, ii), whence the succeeding Theorems 21-23 alsσ9 remain valid with

the same proofs as there. Whether or not S. K. Theorem 19, together with its

Corollary 1, and Sβ Kβ Theorem 20, iv) hold valid under the assumptions (*)

and (**), the writer has however to leave here open.

Remark. Although every element a of R such that a = 1 (mod C) is, accor-

ding to Theorem 2, ii), an isomorphism of 9JI into itself, a is not necessarily

an automorphism?

16) as the following example shows:

Let RQ be a completely primary ring with unit element whose radical Co is

not a nil-ideal17) and let R be the row-finite matrix ring over RQ of countably

infinite dimension, say. Then R is regarded as an endomorphism ring of a count-

ably infinite direct sum of (directly indecomposable) submoduli all isomorphic

to Ro (with the left operator-ring R0)9 which fulfills certainly the assumptions

(*) and (**), and moreover the radical C of R consists of all matrices in R

such that all its elements lie in CO.1S) Now let c be any non-nilpotent element
") Cf. S. K. Theorem 88
J4> Cf. S. K. Lemma 8.
1 5 ) = condition A) in S. K. Theorem 19.
j6> But in case M is finite a is always an automorphism, as Theorem 2, ii) shows.
J7> We may take Ro to be a valution ring of a p-aά\c number field, for instance.
J8> Cf. S. K. Theorem 22.
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from Co and consider the matrix

1 -c

1 -c

1 - c
a —

0

Then a is in R and a = 1 (mod. C), but « is not regular in R. For, if a could
have a left inverse, it would be of the form

( 1

1 c c2

1 c c1

\0 . . .

but this matrix is not row-finite because of the non-nilpotency of c.
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