A THEOREM ON THE CLUSTER SETS OF PSEUDO-ANALYTIC FUNCTIONS

KIYOSHI NOSHIRO

1. Let D be an arbitrary connected domain and $w=f(z)=u(x, y)+i v(x, y)$, $z=x+i y$, be an interior transformation in the sense of Stoïlow in D. Denote by γ a set, in D, such that D and the derived set γ^{\prime} of γ have no point in common. We suppose that

$$
\begin{equation*}
u_{x}, u_{y}, v_{x}, v_{y} \text { exist and are continuous in } D^{*}=D-\gamma ; \tag{i}
\end{equation*}
$$

(ii)

$$
J(z)=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|>0 \text { at every point in } D^{*} ;
$$

(iii) the function $q(z)$ defined as the ratio of the major and minor axes of an infinitesimal ellipse with centre $f(z)$, into which an infinitesimal circle with centre at each point z of D^{*} is transfomed by $w=f(z)$, is bounded in $D^{*}: q(z) \leqq A$.
$f(z)$ is then called pseudo-meromorphic (A) in $D .{ }^{1)}$
Next, suppose that $w=f(z)$ is pseudo-meromorphic (A) in D. Let C be the boundary of D, E be a closed set of capacity ${ }^{2)}$ zero, included in C, and z_{0} be a point in E. We can associate with z_{0} three cluster sets $S_{z_{0}}^{(D)}, S_{z_{0}}^{(C)}$ and $S_{z_{0}}^{*(C)}$ as follows: $S_{z_{0}}^{(D)}$ is the set of all values α such that $\lim _{\nu \rightarrow \infty} f\left(z_{\nu}\right)=\alpha$ with a sequence $\left\{z_{\nu}\right\}$ of points tending to z_{0} inside $D . S_{z_{0}}^{*(C)}$ is the intersection $\bigcap_{r} M_{r}$, where M_{r} denotes the closure of the union $\bigcup \zeta_{\zeta^{\prime}} S_{\zeta^{\prime}}^{(D)}$ for all ζ^{\prime} belonging to the common part of $C-E$ and $U\left(z_{0}, r\right):\left|z-z_{0}\right|<r$. In the particular case when E consists of a single point z_{0}, we denote $S_{z_{0}}^{*(C)}$ by $S_{z_{0}}^{(C)}$ for simplicity. Obviously $S_{z_{0}}^{(D)}$ and $S_{z_{0}}^{*(C)}$ are closed sets such that $S_{z_{0}}^{*(C)} \subset S_{z_{0}}^{(D)}$ and $S_{z_{0}}^{(D)}$ is always non-empty while $S_{z_{0}}^{*(1)}$ becomes empty if and only if there exists a positive number r such that $C-E$ and $U\left(z_{0}, r\right)$ have no point in common.

In the particular case where $w=f(z)$ is single-valued meromorphic in D, the following theorems concerning the cluster sets $S_{z_{0}}^{(D)}, S_{z_{0}}^{(C)}$ and $S_{z_{0}}^{*(C)}$ are known:

Received February 20, 1950.
${ }^{1)}$ For the definition of pseudo-meromorphic functions, Cf. S. Kakutani: Applications to the theory of pseudo-regular functions to the type-problem of Riemann surfaces, Jap. Journ. of Math. Vol. 13 (1937), pp. 375-392. R. Nevanlinna: Eindeutige analytische Funktionen, Berlin, 1936, p. 343.
2) "Capacity" means logarithmic capacity in this note.

Theorem I. (Iversen-Beurling-Kunugui) ${ }^{3)} B\left(S_{z_{0}}^{(D)}\right) \subset S_{z_{0}}^{(C)}$, where $B\left(S_{z_{0}}^{(p)}\right)$ denotes the boundary of $S_{z_{0}}^{(D)}$, or what is the same, $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{(C)}$ is an open set.

Theorem II. (Beurling-Kunugui) ${ }^{4}$) Suppose that $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{(C)}$ is not empty and denote by Ω_{n} any component of Ω. Then $w=f(z)$ takes every value, with two possible exceptions, belonging to Ω_{n} infinitely often in any neighbourhood of z_{0}.

Theorem I*. (Tsuji $)^{\text {s) }} B\left(S_{\mathbf{z}_{0}}^{(D)}\right) \subset S_{\mathbf{z}_{0}}^{*(C)}$, that is, $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is an open set.

Theorem II*. (Kametani-Tsuji) ${ }^{6)}$ Suppose that $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is not empty. Then $w=f(z)$ takes every value, except a possible set of w-values of capacity zero, belonging to Ω infinitely often in any neighbourhood of z_{0}.

The object of the present note is to propose the following
Theorem 1. Suppose that E is included in a single boundary-component C_{0} of C and $w=f(z)$ is pseudo-meromorphic (A) in D. Then $\Omega=S_{2_{0}}^{(D)}-S_{2_{0}}^{*(C)}$ is an open set. Suppose further that Ω is not empty. Then $w=f(z)$ takes every value, with two possible exceptions, belonging to any component Ω_{n} of Ω infinitely often in any neighbourhood of z_{0}.

Remark. It is obvious that Theorem 1 contains Theorems I and $I^{7)}$ and holds good provided that D is simply connected. ${ }^{8)}$ There is an anticipation that Theorems I* and II* may be probably true when $w=f(z)$ be pseudo-meromor-

[^0]phic (A) in (D). But the writer has not yet succeeded in proving it.
2. To prove Theorem 1 we use two lemmas.

Lemma 1. Let $w=f(z)$ be pseudo-regular (A) in a bounded domain D and E be a closed set of capacity zero, included in the boundary C of D. If

$$
\overline{\lim }_{z \rightarrow 5}|f(z)| \leqq M
$$

for every point ζ of $C-E$ and $f(z)$ is bounded in a neighbourhood of every point ζ of E, then $|f(z)| \leqq M$ for all points z in D.

Proof. We suppose, contrary to the assertion, that there exists a point z_{0} in D such that $\left|f\left(z_{0}\right)\right|>M$. Let Φ be the Riemannian image of D by $w=f(z)$ and denote by P_{0} the point on \varnothing which corresponds to z_{0}. Consider the star-region H in Gross' sense formed by the sum of segments from P_{0} with projection w_{0} $=f\left(z_{0}\right)$ to singular points along all rays: $\arg \left(w-w_{0}\right)=\varphi$ on \mathscr{D}, whose projections lie in the half-plane $\mathfrak{R}\left[e^{-i \arg w_{0}},\left(w-w_{0}\right)\right]>0$. We shall show that the linear measure of the set Γ of arguments φ of singular rays (by which we understand rays meeting singular points in finite distances) is equal to zero. Denote by H_{R} the common part of H and a circular disc $\left|w-w_{0}\right|<R$ and by Δ_{R} the image of H_{R} by the inverse transformation of $w=f(z)$. Then, $A_{k k}$ is a simply connected domain included in D. Since E is a closed set of capacity zero, Evans' theorem ${ }^{9}$ shows that there exists a distribution of positive mass $d \mu(a)$ entirely on E such that

$$
\begin{equation*}
u(z)=\int_{F} \log \left|\frac{1}{z-a}\right| d \mu(a), \quad \mu(E)=1 \tag{1}
\end{equation*}
$$

is harmonic outside E, excluding $z=\infty$, and has boundary value $+\infty$ at any point of E. Let $v(z)$ be its conjugate harmonic function and put

$$
\begin{equation*}
t=\chi(z)=e^{u(z)+i v(z)}=\rho(z) e^{i v(z)} . \tag{2}
\end{equation*}
$$

For the sake of convenience, we call the function $t=\chi(z)$ "Evans" function." Let C_{λ} be the niveau curve : $\rho(z)=$ const. $=\lambda(0<\lambda<+\infty)$. Then C_{λ} consists of a finite number of simple closed curves surrounding E. Further, Evans' function has the property

$$
\begin{equation*}
\int_{c_{\lambda}} d v(z)=\int_{c_{\lambda}} \frac{\partial u}{\partial n} d s=2 \pi, \tag{3}
\end{equation*}
$$

where s denotes the arc length of C_{λ} and n is the inner normal of C_{λ}. Now

[^1]we consider the Riemannian image $\tilde{\Delta_{R}}$ of Δ_{R} by $t=\chi(z)$ and the function w $=W(t)=f[z(t)]$ defined on $\widetilde{\Delta}_{R}$. Let $\widetilde{\Theta}_{\lambda}$ be the set of cross-cuts of ${\widetilde{\Lambda_{R}}}$ above the circle $|t|=\lambda$. We denote by $\lambda \theta(\lambda)$ the total length of $\tilde{\Theta}_{\lambda}$ and $L(\lambda)$ that of the image of $\widetilde{\Theta}_{\lambda}$ by $w=W(t)$. Then, applying a well-known method in proving Gross' theorem, we get
(4) $\int_{\lambda_{0}}^{\lambda} \frac{[L(\lambda)]^{2}}{\lambda \theta(\lambda)} d \lambda \leqq\left(A+\sqrt{A^{2}-1}\right) \int_{\lambda_{0}}^{\lambda} \int_{\tilde{\Theta}_{\lambda}} J(t) \lambda d \lambda d \theta \leqq \pi A R^{2}, \quad\left(0<\lambda_{0} \leqq \lambda\right)$.

Since $\theta(\lambda) \leqq 2 \pi$, we have

$$
\lim _{\lambda \rightarrow \infty} L(\lambda)=0
$$

Accordingly, we see that the set Γ of arguments φ of singular rays is of linear measure zero. Consequently there exists at least one asymptotic path Λ inside D reaching a point ζ in E, along which $w=f(z)$ converges to ∞ as z tends to ζ. But this is a contradiction, since $f(z)$ is bounded in a neighbourhood of 5 .

Remark. Lemma 1 is an immediate consequence from R. Nevanlinna's theorem ${ }^{10)}$ in the case when $w=f(z)$ is single-valued regular in D.

By a similar argument as in Lemma 1, we obtain, without difficulty,
Lemma 2. (An extension of Iversen's theorem) ${ }^{11)}$ Let D be an arbitrary domain, C being its boundary, and let E be a closed set of capacity zero included in C. Suppose that $f(z)$ is pseudo-meromorphic (A) in D and $S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is not empty. If $w=f(z)$ does not take a value α, contained in $S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$, infinitely often, then α is either an asymptotic value of $w=f(z)$ at z_{0} or there is a sequence of accessible boundary points ζ_{n} in E tending to z_{0} such that α is an asymptotic. value at each ζ_{n}.
3. Proof to Theorem 1. Let w_{0} be an arbitrary value belonging to $S_{z_{0}}^{(D)}$ $-S_{z_{0}}^{*(c)}$. By hypothesis, there exists a circle $K:\left|z-z_{0}\right|=r$, arbitrarily small, such that $K \cdot E=0$ and $f(z) \neq w_{0}$ on $K \cdot D$. We may suppose that w_{0} does not belong to the closure M_{r} of the union $\bigcup_{\zeta^{\prime}} S_{\zeta^{\prime}}^{\left(D^{\prime}\right.}$ for all ζ^{\prime} belonging to the common part of $C-E$ and $\left|z-z_{0}\right| \leqq r$. We denote by ρ_{1} the distance of M_{r} from w_{0}. Let ρ_{2} be a positive number such that $\left|f(z)-w_{0}\right| \geqq \dot{\rho}_{2}>0$ on $K \cdot D$. We denote by ρ a positive number less than $\min \left(\rho_{1}, \rho_{2}\right)$. Since w_{0} is a cluster value of $w=f(z)$ at z_{0}, there exists a sequence of points $z_{\mu}(\mu=1,2, \ldots$) inside $(K) \cdot D$, (K) denoting the interior of K, tending to z_{0} such that $w_{\mu}=f\left(z_{\mu}\right)$ tends to w_{0}.

[^2]We keep hereafter the sequence $z_{\mu}(\mu=1,2, \ldots)$ fixed. Consider the open set D_{0} of points z inside $(K) \cdot D$ whose images $w=f(z)$ lie in $(c):\left|w-w_{0}\right|<\rho$. Then D_{0} consists of a finite or an enumerable number of connected domains A. Denote by Δ_{i}, the component containing z_{μ}; some Δ_{μ} may coincide with one other.

First we consider the case in which there are infinitely many distinct components A_{μ}. For the sake of simplicity, we suppose that $\Delta_{\mu} \neq A_{\nu}$ if $\mu \neq \nu$ 。 Then, we easily show that $A_{1}(\mu=1,2, \ldots)$ converges to z_{0}. For, if otherwise there exists a circle $K^{\prime}:\left|z-z_{0}\right|=\gamma^{\prime}(<\gamma)$ such that $K^{\prime} \cdot E=0$ and $K^{\prime} \cdot \Delta_{\mu_{n}} \neq 0(n=1$, $2, \ldots$), where $A_{\mu_{n}}$ denotes a sub-sequence of Δ_{μ}. Let ζ_{n} be any boundary point of $A_{\mu_{n}}$, lying on the circle K^{\prime} and ζ_{0} be a point of accumulation of the sequence $\zeta_{n}(n=1,2, \ldots)$. Since $f\left(\zeta_{n}\right)$ lies on the circle $c:\left|w-w_{0}\right|=\rho, \zeta_{0}$ must belong to either $C-E$ or D. However, either of two cases leads to a contradiction, because either the set M_{r} intersects the circle $\left|w-w_{0}\right|=\rho$ or infinitely many niveau curves: $\left|\mathcal{V}(z)-w_{0}\right|=\rho$ intersect any neighbourhood of ζ_{0}, while $w=f(z)$ is pseudo-regular (A) in D. If Δ_{i} is compact in D, then it is evident that w $=f(z)$ takes every value in $(c):\left|w-w_{0}\right|<\rho$. If Δ_{μ} is not compact in D, its boundary consists of a closed subset E_{μ} of E and a finite or an enumerable number of analytic curves inside D; by Lemma 1, the value-set \mathfrak{D}_{μ} of $w=f(z)$ in Δ_{μ} is everywhere dense in $(c):\left|w-w_{0}\right|<\rho$, what is the same, the closure \bar{D}_{μ} coincides with $\left|w-w_{0}\right| \leqslant \rho$. Considering that $\Delta_{\mu}(\mu=1,2, \ldots)$ converges to z_{0}, we see that the cluster set $S_{z_{0}}^{(p)}$ includes the closed circular disc $\left|w-w_{i}\right|$ $\leqq \rho$.

Next, let r_{n} and ρ_{n} be two decreasing sequences of positive numbers tending to zero, such that, for each n, r_{n} and ρ_{n} are selected as stated above, and consider two sequences of circles $K_{n}:\left|z-z_{0}\right|=r_{n}$ and $c_{n}:\left|w-w_{0}\right|=\rho_{n} \quad(n=1,2$, ...). Denote by $\Delta_{\mu}^{(n)}$ the component with an interior point z_{μ}, which is an inverse image of $\left(c_{n}\right):\left|w-w_{0}\right|<\rho_{n}$. If the sequence $\Delta_{\mu}^{(n)}\left(\mu \geqslant N_{\mu}\right)$ consists of infinitely many distinct domains for at least one n, then the reasoning used above shows that $S_{z_{0}}^{(D)}$ includes the closed disc $\left|w-w_{0}\right| \leqq \rho_{n}$. Thus, we have only to consider the case in which the sequence $J_{12}^{(n)}$ consists of only a finite number of distinct dornains for every n. Denote by Δ_{1} any $\Delta_{\mu}^{(1)}$ containing a sub-sequence $\left\{z_{\mu}^{(1)}\right\}$ of $\left\{z_{i}\right\}$, and by $\Delta_{\underline{2}}$ any $\Delta_{\mu}^{(2)}$ containing a sub-sequence $\left\{z_{i \mu}^{\left.()^{(2)}\right\}}\right.$ of $\left\{z_{i}^{(1)}\right\}$ and so on. Thus, we obtain a new sequence of domains $\left\{\Delta_{n}\right\}$ such that $\Delta_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots$ and each A_{n} has a boundary point z_{n} in common. Accordingly, since the value-set of $w=f(z)$ in A_{n} is included in $\left(c_{n}\right):\left|w-w_{0}\right|$ $<\rho_{n}$ and the diameter of A_{n} tends to zero as $n \cdots \infty$, there exists an asymptotic path A of $w=f(z)$ reaching z_{0} along which $w=f(z)$ converges to w_{9}. Denote
by Ω_{0} the component containing w_{0} of the complementary set of $S_{i_{0}}^{*(C)}$ with respect to the w-plane. We shall now show that $w=f(z)$ takes every value, except two possible exceptions, belonging to Ω_{0} infinitely often in any neighbourhood of z_{0}. Without loss of generality, we may suppose that Ω_{0} does not contain w $=\infty$. Suppose, contrary to the assertion, that there are three exceptional values w_{1}, w_{2}, w_{3} in Ω_{0}. Then, there exists a positive number η_{1} such that $f(z)$ $\neq w_{1}, w_{2}, w_{3}$ in the common part of D and $U\left(z_{0}, \eta_{1}\right):\left|z-z_{0}\right|<\eta_{1}$. Inside Ω_{0} we draw a simple closed regular analytic curve Γ which surrounds w_{0}, w_{1}, w_{2} and passes through w_{3}, and whose interior consists only of interior points of Ω_{0}. By hypothesis, we can select a positive number $\eta\left(<\eta_{1}\right)$, arbitrarily small, such that, K^{\prime} denoting the circle $\left|z-z_{0}\right|=\eta, K^{\prime} \cdot(C-E)=0$ and the closure M_{η} of the union $\bigcup_{\zeta^{\prime}} S_{\zeta^{\prime}}^{\left.()^{\prime}\right)}$ for all ζ^{\prime} belonging to the common part of $C-E$ and $\left|z-z_{0}\right| \leqq \eta$ lies outside Γ. We may assume that the image of A by $w=f(z)$ is a curve lying completely in the interior of Γ. Consider the set D_{η} of points z inside the intersection of D and $U\left(z_{0}, \eta\right)$ such that $w=f(z)$ lies in the interior of Γ. Then the open set D_{η} consists of at most an enumerable number of connected components. We shall denote by Δ the component which contains the asymptotic path Λ. It is easily seen that the boundary of Δ consists of a finite number of arcs of the circle K^{\prime}, a finite or an enumerable number of analytic contours inside D and a closed subset E_{0} of E. Further it should be noticed that Δ is simply connected. For, by hypothesis, E is included in a single boundary-component C_{0} of the boundary C of D and the frontier of Δ contains no closed analytic contour, since every analytic contour of Δ is transformed by $w=f(z)$ into a curve lying on the simple closed curve Γ passing through an exceptional value w_{3}. Denote by \mathscr{D} the Riemannian image of Δ transformed by $w=f(z)$ in a one-one manner and by Φ_{0} the domain obtained by excluding two points w_{1} and w_{2} from the interior of Γ. Then, \mathscr{D} is a simply connected covering surface of basic surface \mathscr{D}_{0} whose Euler's characteristic is equal to 1 . With an aid of Evans' theorem stated before, we can prove, without difficulty, that \mathscr{D} satisfies the condition of regular exhaustion (with a slightly modified form) in Ahlfors' sense. But this will lead to a contradiction by Ahlfors' main theorem on covering surfaces. ${ }^{12)}$ Thus, it is proved that $S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is an open set.

Suppose that the open set $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is not empty. Let Ω_{n} be any connected component of Ω. We shall now prove that $w=f(z)$ takes every value, with two possible exceptions, belonging to Ω_{n} infinitely often in any neighbourhood of z_{0}. We may suppose that Ω_{n} does not contain $w=\infty$. Contrary to the

[^3]assertion, we suppose that there are three exceptional values w_{0}, w_{1} and w_{2} in Ω_{n}. Then, there exists a positive number η_{1} such that $f(z) \neq w_{0}, w_{1}, w_{2}$ in the common part of D and $U\left(z_{0}, \eta_{1}\right):\left|z-z_{0}\right|<\eta_{1}$. Inside Ω_{n} we draw a simple closed regular analytic curve Γ which surrounds w_{0}, w_{1} and passes through w_{2}, and whose interior consists only of interior points of Ω_{n}. We can select a positive number $\eta\left(<\eta_{1}\right)$, arbitrarily small, such that, K^{\prime} denoting the circle $\left|z-z_{0}\right|=\eta, K^{\prime} \cdot(C-E)=0$ and the closure M_{n}^{\prime} of the union $\bigcup_{S^{\prime}} S_{\zeta^{\prime}}^{(p)}$ for all ζ^{\prime} belonging to the common part of $C-E$ and $\left|z-z_{0}\right| \leqq \eta$ lies outside Γ. Now, by Lemma 2 either w_{0} is an asymptotic value of $w=f(z)$ at z_{j} or there exists a sequence of ζ_{a} in E tending to z_{0} such that w_{0} is an asymptotic value at each ζ_{n}. Consequently it is possible to find a point ζ_{0} (distinct from z_{0} or not) belonging to $E \cdot U\left(z_{0}, \eta\right)$ such that w_{0} is an asymptotic value of $w=f(z)$ at ε_{0}. Let A be the asymptotic path with the asymptotic value w_{0} at ξ_{0}. We may assume that the image of Λ by $w=f(z)$ is a curve lying completely inside Γ. Consider the set D_{η} of points z inside the intersection of D and $U\left(z_{0}, \eta\right)$ such that $w=f(z)$ lies inside Γ. Now, we denote by $\left\{\right.$ the component, of D_{n}, which contains the asymptotic path A. Since A must be simply connected, we would arrive at a contradiction. ${ }^{13)}$

Mathematical Institute, Nagoya University

[^4]
[^0]: ${ }^{\text {3 }}$) F. Iversen: Sur quelques propriétés des fonctions monogènes au voisinage d'un point singulier, Öfv. af Einska Vet-Soc. Forrh. 58 (1916).
 K. Kunugui: Sur un théorème de M. M. Seidel-Beurling, Proc. Acad. Tokyo, 15 (1939); Sur un problème de M. A. Beurling, Proc, Acad. Tokyo, 16 (1940); Sur l'allure d’une fonction analytique uniform au voisinage d'un point frontière de son domaine de définition, Jap. Journ. of Math. 18 (1942), pp. 1-39.
 A. Beurling: Études sur un problème de majoration, Thèse de Upsal, 1933; Cf. pp. 100-103.
 $\left.{ }^{4}\right)$ Beurling: 1. c. 3); Kunugui: 1. c. 3).
 ${ }^{5}$) M. Tsuji: On the cluster set of a meromorphic function, Proc. Acad. Tokyo, 19 (1943); On the Riemann surface of an inverse function of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Acad. Tokyo, 19 (1943).
 ${ }^{6)}$ Tsuji: 1. c. 5). . S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities, Proc. Acad. Tokyo, 17 (1941), pp. 429-433.
 ${ }^{7}$) Recently E. Sakai has obtained some interesting results concerning pseudo-meromorphic functions. Theorem 1 answers affirmatively a problem represented by him. Cf. E. Sakai: Note on pseudo-analytic functions, forthcoming Proc. Acad. Tokyo.
 ${ }^{3)}$ The special case where D is simply connected and $w=f(z)$ is single-valued meromorphic in D has been treated by the writer in another note. Cf. K. Noshiro: Note on the cluster sets of analytic functions, forthcoming Journ. Math. Soc. Japan.

[^1]: 9) G. C. Evans: Potentials and positively infinite singularities of harmonic functions, Monatsheft für Math. und Phys. 43 (1933), pp. 419-424.
 K. Noshiro: Contributions to the theory of the singularities of analytic functicns, Jap. Journ. of Math. 19 (1948), pp. 299-327.
[^2]: ${ }^{10)}$ R. Nevanlinna: 1. c. 1), pages 132 and 134.
 ${ }^{11}$) K. Noshiro: On the theory of the cluster sets of analytic functions, Journ. Fac. of Sci., Hokkaido Imp. Univ. 6 (1938), pp. 217-231; Cf. theorem 4.

[^3]: 12) L. Ahlfors: Zur Theorie der Überlagerungsfächen, Acta Math. 65 (1935), pp. 157-194. R. Nevanlinna: 1. c. 1), Cf. p. 323. K. Noshiro: 1. c. 8).
[^4]: ${ }^{13)}$ K. Noshiro: 1. c. 8).

