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ON CLASSIFICATION OF Q-FANO 3-FOLDS OF

GORENSTEIN INDEX 2. II

HIROMICHI TAKAGI

Abstract. In the previous paper, we obtained a list of numerical possibilities
of

�
-Fano 3-folds X with Pic X = � (−2KX) and h0(−KX) ≥ 4 containing

index 2 points P such that (X, P ) ' ({xy + z2 + ua = 0}/ � 2(1, 1, 1, 0), o) for
some a ∈ � . Moreover we showed that such an X is birational to a simpler
Mori fiber space. In this paper, we prove their existence except for a few cases
by constructing a Mori fiber space with desired properties and reconstructing
X from it.

Notation and Conventions

N: The set of positive integers.

∼: Linear equivalence.

≡: Numerical equivalence.

Fn: Segre-del Pezzo scroll of degree n.

Fn,0: Surface obtained by contracting the negative section of Fn.

Q3: Smooth quadric 3-fold.

ODP: Ordinary double point, i.e., singularity analytically isomorphic to

{xy + z2 + u2 = 0 ⊂ C4}.

QODP: Singularity analytically isomorphic to

{xy + z2 + u2 = 0 ⊂ C4/Z2(1, 1, 1, 0)}.

Bi (1 ≤ i ≤ 5): Factorial Gorenstein terminal Fano 3-fold of Fano index 2,

and with Picard number 1 and (−K)3 = 8i, where K is the canonical

divisor.

A2g−2 (1 ≤ g ≤ 12 and g 6= 11): Factorial Gorenstein terminal Fano 3-fold

of Fano index 1, and with Picard number 1 and genus g.

Abuse of notation: We use the same notation for transforms of curves by

birational maps as original ones.
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§0. Introduction

In this paper we work over C, the complex number field.

Definition 0.0. (Q-Fano variety) Let X be a normal projective vari-
ety. X is said to be a terminal (resp. canonical, klt, etc.) Q-Fano variety if
X has only terminal (resp. canonical, Kawamata log terminal, etc.) singu-
larities and −KX is ample. By replacing ‘ample’ with ‘nef and big’, terminal
(resp. canonical, klt, etc.) weak Q-Fano varieties are similarly defined. If
X has only terminal singularities, then we say that X is a Q-Fano variety
for short and if X has only Gorenstein terminal (resp. canonical, klt, etc.)
singularities, we say that X is a Gorenstein terminal (resp. canonical, klt,
etc.) Fano variety.

Let I(X) := min{I | IKX is a Cartier divisor} and we call I(X) the
Gorenstein index of X.

Write I(X)(−KX) ≡ r(X)H(X), where H(X) is a primitive Cartier
divisor and r(X) ∈ N. (Note that H(X) is unique since Pic X is torsion
free.) Then we call r(X)/I(X) the Fano index of X and denote it by F (X).

In the previous paper [Taka02], we formulate a generalization of

Takeuchi’s method [Take89] for the classification of smooth Fano 3-folds

and use it for a partial classification of Q-Fano 3-folds X with the following

properties.

Main Assumption 0.1. (1) The Picard number of X is 1,
(2) the Gorenstein index of X is 2,
(3) the Fano index of X is 1/2,
(4) h0(−KX) ≥ 4, and
(5) there exists an index 2 point P such that

(X,P ) ' ({xy + z2 + ua = 0}/Z2(1, 1, 1, 0), o)

for some a ∈ N.

Let f : Y → X be the weighted blow-up at P with weight 1
2(1, 1, 1, 2).

In the previous paper [Taka02], we proved that Y is a weak Q-Fano 3-fold

and obtained the following diagram.

Y
f

��� � � � � � � �
�����

Y ′

f ′

�� ��������

X X ′,
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where

(1) Y 99K Y ′ is an isomorphism and f ′ is a crepant divisorial contraction

or

(2) Y 99K Y ′ is a flop or a composite of a flop and a flip, and f ′ is an

extremal contraction which is not isomorphic in codimension 1.

We use the following notation.

Notation 0.2. • Ẽ := the strict transform of E on Y ′,
• n := 2((−KY )3 − (−KY ′)3),
• e := E3 − Ẽ3 − 4n,
• Rational numbers z and u are defined as follows. In case f ′ is bi-

rational, the f ′-exceptional divisor E′ satisfies E′ ≡ z(−KY ′) − uẼ.
Otherwise the pull-back L of an ample generator of PicX ′ satisfies
L ≡ z(−KY ′) − uẼ,

• h := h0(−KX), and
• N is the number of 1

2(1, 1, 1)-singularities obtained by deforming non-
Gorenstein points of X locally.

The following is the main theorem of [Taka02]:

Theorem 0.3. Let X be as in Main Assumption 0.1. Consider the
diagram

Y
f

��� � � � � � � �
�� ���

Y ′

f ′

�� ��������

X X ′,

as above. Then the possibilities of X are classified as in Tables 1–5 and
Tables 1′–5′ with the notation of 0.2. In particular we have (−KX)3 ≤ 15
and h0(−KX) ≤ 10.

Table 1. f ′ is of (2, 1)-type. I

No. h (−KX)3 N e n z deg C g(C) X ′

1.1 6 7 2 7 0 4 7 8 [5]

1.2 6 15/2 3 7 0 2 3 0 [2], I(X ′) = 2

1.3 6 15/2 3 6 1 4 6 3 [5]

1.4 7 17/2 1 6 0 3 9 9 P3
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1.5 7 9 2 6 0 2 6 3 [3]

1.6 7 9 2 5 1 3 8 5 P3

1.7 7 19/2 3 5 1 2 5 0 [3]

1.8 7 19/2 3 4 2 3 7 1 P3

1.9 8 21/2 1 6 0 1 3 0 B3

1.10 8 21/2 1 5 0 2 9 6 Q3

1.11 8 11 2 4 1 2 8 3 Q3

1.12 9 25/2 1 5 0 1 5 1 B4

1.13 10 29/2 1 4 0 1 7 2 B5

1.14 10 15 2 3 1 1 6 0 B5

Table 1′. f ′ is of (2, 1)-type. I

h (−KX)3 N e n z deg C g(C) X ′

8 23/2 3 3 2 2 7 0 Q3

Notation and Remarks for Table 1 and Table 1′.
C := f ′(E′),

deg C := (H(X ′) · C) (see Definition 0.0 for the definition of H(X ′)),
g(C) := the genus of C in case X has only 1

2(1, 1, 1)-singularities,
see [San96] for the definition of [i],

u = z + 1.

Table 2. f ′ is of (2, 1)-type. II

No. (−KX)3 N e deg C X ′

2.1 7/2 3 10 1 A6

2.2 4 4 8 2 A8

2.3 9/2 5 6 3 A10

2.4 5 6 4 4 A12

Table 2′. f ′ is of (2, 1)-type. II

(−KX)3 N e deg C X ′

11/2 7 2 5 A14
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Notation and Remarks for Table 2 and Table 2′.
C := f ′(E′),

deg C := (−KX′ · C),
z = u = 1,

h = 4 and n = 0.

Table 3. f ′ is (2, 0)-type or crepant divisorial.

No. h (−KX)3 N e n type of f ′

3.1 4 5/2 1 15 0 (2, 0)4

3.1′ 4 5/2 1 / / crep. div.

3.2 4 3 2 12 0 (2, 0)8

3.3 4 4 4 9 3 (2, 0)1

3.4 4 9/2 5 8 3 (2, 0)5

Remarks for Table 3.
z = u = 1,

(No. 3.1) X ′ also belongs to this class,
(No. 3.1′) X ′ is a Fano 3-fold of (−KX′)3 = 2 and with

a canonical singularity along the image of
f ′-exceptional divisor,

(No. 3.2) X ′ ' A4 with one Gorenstein terminal singularity,
(No. 3.3) X ′ is smooth, isomorphic to A10,
(No. 3.4) X ′ is smooth, isomorphic to A16.

Table 4. f ′ is of (3, 2)-type.

No. h (−KX)3 N e n deg ∆

4.1 5 11/2 3 8 0 8

4.2 5 6 4 7 1 6

4.3 6 13/2 1 7 0 7

4.4 6 7 2 6 1 6

4.5 6 15/2 3 5 2 5

4.6 6 8 4 4 3 4

4.7 6 17/2 5 3 4 3

4.8 10 29/2 1 6 0 0
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Table 4′. f ′ is of (3, 2)-type.

h (−KX)3 N e n deg ∆

5 13/2 5 6 2 4

5 7 6 5 3 2

5 15/2 7 4 4 0

6 9 6 2 5 2

6 19/2 7 1 6 1

Notation and Remarks for Table 4 and Table 4′.
∆ := the discriminant divisor of f ′,

deg ∆ is measured by the ample generator of PicX ′,
in case h = 5, z = u = 2 and X ′ ' F2,0,
in case h = 6, z = u = 1 and X ′ ' P2,

in case h = 10, z = 1, u = 2 and X ′ ' P2.

Table 5. f ′ is of (3, 1)-type.

No. h (−KX)3 N e n deg F

5.1 4 9/2 5 9 0 6

5.2 5 9/2 1 9 0 3

5.3 5 5 2 8 1 4

5.4 5 11/2 3 7 2 5

5.5 5 6 4 6 3 6

Table 5′. f ′ is of (3, 1)-type.

h (−KX)3 N e n deg F

4 5 6 8 1 8

Notation and Remarks for Table 5 and Table 5′.
F := a general fiber of f ′,
in case h = 4, z = u = 2 ,
in case h = 5, z = u = 1.

Based on these lists, we derive some geometric properties of such a

Q-Fano 3-fold X in Sections 1–3.

Miles Reid conjectured that every Q-Fano 3-fold has an effective anti-

canonical divisor with only canonical singularities. The conjecture is affir-

mative in case of Gorenstein canonical Fano 3-folds [Sho79b] and [Reid83].

In §1, we prove the following:
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Theorem 0.4. (See Corollary 1.2) Assume that for any index 2 point
P , there is an isomorphism

(X,P ) ' ({xy + z2 + ua = 0}/Z2(1, 1, 1, 0), o)

for some a ∈ N. Then |−KX | has a member with only canonical singulari-
ties.

In §2, we study deformation theoretic properties of X and obtain the

following:

Theorem 0.5. (See Corollaries 2.2 and 2.3) Let X be a Q-factorial Q-
Fano 3-fold with (1)–(4) of Main Assumption 0.1. Let N := aw(X) (see
[Taka02, Definition 1.1]). Then the following hold.

(1) X can be deformed to a Q-factorial Q-Fano 3-fold X ′ with (1)–(4) in
Main Assumption 0.1 and with only QODP’s or 1

2(1, 1, 1)-singularities
as its singularities.

(2) If N > 1 (resp. N = 1), X can be transformed to a Q-factorial

Q-Fano 3-fold Z̃ ′ with (1)–(4) of Main Assumption 0.1 and with only
QODP’s or 1

2(1, 1, 1)-singularities as its singularities and h0(−K �
Z′

) =

h and aw(Z̃ ′) = N −1 (resp. a smooth Fano 3-fold Z̃ ′ with ρ(Z̃ ′) = 1,

F (Z̃ ′) = 1 and h0(−K �
Z′

) = h) as follows.

Ỹ
f̃

��� � � � � � � �
g̃

�� ��������

X
def ��

X̃ Z̃
def��

Z̃ ′,

where ∗
def
−→ ∗∗ means that ∗∗ is a small deformation of ∗,

X̃ is a Q-Fano 3-fold with the properties (1)–(4) in Main Assump-
tion 0.1 and with only ODP’s, QODP’s or 1

2(1, 1, 1)-singularities as
its singularities,

f̃ : Ỹ → X̃ is similarly chosen to f in Theorem 0.3, and
g̃ : Ỹ → Z̃ be the anti-canonical model.

(2) is an analogue to Reid’s fantasy about Calabi-Yau 3-folds [Reid87a].

In §3, we prove the following:
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Theorem 0.6. (See Corollary 3.1) If any index 2 point is a 1
2 (1, 1, 1)-

singularity, X can be embedded into a weighted projective space P(1h, 2N ),
where h := h0(−KX) and N is the number of 1

2(1, 1, 1)-singularities on X.

We hope to determine the defining equation of X explicitely in some

weighted projective space containing P(1h, 2N ) as S. Mukai did in case of

Fano 3-folds (see [Muk89], [Muk92] and [Muk95]).

In §4, as announced in [Taka02], we prove the existence of Q-Fano 3-

folds with Main Assumption 0.1. The main results are Thereoms 0.10–0.21.

Proposition 0.8 gives a sufficient condition for the reconstruction of X.

Assumption 0.7. In Theorems 0.10–0.21 (A), we assume that X has
only 1

2 (1, 1, 1)-singularities and fix f as in Theorem 0.3 (and then X is
classified as in Tables 1–5). We use the notation of Tables 1–5 freely.

Proposition 0.8. Let Y ′ be a projective 3-fold with only 1
2 (1, 1, 1)-

singularities and n is a non-negative integer. Assume the following condi-
tions.

(1) ρ(Y ′) = 2.
(2) In case n > 0, there are smooth rational curves li (0 ≤ i ≤ n − 1)

such that

(2-1) li are numerically equivalent.
(2-2) li are mutually disjoint and are contained in Reg Y ′.
(2-3) Bs|−KY ′ | is the union of li and 1

2 (1, 1, 1)-singularities.
(2-4) −KY ′ · li = −1, or

in case n = 0, −KY ′ is nef and big.
(3) (−KY ′)3 + n

2 > 0.

(4) There is an irreducible divisor Ẽ such that Ẽ · li = −1 in case n > 0,
(−KY ′)2Ẽ = 1 − n and (−KY ′)Ẽ2 = −2 − 2n.

(5) In case n = 0, there exists an extremal ray R of Y ′ such that Ẽ ·R < 0.

Then the following hold.

(i) There is a birational map Y ′
99K Y which is one flop, or a composite

of one anti-flip and one flop.
(ii) There is an extremal contraction f : Y → X of (2, 0)4-type or (2, 0)10-

type whose exceptional divisor is the strict transform of Ẽ.
(iii) X is a Q-Fano 3-fold with only 1

2(1, 1, 1)-singularities or QODP’s.
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Remark 0.9. In Theorems 0.10–0.21 (A), we assume that X has only
1
2(1, 1, 1)-singularities. However, X reconstructed in Theorems 0.10–0.21
(B) by using Proposition 0.8 has possibly one singularity worse than
1
2(1, 1, 1)-singularities.

Theorem 0.10. (Table 1) (A) Let X be a Q-Fano 3-fold as in Table
1. Then

(1) images of n flipped curves li (0 ≤ i ≤ n − 1) are (z + 2)-secant
lines of C with respect to 1

z+1(−KX′),
(2) li ⊂ Reg Y ′ and li are mutually disjoint, and
(3) Bs|−KX′ − C| is the union of C, li and 1

2(1, 1, 1)-singularities.

(B) Conversely let X ′ be a Q-Fano 3-fold as in Table 1 and C ⊂ X ′ a
smooth curve of degree and genus given in the same row. Let n and
z be integers given in the same row. Assume that

(1) C has (z + 2)-secant lines li (0 ≤ i ≤ n − 1) with respect to
1

z+1(−KX′) such that li ⊂ Reg X ′ and li are mutually disjoint,

(2) Bs|−KX′ − C| is the union of C, li and 1
2 (1, 1, 1)-singularities,

and
(3) There exists a surface S ≡ z

z+1(−KX′) containing C.

Let f : Y ′ → X ′ be the blow-up of X ′ along C and E′ f ′-exceptional
divisor. Then the following hold.

(i) S is irreducible and C 6⊂ Sing S.
(ii) Y ′, li and the strict transform Ẽ of S on Y ′ satisfy the conditions

of Proposition 0.8. Let X be a Q-Fano 3-fold obtained as in
Proposition 0.8. Then X belong to the same row in Table 1 as
X ′.

(C) In any case of Table 1, there exists an example of (X ′, C, li) as in (B)
and hence that of a Q-Fano 3-fold X.

Theorem 0.11. (Table 2) (A) Let X be a Q-Fano 3-fold of No. 2.1
(resp. 2.2). Then

(1) X ′ ' A6 (resp. A8) and has 2 (resp. 3) singularities Pi on C
such that (X ′, Pi) are isomorphic to ({xy + zw = 0}, o) in C4 or
({xy + z2 + w3 = 0}, o) in C4, and

(2) C is a smooth rational curve such that (−KX′ ·C) = 1 (resp. 2).

(B) Conversely let (X ′, C, Pi) be as in (A). Then the following hold.
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(i) There exists a divisorial contraction f ′ : Y ′ → X ′ of (2, 1)-type
whose center is C (note that by [Taka02, Proposition 2.2 (4c)],
Y has only 1

2(1, 1, 1)-singularities).

(ii) There is a unique member Ẽ of |−KY ′ − E′|, where E′ is f ′-
exceptional divisor.

(iii) Y ′ and Ẽ satisfy the conditions of Proposition 0.8. Let X be
a Q-Fano 3-fold obtained as in Proposition 0.8. Then X is of
No. 2.1 (resp. No. 2.2).

(C) There exists an example of (X ′, C) as in (A) for No. 2.1 (resp. No. 2.2)
and hence there exists a Q-Fano 3-fold of No. 2.1 (resp. No. 2.2).

Remark 0.12. Examples are not known for No. 2.3 or 2.4.

Theorem 0.13. (Table 3) (No. 3.1 or 3.1′) Let X be a Q-Fano 3-
fold of No. 3.1 or 3.1′. Then X ' ((5) ⊂ P(14, 2)). X ′ is also of
No. 3.1 if so is X.

(No. 3.2) Let X be a Q-Fano 3-fold of No. 3.2. Then X ' ((3, 4) ⊂
P(14, 22)) and X ′ ' A4 with one Gorenstein terminal singularity.

(No. 3.3) (A) Let X be a Q-Fano 3-fold of No. 3.3. Then

(1) X ′ is smooth and isomorphic to A10, and

(2) there exist exactly three lines through Q, which is the image
of the f ′-exceptional divisor E′.

(B) Conversely let X ′ be a smooth 3-fold isomorphic to A10 such that
there exists a point Q where exactly three lines li (i = 0, 1, 2)
pass through. Let f ′ : Y ′ → X ′ be the blow-up at Q and E′ the
exceptional divisor. Then the following hold.

(i) Bs|−KY ′ | = l0 ∪ l1 ∪ l2.
(ii) There is a unique member Ẽ of |−KY ′ − E′|.
(iii) Y ′, li and Ẽ satisfy the conditions of Proposition 0.8. Let

X be a Q-Fano 3-fold obtained as in Proposition 0.8. Then
X is of No. 3.3.

(C) There exists an example of (X ′, Q) as in (B) and hence there
exists a Q-Fano 3-fold of No. 3.3.

Remark 0.14. Examples are not known for No. 3.4.

Theorem 0.15. (Table 4, I.) (A) Let X be a Q-Fano 3-fold such that
n ≥ 1 and X ′ ' F2,0. Let µ1 : W1 → Y ′ be the blow-up along a flipped
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curve l0. Then there is a flop W1 99K W1
′ over X ′ and an extremal

contraction of (2, 1)-type ν1 : W1
′ → Y1

′ over X ′. Let m1 be the image
of ν1-exceptional divisor. Then the following hold.

(1) n = 1.
(2) m1 is a smooth rational curve with (−KY1

′ · m1) = 8 such that
m1 ⊂ Reg Y1

′, f1
′|m1

is an isomorphism and Bs|−KY1
′ − m1| is

the union of m1 and 1
2(1, 1, 1)-singularities.

(3) Y1
′ is a Q-Fano 3-fold with (−KY1

′)3 = 17 and a unique flipping
ray.

(4) Let Y1
′

99K Y2
′ be the flip. Then Y2

′ is a smooth divisor in
P := P(O⊕2�

1 ⊕O �
1(1)⊕2) over X2

′ ' P1 and linearly equivalent to
2H+M , where H is the tautological divisor of P and M is a fiber
of the natural projection P → X2

′. Y2
′ has two disjoint sections

which are connected components of the intersection of Y2
′ and the

subvariety V of P associated to the surjection O
⊕2�
1 ⊕O�

1(1)⊕2 →

O
⊕2�
1 .

Consequently we obtain the following diagram.

W1

µ1

��� � � � � � � �

�� ��� W1
′

ν1

�� ��������

Y ′

f ′

�� ��������
Y1

′

f1
′

�	
 
 
 
 
 
 
 


�� ��� Y2
′

f2
′

�� ��������

X ′ X ′ X2
′,

where fi
′ are the natural projections.

(B) Conversely let Y2
′ be as in (A) (4). Then there is an anti-flip Y2

′
99K

Y1
′. Moreover let m1 ⊂ Y1

′ be as in (A) (2) and ν1 : W1
′ → Y1

′ the
blow-up along m1. Then there is a flop W1

′
99K W1 over X ′ and an

extremal contraction of (2, 1)-type µ1 : W1 → Y ′ over X ′. Let l0 be
the image of µ1-exceptional divisor and L the pull-back of a line of X ′

on Y ′. Then the following hold.

(i) There is a unique member Ẽ of |−KY ′ −D| and Ẽ is irreducible,
where D is a Weil divisor such that 2D ∼ L.

(ii) Y ′, l0 and Ẽ satisfy the conditions of Proposition 0.8. Let X be
a Q-Fano 3-fold obtained as in Proposition 0.8. Then X is of
No. 4.2.
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(C) There exists an example of (Y2
′,m1) as in (B) and hence there exists

a Q-Fano 3-fold of No. 4.2.

Remark 0.16. Examples are not known for No. 4.1.

Theorem 0.17. (Table 4, II) (A) Let X be a Q-Fano 3-fold of No.
4.3. Then the following hold. Y ′ is a weak Fano 3-fold with ρ(Y ′) = 2,
(−KY ′)3 = 6 and a conic bundle structure over P2. Ẽ is an irreducible
divisor which is generically a 2-section such that (−KY ′)2Ẽ = 1 and
(−KY ′)Ẽ2 = −2.

(B) Conversely let (Y ′, Ẽ) be as in (A). Then they satisfy the conditions of
Proposition 0.8. Let X be a Q-Fano 3-fold obtained as in Proposition
0.8. Then X is of No. 4.3.

(C) There exists an example of (Y ′, Ẽ) as in (A) and hence there exists a
Q-Fano 3-fold of No. 4.3.

Theorem 0.18. (Table 4, III) (A) Let X be a Q-Fano 3-fold of No.
4.4–4.7. Let µ1 : W1 → Y ′ be the blow-up along a flipped curve l0.
Then there is a flop W1 99K W1

′ over X ′ and an extremal contraction
of (2, 1)-type ν1 : W1

′ → Y1
′ over X ′. Let m1 be the image of ν1-

exceptional divisor.

(A-1) Assume that X is a Q-Fano 3-fold of No. 4.4. Then Y1
′ '

((2, 2) ⊂ P2×P2) or a double cover of ((1, 1) ⊂ P2×P2) ramified
along a smooth anti-canonical divisor. Let pi (i = 1, 2) be the
two structure morphism of conic bundles. Then m1 is a smooth
rational curve such that pi|m1

are isomorphisms and pi(m1) are
lines.

(A-2) Assume that X is a Q-Fano 3-fold of No. 4.5–No. 4.7. Then Y1
′

is a weak Fano 3-fold. Let l1 be the transform of a flipped curve
other than l0. Let µ2 : W2 → Y1

′ be the blow-up along l1. Then
there is a flop W2 99K W2

′ over X ′ and an extremal contraction
of (2, 1)-type ν2 : W2

′ → Y2
′ over X ′. Y2

′ is the blow-up of
X2

′ ' Bn+1 along a curve γ. Moreover γ, m1 and the image
of ν2-exceptional divisor m2 are normal rational curves of degree
n − 1 intersecting the common n − 2 points simply.

Consequently we obtain the following diagram.
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(No. 4.4)

W1

µ1

��� � � � � � � �

����� W1
′

ν1

�� ��������

Y ′

f ′

�� ��������
Y1

′

f1
′

�	
 
 
 
 
 
 
 


X ′ X ′,

where f1
′ is the natural projection.

(No. 4.5–No. 4.7)

W1

µ1

��� �
�

�
�

�
�

�

�� ��� W1
′

ν1

�� ��������
W2

µ2

��� �
�

�
�

�
�

�

����� W2
′

ν2

�� ��������

Y ′

f ′

�� �
�

�
�

�
�

�
�

Y1
′

f1
′

��� � � � � � � �
f1

′

�� �
�

�
�

�
�

�
�

Y2
′

f2
′

��� � � � � � � �
h

�� ��������

X ′ X ′ X ′ X ′ X2
′,

where fi
′ are the natural projections and h is the blow-up along γ.

(B)(B-1) Conversely let (Y1
′,m1) be as in (A1). Let ν1 : W1

′ → Y1
′ the

blow-up along m1. Then there is a flop W1
′
99K W1 over X ′ and

an extremal contraction of (2, 1)-type µ1 : W1 → Y ′ over X ′. Let
l0 be the image of µ1-exceptional divisor and L the pull-back of
a line of X ′ on Y ′.

(B-2) Conversely let (X2
′,m1,m2, γ) be as in (A2). Let h : Y2

′ → X2
′

be the blow-up of X2
′ along γ and ν2 : W2

′ → Y2
′ the blow-up

along m2. Then there is a flop W2
′

99K W2 over X ′ and an
extremal contraction of (2, 1)-type µ2 : W2 → Y1

′ over X ′. Let
l1 be the image of µ2-exceptional divisor. Let ν1 : W1

′ → Y1
′ the

blow-up along m1. Then there is a flop W1
′
99K W1 over X ′ and

an extremal contraction of (2, 1)-type µ1 : W1 → Y ′ over X ′. Let
l0 be the image of µ1-exceptional divisor and L the pull-back of
a line of X ′ on Y ′.

Then the following hold.

(i) There is a unique member Ẽ of |−KY ′ −L| and Ẽ is irreducible,
(ii) Y ′, li and Ẽ satisfy the conditions of Proposition 0.8. Let X be

a Q-Fano 3-fold obtained as in Proposition 0.8. Then X is of
No. 4.4 in the case (B1), or No. 4.5–No. 4.7 in the case (B2).
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(C) There exists an example of (Y2
′,m1) as in (A1) (resp. (X2

′,m1,m2, γ)
as in (A2)) and hence there exists a Q-Fano 3-fold of No. 4.4 (resp.
No. 4.5–4.7).

Theorem 0.19. (Table 4, IV) (A) Let X be a Q-Fano 3-fold of No.
4.8. Then the following hold. Y ′ is a weak Fano 3-fold with (−KY ′)3 =
14 and a P1-bundle structure over P2. Ẽ is an irreducible divisor which
is generically a 2-section such that (−KY ′)2Ẽ = 1 and (−KY ′)Ẽ2 =
−2.

(B) Conversely let (Y ′, Ẽ) be as in (A). Then they satisfy the conditions of
Proposition 0.8. Let X be a Q-Fano 3-fold obtained as in Proposition
0.8. Then X is of No. 4.8.

(C) There exists an example of (Y ′, Ẽ) as in (A) and hence there exists a
Q-Fano 3-fold of No. 4.8.

Theorem 0.20. (Table 5, I) (No. 5.2) Let X be a Q-Fano 3-fold
of No. 5.2. Then X ' ((3, 3) ⊂ P(15, 2)). Moreover by [Take99],
Y ′ is embedded in P(O⊕3�

1
⊕O�

1
(1)) as a divisor linearly equivalent to

3H + F , where H is the tautological divisor and F is a fiber.
(No. 5.3) (A) Let X be a Q-Fano 3-fold of No. 5.3. Then the following

hold. Y ′ is a smooth complete intersection of two members of
|2H −F | of P(E), where E := O �

1 ⊕O�
1(1)⊕3 ⊕O �

1(2), H is the
tautological divisor of P(E), F is a fiber of the natural projection
P(E) → P1.

(B) Conversely Y ′ is given as in (A). Then the following hold.

(i) ρ(Y ′) = 2.
(ii) Bs|−KX′ | = l0, where l0 is the section associated to the sur-

jection E → O�
1.

(iii) There exists a unique member Ẽ of |(H − 2F )|Y ′ | and Ẽ is
irreducible.

(iv) Y ′, l0 and Ẽ satisfy the conditions of Proposition 0.8. Let
X be a Q-Fano 3-fold obtained as in Proposition 0.8. Then
X is of No. 5.3.

(C) There exists an example of Y ′ as in (B) and hence there exists a
Q-Fano 3-fold of No. 5.3.

Theorem 0.21. (Table 5, II) (A) Let X be a Q-Fano 3-fold of No. 5.4
or No. 5.5. Let µ1 : W1 → Y ′ be the blow-up along a flipped curve l0.
Then there is a flop W1 99K W1

′ over X ′ and an extremal contraction
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of (2, 1)-type ν1 : W1
′ → Y1

′ over X ′. Let F1
′′ be the strict transform

of µ1-exceptional divisor on Y1
′ and m1 the image of ν1-exceptional

divisor.

(A-1) Assume that X is a Q-Fano 3-fold of No. 5.4. Then

(1) Y1
′ ' P(O �

1 ⊕ O�
1(1)⊕2),

(2) F1
′′ is a surface linearly equivalent to 2H + L1, where H is

the tautological divisor of Y1
′ and L1 is a fiber of the natural

projection f1
′ : Y1

′ → X ′ ' P1, and
(3) m1 is a curve on F1

′′ with g(m1) = 9 and (−KY1
′ ·m1) = 33

such that Bs|−KY1
′ −m1| = m1 ∪ l1 and m1 and l1 intersect

at one point simply, where l1 is the section of f1
′ associated

to the surjection O�
1 ⊕ O �

1(1)⊕2 → O�
1.

(A-2) Assume that X is a Q-Fano 3-fold of No. 5.5. Then the following
hold.

(1) Y1
′ is a smooth divisor in P := P(O⊕2�

1 ⊕ O�
1(1)⊕2) linear

equivalent to 2H, where H is the tautological divisor. Let
V be the subvariety of P associated to the surjection O

⊕2�
1 ⊕

O�
1(1)⊕2 → O

⊕2�
1 . Then V ∩ Y1

′ is a disjoint union of two
sections li of f1

′.
(2) F1

′′ is a surface linearly equivalent to 2H|Y1
′ +L1, where L1

is a fiber of the natural morphism f1
′ : Y1

′ → X ′.
(3) m1 is a curve on F1

′′ with g(m1) = 3 and (−KY1
′ ·m1) = 16

such that Bs|−KY1
′ − m1| = m1 ∪ l1 ∪ l2 and m1 and li

(i = 1, 2) intersect at one point simply.

Consequently we obtain the following diagram.

W1

µ1

��� � � � � � � �

����� W1
′

ν1

�� ��������

Y ′

f ′

�� ��������
Y1

′

f1
′

�	� �
�

�
�

�
�

�

X ′ X ′

(B) Conversely let (Y1
′, F1

′′,m1, li (i ≥ 1)) be as in (A1) for No. 5.4 (resp.
(A2) for No. 5.5). Let ν1 : W1

′ → Y1
′ be the blow-up along m1. Then

there is a flop W1
′
99K W1 over X ′ and an extremal contraction of

(2, 1)-type µ1 : W1 → Y ′ over X ′. Let l0 be the image of µ1-exceptional
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divisor and L a fiber of the natural projection f ′ : Y ′ → X ′. Then the
following hold.

(i) There is a unique member Ẽ of |−KY ′ −L| and Ẽ is irreducible.
(ii) Y ′, li and Ẽ satisfy the conditions of Proposition 0.8. Let X be

a Q-Fano 3-fold obtained as in Proposition 0.8. Then X is of
No. 5.4 (resp. No. 5.5).

(C) There exists an example of (Y1
′, F1

′′,m1, li) be as in (A1) for No. 5.4
(resp. (A2) for No. 5.5) and hence there exists a Q-Fano 3-fold of
No. 5.4 (resp. No. 5.5).

Remark 0.22. Examples are not known for No. 5.1.

Moreover in Section 5, we deny the possibilities of Q-Fano 3-folds in

Tables 1′–5′ in Theorem 0.3.
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§1. On existence of an anti-canonical divisor with only canonical

singularities for a Q-Fano 3-fold as in Theorem 0.3

Theorem 1.0. Let X be as in Theorem 0.3 and P an index 2 point
satisfying (5) of Main Assumption 0.1. Let f : Y → X be the weighted blow-
up with weights 1

2(1, 1, 1, 2) and E the exceptional divisor. If n ≥ 2 for P ,
then let Q be the unique index 2 point on E. Then the following hold.

(1) H0(OY (−KY )) → H0(OE(−KY |E)) is surjective. Moreover if n ≥ 2,
then Bs|−KY | = {Q} near E or if n = 1, then Bs|−KY | = ∅ near E.

(2) Bs|−KX | = {P} near P .

Proof. Consider the exact sequence

0 −→ OY (−KY − E) −→ OY (−KY ) −→ OE(−KY |E) −→ 0.
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To see that the map H0(OY (−KY )) → H0(OE(−KY |E)) is surjective, it
suffices to prove h0(OY (−KY − E)) = h − 3 by [Taka02, Proposition 2.3].
Note that this is equivalent to h0(OY ′(−KY ′ − Ẽ)) = h − 3 (we use the
notation of Theorem 0.3). We can prove this using the data of Tables 1–5
and 1′–5′ in Theorem 0.3 as follows.

Tables 1 and 1′: We have −KY ′ − Ẽ ∼ f ′∗D, where D is a primitive
ample Weil divisor (we can easily see that the linear equivalent class
of D is unique). Hence h0(−KY ′ − Ẽ) = h0(D). h0(D) = h − 3 is
easy to see.

Tables 2, 2′ and 3: We have −KY ′ − Ẽ ∼ E′ whence h0(−KY ′ − Ẽ) =
1 = h − 3.

Table 4 and 4′: Since −KY ′ − Ẽ − KY ′ is nef and big, we can compute
h0(−KY ′ − Ẽ) by Riemann-Roch theorem and we are done. But if
h = 5, 6, then we can prove this more directly as follows. If h = 5, then
h0(−KY ′ − Ẽ) = h0(f ′

∗OY ′(−KY ′ − Ẽ)) = h0(OX′(l)) = 2 = h − 3,
where l is a ruling of X ′. Similarly if h = 6, then h0(−KY ′ − Ẽ) =
h0(L) = 3 = h − 3.

Table 5 and 5′: Since −KY ′ − Ẽ − KY ′ is nef and big, we can compute
h0(−KY ′ − Ẽ) by Riemann-Roch theorem and we are done.

Note that

(Y,Q) ' ({xy + z2 + ua−1 = 0}/Z2(1, 1, 1, 0), o).

Hence inductively we can construct the sequence of the weighted blow-ups
with weights 1

2(1, 1, 1, 2) at index 2 points on exceptional divisors and denote
it by

Za
fa
−→ Za−1

fa−1
−→ · · ·

f2
−→ Z1 := Y

and set f1 := f . Let Fi be the fi-exceptional divisor and Fi
′ its strict

transform on Zi+1. We prove that H0(OZi
(−KZi

)) → H0(OFi
(−KZi

|Fi
)) is

surjective. For i = 1, we proved the claim as above. Assume that the as-
sertion holds for i−1. Then by H0(OZi

(−KZi
)) ' H0(OZi−1

(−KZi−1
)) and

H0(OFi−1
(−KZi−1

|Fi−1
)) ' H0(OFi−1

′(−KZi
|Fi−1

′)), H0(OZi
(−KZi

)) →

H0(OFi−1
′(−KZi

|Fi−1
′)) is also surjective. Note that

H0(OFi−1
′(−KZi

|Fi−1
′)) ' H0(OFi−1

′∩Fi
(−KZi

|Fi−1
′∩Fi

))

and
H0(OFi

(−KZi
|Fi

)) ' H0(OFi−1
′∩Fi

(−KZi
|Fi−1

′∩Fi
)).
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Hence H0(OZi
(−KZi

)) → H0(OFi
(−KZi

|Fi
)) is surjective. Hence we know

that for the exceptional set F for Za → X, Bs|−KZa | ∩ F = ∅. Since
H0(OX(−KX)) ' H0(OY (−KY )) ' H0(OZa(−KZa)), we finish the proof
of Theorem 1.0.

Proposition 1.1. Let X be a klt weak Q-Fano 3-fold satisfying the
following conditions.

(1) |−KX | 6= ∅.
(2) There are a finite number of non-Gorenstein points on X.
(3) There is a member of |−KX | which is normal near non-Gorenstein

points.

Then |−KX | has a member which is normal and has only canonical singu-
larities outside non-Gorenstein points of X.

Proof. The proof is almost the same as one of [Amb99, Main Theorem]
or [Mel99, Theorem 1]. So we only give an outline of the proof. Let U :=
{x | x is a Gorenstein point of X}. Let S be a general member of |−KX |.
Let γ := max{t | KX + tS|U is log canonical}. It suffices to prove that if
there is an element of CLC(KX + γS|U ) contained in Bs|−KX |, it is S|U .
Assume the contrary and let Z be a minimal element of CLC(KX + γS|U )
contained in Bs|−KX |. By the assumption (3), Z is a complete variety.
Hence by using [Taka02, Theorem 1.0] (KKV vanishing theorem), we know
that it suffices to prove H0(OZ(−KX |Z)) 6= 0. It is done by Adjunction
Theorem and a non-vanishing argument.

Corollary 1.2. Let X be a Q-Fano 3-fold with Main Assumption 0.1
and assume moreover that any index 2 point satisfies (5). Then |−KX | has
a member with only canonical singularities.

Proof. Fix an index 2 point P and the weighted blow-up f as in The-
orem 1.0. By Theorem 1.0 and Proposition 1.1, we can find a member
S ∈ |−KY | such that S is normal and has only canonical singularities out-
side index 2 points of Y . But by Theorem 1.0 again, S has only canonical
singularities near E. So since f |S is crepant, f(S) has only canonical sin-
gularity outside index 2 points of X except P . Since P is any index 2, we
can find a member of |−KX | with only canonical singularities.
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§2. On deformations of Q-Fano 3-folds as in Theorem 0.3

Our starting point in this section is the following theorem proved by

T. Minagawa:

Theorem 2.0. (T. Minagawa) Let X be a Q-Fano 3-fold (resp. weak
Q-Fano 3-fold) with I(X) = 2. Assume that there exists a smooth member of
|−2KX |. Then there exists a flat family f : X → (∆, 0) over a 1-dimensional
disc (∆, 0) such that X ' f−1(0) and f−1(t) is a Q-Fano 3-fold (resp. a weak
Q-Fano 3-fold) with only ODP’s, QODP’s or 1

2(1, 1, 1)-singularities as its
singularities for t ∈ ∆\{0}.

Proof. See [Min01, Theorem 2.4].

Theorem 2.1. Let X be a (not necessarily Q-factorial) weak Q-Fano
3-fold with I(X) = 2. Assume that

(1X) h0(−KX) ≥ 4,
(2X) near an index 2 point P , Bs|−KX | = {P}, and
(3X) there is no divisor contracted to a point by the morphism defined by

|−mKX | for m � 0.

Then X can be deformed to a weak Q-Fano 3-fold with only 1
2(1, 1, 1)-

singularities as its singularities.

Proof. By (1X) and [Taka02, Theorem 4.1], |−2KX | is free. So by
Theorem 2.0, we may assume that X has ODP’s, 1

2(1, 1, 1)-singularities
or QODP’s as its singularities. Let f : Y → X be the composite of the
weighted blow-ups at all QODP’s of X (as in Theorem 0.3), g : Z → Y
the composite of the blow-ups at all 1

2(1, 1, 1)-singularities of Y and h :=
g ◦ f . Then by the choice of h and (2X), −KZ is nef. Moreover by (1X),
we have h0(−KZ) = h0(−KX) ≥ 4. Hence by Riemann-Roch theorem,
(−KZ)3 > 0. So Z is a Gorenstein weak Fano 3-fold. We verify that
the assumption (3Z) holds. Assume that there is a divisor S on Z which
is contracted to a point by the morphism defined by |−mKZ |. By the
choice of h, S is not h-exceptional since an h-exceptional divisor contains
a curve negative for KZ . If E ∩ S 6= ∅ for a prime h-exceptional divisor
E, then E ∩ S is a curve since E is a Cartier divisor. By the nature of S,
E ∩ S is numerically trivial for −KZ . So since E contains a curve which
is numerically trivial for −KZ , E must be the strict transform of an f -
exceptional divisor E′ and moreover S must intersect also the g-exceptional
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divisor F of the blow-up at the 1
2(1, 1, 1)-singularity on E′. Then S ∩

F is numerically positive for −KZ , a contradiction. Hence S is disjoint
from h-exceptional divisors. However, h(S) is contracted to a point by the
morphism defined by |−mKX |, a contradiction. Hence Z satisfies (3Z).

Step 1. smoothing ODP’s. We prove that Z is smoothable by the
same method as [Nam97]. Note that the following claim (which is [Nam97,
Proposition 2]) holds for a weak Fano 3-fold Z satisfying (3Z) without any
change in his proof.

Claim. Let D be a member of |−KZ | with only canonical singularities.
Then Pic Z → PicD is an injection.

Let Z → ∆ be a 1-parameter smoothing of Z. Then by [KM92, Propo-
sition 11.4], we obtain the deformation Y → ∆ of Y which satisfies the
commutative diagram

Z ��

�� �
�

�
�

�
�

�
�

Y

��� � � � � � � �

∆.

Then Zt → Yt is a composite of (2, 0)4 type contractions for t ∈ ∆ since a
contraction of type (2, 0)4 is stable under a deformation by [Kod63]. Hence
Yt has only 1

2 (1, 1, 1)-singularities as its singularities. Similarly we can prove
that this can be blown down to a smoothing of ODP’s of X using [KM92,
the proof of Theorem 12.3.1].

Step 2. deforming QODP’s to 1
2(1, 1, 1)-singularities. By induction,

we only have to deform one QODP to two 1
2(1, 1, 1)-singularities. Let P be

a QODP of X and E (resp. F ) the strict transform of f -exceptional divisor
over P (resp. g-exceptional divisor over P ). Then E ' F4 and there exists
a primitive crepant birational morphism p : Y → W which contracts E to
a smooth rational curve. Then by [Min99, Proposition 3.5 (i)], there is a
small deformation

Y ��

�� �
�

�
�

�
�

�
W

��� �
�

�
�

�
�

�

∆

of p such that Yt → Wt is an isomorphism for t 6= 0. By the same argument
as Step 1, we have a birational morphism Yt → Xt, where Xt is a deforma-
tion of X. If there exists a QODP which specializes to P , then Yt → Wt
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must be a contraction of the same type as p, a contradiction. Hence P is
deformed to two 1

2(1, 1, 1)-singularities.

Corollary 2.2. Let X be a Q-factorial Q-Fano 3-fold with (1)–(4) in
Main Assumption 0.1. Then X can be deformed to a Q-factorial Q-Fano
3-fold X ′ with (1)–(4) in Main Assumption 0.1 and with only 1

2(1, 1, 1)-
singularities as its singularities.

Proof. The proof is similar to the next corollary.

Corollary 2.3. Let X be a Q-factorial Q-Fano 3-fold with (1)–(4) in
Main Assumption 0.1. Let N := aw(X). Then if N > 1 (resp. N = 1), X

can be transformed to a Q-factorial Q-Fano 3-fold Z̃ ′ with (1)–(4) in Main
Assumption 0.1 and with only 1

2(1, 1, 1)-singularities as its singularities and

h0(−K �
Z′

) = h and aw(Z̃ ′) = N − 1 (resp. a smooth Fano 3-fold Z̃ ′ with

ρ(Z̃ ′) = 1, F (Z̃ ′) = 1 and h0(−K �
Z′

) = h) as follows.

Ỹ
f̃

��� � � � � � � �
g̃

�� ��������

X
def ��

X̃ Z̃
def ��

Z̃ ′,

where ∗
def
−→ ∗∗ means that ∗∗ is a small deformation of ∗,

X̃ is a Q-Fano 3-fold with Main Assumption 0.1 and with only ODP’s,
QODP’s or 1

2 (1, 1, 1)-singularities as its singularities,

f̃ : Ỹ → X̃ is similarly chosen to f in Theorem 0.3, and g̃ : Ỹ → Z̃ be
the anti-canonical model.

Proof. By Theorem 2.0, there is a deformation X
def
−→ X̃ as stated

above. Note that we may assume that the Q-factoriality is preserved by
[KM92, Theorem 12.1.10]. Moreover by Tables 1–5 and 1′–5′ of Theorem
0.3, and the result of [San95], [San96], X̃ satisfies Main Assumption 0.1.
By Theorem 0.3, we obtain Ỹ and Z̃ as above and ρ(Z̃) = 1. If N = 1 and
h = 4, then Z̃ may have canonical singularities but in this case Φ|−KX | is
a double cover of P3 by [Muk95, Theorem 6.5 and Proposition 7.8] and so

Z̃ has a smoothing Z̃ ′. Except this case, we apply Theorem 2.1 for Z̃. We
only have to check that Z̃ satisfies the assumption (2 �

Z
). By Theorem 1.0,

(2 �
Y ) holds and so does (2 �

Z). Hence Z̃ can be deformed to a Q-Fano 3-fold
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Z̃ ′ with only QODP’s or 1
2 (1, 1, 1)-singularities as its singularities. Next

we show Z̃ ′ has the properties as stated above. By [KM92, the proof of

Corollary 12.3.4], we have ρ(Z̃ ′) = 1. If N > 1, F (Z̃ ′) = 1/2 by Tables 1–5
and 1′–5′ of Theorem 0.3 and [San95], [San96]. If N = 1, we have clearly

F (Z̃ ′) = 1. Hence we are done.

The following is similar to Shokurov’s theorem [Sho79a]:

Corollary 2.4. Let X be a Q-factorial Q-Fano 3-fold with (1)–(4) of
Main Assumption 0.1. Then for any index 2 point P , there exists a smooth
rational curve l through P such that −KX · l = 1/2.

Proof. First we treat the case that any index 2 point is of type as in
Main Assumption 0.1 (5). By Tables 1–5 and 1′–5′ in Theorem 0.3, e is
positive or f ′ is a crepant divisorial contraction for any choice of an index
2 point P . Let g : Y → Z be the anti-canonical model. Let l′ be a flopping
curve if g is a flopping contraction or a general fiber of E′ if g is a crepant
divisorial contraction. Then in the former case, by [Taka02, Lemma 4.3],
(resp. in the latter case, by the proof of Theorem 0.3 (see [Taka02]) in
Case 5), we have g(E) ' E whence E.l′ = 1. Hence l := f(l′) is what we
want.

Next we treat the general case. Let f : X → ∆ be a flat family as
in Theorem 2.0. By [KM92, Corollary 12.3.4], ρ(Xt) = 1 and moreover
by Tables 1–5 and 1′–5′, [San95] and [San96], Xt (t 6= 0) satisfies Main
Assumption 0.1. Let P be an index 2 point on X and Pt an index 2 point
on Xt which specializes to P . By the first part of this proof, there is a
curve lt on Xt (t 6= 0) such that lt ' P1, Pt ∈ lt and −K �

t
· lt = 1/2.

Since there are only countably many components of relative Hilbert scheme
Hilb(X/∆), we may assume that they form a flat family over ∆. Moreover
by the properness of a component of relative Hilbert scheme, this family
extends over 0. Let l be its fiber over 0. Then l is what we want.

§3. Embedding Q-Fano 3-folds as in Theorem 0.3 into weighted

projective spaces

The next result is a first step for the classification of Mukai’s type

[Muk95, Theorem 1.10].

Theorem 3.0. Let X be a (not necessarily Q-factorial) canonical Q-
Fano 3-fold of I(X) = 2. Assume that X has the following properties.
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(1) |−KX | is indecomposable, i.e., |−KX | contains no member which is
a sum of two movable Weil divisors.

(2) |−KX | has no base curve containing an index 2 point.
(3) |−KX | has a member with only canonical singularities.
(4) h0(X,O(−KX )) ≥ 4.
(5) Any index 2 point of X is 1

2 (1, 1, 1)-singularity.

Then except the following two cases (a) and (b), X is embedded into
P(1h, 2N ) and −KX is the restriction of O(1), where h := h0(−KX) and N
is the number of 1

2(1, 1, 1)-singularities.

(a) Φ|−KX | is a double cover of P3 branched along a sextic.
(b) Φ|−KX | is a double cover of a quadric hypersurface branched along the

intersection with a quartic.

(Note that in case (a),

X ' ((6) ⊂ P(14, 3)).

Note also that in case (b),

X ' ((2, 4) ⊂ P(15, 2)).

The number of weight 2 is not equal to the number of index 2 point.)

Moreover
⊕∞

m=0 H0(X,−mKX) is generated by elements of degree ≤ 2
and related by elements of degree ≤ 6.

If h = 4 and N = 1, then X ' ((5) ⊂ P(14, 2)).

If h = 4 and N = 2, then X ' ((3, 4) ⊂ P(14, 22)).

If h = 5 and N = 1, then X ' ((3, 3) ⊂ P(15, 2)).

Proof. We prove this by induction on N .

In case N = 0, the assertion follows from [Muk95, Theorem 6.5 and
Proposition 7.8]. Next we prove that if the assertion holds in case X has
N − 1 1

2(1, 1, 1)-singularities, then so does it in case X has N 1
2(1, 1, 1)-

singularities. Let X be a Q-Fano 3-fold satisfying the assumptions of this
theorem and with N 1

2(1, 1, 1)-singularities. Let f : Y → X be the blow-up
at a 1

2 (1, 1, 1)-singularity. Let E be the exceptional divisor of f . Then Y is
a weak Q-Fano 3-fold by [Taka02, Proposition 4.2]. By the assumption (4),
Y is not a Q-Fano 3-fold. Let g : Y → Z be the anti-canonical model and
E := g(E).
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Claim 1. Z satisfies the assumption of this theorem and has N − 1
1
2(1, 1, 1)-singularities.

Proof. By −KY = g∗(−KZ), if |−KZ | is decomposable, |−KX | must
be decomposable, a contradiction. Hence (1) is satisfied. By (2) for X,
neither |−KY | has a base curve containing an index 2 point. Hence any
g-exceptional curve does not contain an index 2 point. So by −KY =
g∗(−KZ), (2) is satisfied and (5) is also satisfied. Let D be a member of
|−KX | with only canonical singularities. Then the strict transform D′ of
D on Y has the same property since D′ → D is crepant. Since D′ → g(D′)
is crepant, g(D′) has also the same property. Hence (3) is satisfied. By
−KY = g∗(−KZ) and h0(−KY ) = h0(−KX), we know that (4) is satisfied.

Hence by the assumption of the induction, one of the following three
cases occurs.

Case α. Z ⊂ P(1h, 2N−1) and −KZ = OZ(1).

Case β. Z is of type (a).

Case γ. Z is of type (b).

Claim 2. Bs|−KX | coincides with 1
2(1, 1, 1)-singularities as a set.

Proof. If N = 0, the assertion follows from [Muk95, Theorem 6.5 and
Proposition 7.8]. Hence by Claim 1, the assertion follows by induction with
respect to the number of 1

2(1, 1, 1)-singularities.

Case α. We first show that E ' E. By the proof of Claim 2, the as-
sertion similar to Claim 2 holds for Bs|−KY |. Hence H0(OY (−KY )) →
H0(OE(−KY )) ' H0(O�

2(1)) is surjective. Hence H0(OY (−mKY )) →
H0(OE(−mKY )) is also surjective for all m ≥ 0 since

⊕
m≥0 H0(O�

2(m))

is simply generated. So E ' E since g is defined by |−mKY | for some
m > 0.

We note here that there is an elementary transformation P(1h, 2N ) 99K

P(1h, 2N−1) which is decomposed as follows. Let P be the projective bundle
over P(1h, 2N−1) whose associated vector bundle is O ⊕ O(−2) and T the
effective tautological divisor (which is unique). Let a be the contraction
morphism of T . Then the image of P by a is isomorphic to P(1h, 2N ).
Let b : P → P(1h, 2N−1) be the natural projection. Then our elementary
transformation is b ◦ a−1.
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We seek a natural morphism Y → P. For this, we prove that there is a
natural surjection g∗(OZ ⊕ OZ(−2)) → OY (E).

There is a natural injection OY (−E) → OY which represents OY (−E)
as the ideal sheaf of E. By [Taka02, Theorem 4.1], there is a member
S ∈ |−2KX | such that f∗S ∩ E = ∅. Associated to S, there is an injec-
tion OY (−f ∗S) → OY . This gives an injection OY (−E) → g∗OZ(2) since
g∗OZ(2) ' OY (−2KY ) and −f ∗(−2KX) ∼ −(−2KY ) − E. Hence we can
define an injection OY (−E) → g∗(OZ ⊕ OZ(2)). Since f∗S ∩ E = ∅, the
cokernel of this map is locally free and hence the dual of this map is a
surjection. Let ι : Y → P be the morphism over P(1h, 2N−1) associated to
the surjection d : g∗(OZ ⊕ OZ(−2)) → OY (E) and p′ := p|ι(Y ). Note that ι
is finite since E is g-ample.

Claim 3. ι(Y ) is normal.

Proof. First we see that ι(Y ) is smooth near ι(E). Let y′ be a point of
ι(E) and z = p′(y′). Let m := g−1(z)red. If m is 0-dimensional, then g and
p′ are isomorphisms over z since Z is normal whence ι is an isomorphism
over y′. In particular ι(Y ) is smooth at y′ since so is Y at ι−1(y′). So we may
assume that m is 1-dimensional. By the surjectivity of d, its restriction to
m is also surjective. By E ' E, m ' P1. Hence ι|m is isomorphism whence
ι is injective on m. Let y := ι−1(y′), A := OY,y and B := OZ,z. We will
prove that the natural morphism B[t] → A is surjective, where t is a local
parameter of p′−1(z) at y′. By this map B[t] → A, t is sent to a local
parameter of m and two local parameters of ι(E) at y′ are sent to that of
E at y. Hence B[t] → A is surjective. So ι is an isomorphism over y′.

Next we complete the proof of the claim. It suffices to prove that
ι∗OY = Oι(Y ). The natural morphism Oι(Y ) → ι∗OY is injective since the
kernel is at most a torsion sheaf. Let C be its cokernel. We prove that
p′∗C = 0. By the exact sequence

0 −→ Oι(Y ) −→ ι∗OY −→ C −→ 0,

we have

0 −→ p′∗Oι(Y ) −→ p′∗ι∗OY −→ p′∗C −→ R1p′∗Oι(Y ).

Since p′∗Oι(Y ) → p∗ι∗OY is an isomorphism by the normality of Z, it suffices
to prove that R1p∗Oι(Y ) = 0. Consider the exact sequence

0 −→ Iι(Y ) −→ O � −→ Oι(Y ) −→ 0.
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Since the dimension of a fiber of p ≤ 1, we have R2p∗Iι(Y ) = 0. Since P is
a P1-bundle, we have R1p∗O

� = 0. Thus we obtain R1p′∗Oι(Y ) = 0 whence
p′∗C = 0.

Since every fiber of g : Y → Z intersects ι(E) and ι(Y ) is smooth at
points of ι(E), any fiber is not contained in the singular locus of ι(Y ). Let
l be any 1-dimensional fiber of g. By the theorem on formal functions, we
have C ⊗ Ol = 0 because dim Supp C ⊗ Ol = 0 (note that l is not contained
in the singular locus of ι(Y )) and p′∗C = 0. Hence by Nakayama’s lemma,
C = 0.

Hence ι : Y → ι(Y ) is finite and birational and ι(Y ) is normal, it is
an isomorphism by the Zariski’s Main Theorem. Hence X ' a(ι(Y )) is
naturally embedded into P(1h, 2N ) and −KX = O(1).

For the next two cases, we directly prove that if h = 4 and N = 1, then
X ' ((5) ⊂ P(14, 2)) and if h = 5 and N = 1, then X ' ((3, 3) ⊂ P(15, 2))
below, which complete the induction.

Recall that |−2KX | is free by [Taka02, Theorem 4.1]. So we can take
a smooth curve C which is the intersection of general members of |−KX |
and |−2KX |. Let L := −KX |C . Note that L is a Cartier divisor such
that KC = 2L. We describe R(C,L) :=

⊕
m≥0 H0(OC(mL)) by using

[Reid90, Theorem 3.4]. By a composite of blow-ups of 1
2(1, 1, 1)-singularities

and crepant contractions, we can reach a Gorenstein Fano 3-fold W . Let
W ′ ⊂ P(1h) be the image of Φ|−KW |. Let π : C → C ′ be the restriction of
the rational map X 99K W ′ to C.

Assume that W does not satisfy (a) or (b). Then X 99K W ′ is birational
whence by choosing C generally, we may assume that π is a birational map.
Assume that W satisfies (a) (resp. (b)). Then W → W ′ is a double cover
of P3 (resp. a (possibly singular) quadric 3-fold). Since X does not satisfy
(a) (resp. (b)), (−KX)3 ≥ 5/2 (resp. (−KX)3 ≥ 9/2) whence L · C ≥ 5
(resp. L · C ≥ 9). So by choosing C generally, we may assume that π is a
birational map or a double cover of a plane curve of degree ≥ 3 (resp. a
space curve of degree ≥ 5).

In any case, C ′ is not a normal rational curve in P(1h−1). Note that
C ′ = Φ|L|(C). Hence H0(OC(L)) ⊗ H0(OC(2L)) → H0(OC(3L)) is surjec-
tive. (Note that KC = 2L.) So by [ibid.], R(C,L) is generated by elements
of degree ≤ 2 and related by elements of degree ≤ 6, which in turn show
that the same things hold for

⊕
m≥0 H0(OX(−mKX)).

Assume that h = 4 and N = 1. Since deg L = 5, π is birational. By the
genus formula of a plane curve, we have pa(C

′) = 6. On the other hand,
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g(C) = 6. So π is an isomorphism, which in turn show that X ' ((5) ⊂
P(14, 2)).

Assume that h = 4 and N = 2. If there is a relation of degree 2 in
R(C,L), C ′ is a conic in P2, a contradiction. Hence there is no relation
of degree 2 in R(C,L). Then we can find easily the relation of R(C,L)
by [ibid.] and conclude C ' ((3, 4) ⊂ P(13, 2)), which in turn shows that
X ' ((3, 4) ⊂ P(14, 22)).

Assume that h = 5 and N = 1. Since deg L = 9, π is birational. By easy
computations, we have h0(O(L)) = 4, h0(O(2L)) = 10 and h0(O(3L)) =
18. Hence there are at least two relations of degree 3 among elements of
degree 1. This means that C ′ is contained in two cubics in P3 whence
C ′ ' ((3, 3) ⊂ P3). We have g(C) = pa(C

′) = 10. Hence C ' C ′, which in
turn shows that X ' ((3, 3) ⊂ P(15, 2)).

Now we complete the proof of this theorem.

Remark 3.1. The assumption that h0(−KX) ≥ 4 is necessary for The-
orem 3.0 by the existence of the following.

X ' ((12) ⊂ P(13, 4, 6))

which satisfies h0(−KX) = 3.

Corollary 3.2. Let X be a Q-Fano 3-fold with Main Assumption
0.1. Assume that any index 2 point of X is 1

2 (1, 1, 1)-singularity. Then
X is embedded into P(1h, 2N ) and −KX is the restriction of O(1), where
h := h0(−KX) and N is the number of 1

2(1, 1, 1)-singularities. Moreover X
is an intersection of weighted hypersurfaces of degree ≤ 6.

If h = 4 and N = 1, then X ' ((5) ⊂ P(14, 2)).
If h = 4 and N = 2, then X ' ((3, 4) ⊂ P(14, 22)).
If h = 5 and N = 1, then X ' ((3, 3) ⊂ P(15, 2)).

Proof. By Corollary 2.4, Theorem 1.0 and Corollary 1.2, we can see
that the assumptions of Theorem 3.0 are satisfied for X. Hence we are
done.

Remark 3.3. There are two possibilities of f ′ : Y ′ → X ′ for X ' ((5) ⊂
P(14, 2)). Both of them actually occurs. Indeed, let f5(x0, x1, x2, x3, y) = 0
be a quintic in P(14, 2), where wtxi = 1 and wt y = 2. If we take f5

generally, then {f5 = 0} is an example for No. 3.1. If we take f5 specially,
for example, f5 ≡ x0y

2+
∑3

i=0 xi
5, then {f5 = 0} is an example for No. 3.1′.
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By Corollary 3.2, we can improve [Taka02, Theorem 4.1] and Theorem

1.0 for X as in Corollary 3.2 as follows:

Corollary 3.4. Let X be a Q-Fano 3-fold with Main Assumption
0.1. Assume that any non-Gorenstein point is 1

2 (1, 1, 1)-singularity. Then

(1) −2KX is very ample,
(2) Bs|−KX | is the union of 1

2(1, 1, 1)-singularities and a general member
of |−KX | has only ordinary double points, and

(3) Fix f, Y, Y ′, . . . etc. as in Theorem 0.3. Then Bs|−KY ′ | is the union
of flipped curves and 1

2(1, 1, 1)-singularities.

Proof. The proof of (1) and (2) are clear from Corollary 3.2. (3) follows
from (2) and [Taka02, Proposition 2.1 (4)].

§4. Construction of examples of Q-Fano 3-folds as in Theorem 0.3

Note that the assertions for No. 3.1, No. 3.1′, No. 3.2 and No. 5.2 are

proved in Corollary 3.2 and Remark 3.3.

Proof of Proposition 0.8. Assume that n > 0. Let R′ be the ray of
NE(Y ′) generated by the numerical class of li. By (2-3) and (2-4), R′ is
extremal. By (2-2) and (2-3), a general member D of |−KY ′ | is smooth
along li and has only canonical singularities (see [MM85, Proposition 6.8]).
By (2-4), D·li = −1. Hence we have Nli/Y ′ ' O�

1(−1)⊕O �
1(−2). Moreover

R′ is contractible since for another general member D′ of |−KY ′ |, (Y ′,D +
εD′) is klt for 0 < ε � 1 and (−(KY ′ + D + εD′) · R′) > 0. Moreover the
contraction associated to R′ can be regarded as a log flipping contraction
for (Y ′,D + εD′). Let Y ′

99K Y0
′ be the log flip. The log flip coincides the

anti-flip for KY ′ and by Nli/Y ′ ' O�
1(−1)⊕O�

1(−2), Y0
′ has only 1

2(1, 1, 1)-
singularities. By (2-3) and [Taka02, Proposition 2.1 (4)], Bs|−KY0

′ | is the
union of 1

2(1, 1, 1)-singularities. In particular −KY0
′ is nef.

In case n = 0, set Y0
′ := Y ′.

In any case −KY0
′ is nef and moreover by (3) and [Taka02, Proposition

2.1 (5)], we have (−KY0
′)3 = (−KY ′)3 + n

2 > 0. Hence −KY0
′ is big.

Let Ẽ0 be the strict transform of Ẽ on Y0
′. By (4), we can show that

(−KY0
′)2Ẽ0 = 1 and (−KY0

′)Ẽ2
0 = −2 by [Taka02, Lemma 3.2 (3)].

Since −KY0
′ is nef and big, we can construct a diagram

Y0
′
99K · · · 99K Yi

′
99K Yi+1

′
99K · · · 99K Y := Yk

′ f
−→ X
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as in [Taka02, Set up 3.3] starting from Y0
′ by setting D = Ẽ0, where

Yi
′
99K Yi+1

′ is a flop or a flip for i = 0 and a flip for i ≥ 1. Let Ẽi (resp.
E) be the strict transform of Ẽ0 on Yi

′ (resp. Y ). Let Ri := R if n = 0 and
i = 0 and the KYi

′-negative extremal ray otherwise. By [Taka02, Lemma
3.1], we have

(−KY )2E = 1 −
∑

aidi,(4.1)

(−KY )E2 = −2 −
∑

ai
2di, and(4.2)

E3 = Ẽ0
3
−

∑
ai

3di − e,(4.3)

Claim 4.1. Ẽi · Ri < 0. In particular ai are non-positive. Moreover
ai are integers.

Proof. We can prove the assertion by induction. For i = 0, Ẽ0 ·R0 < 0
can be easily checked. Assume that the assertion holds for the numbers less
than i. Then we have

(4.4) aj ≤ 0 (j < i)

and moreover the other extremal ray than Ri is positive for Ẽi. Note
that the linear system of a sufficient multiple of −KYi

′ is free outside a
finite number of curves because the linear system of a sufficient multiple of
−KY1

′ is free. So −KYi
′ | �

Ei
is numerically equivalent to an effective 1-cycle.

Note that −KYi
′Ẽ2

i ≤ −KY ′Ẽ2 = −2 by (4.2) and (4.4). Hence we have

Ẽi · Ri < 0.
Since Y0

′ has only at worst index 2 singularities, so is Yi
′. Hence ai =

2(Ẽi · γi) ∈ Z if Yi
′
99K Yi+1

′ is a flip.

By this claim, we know that f is a divisorial contraction whose excep-
tional divisor is E. If f is a crepant divisorial contraction, then l = 0. But
(−KY ′)2Ẽ = 1, a contradiction. Hence f is a KY -negative contraction.
Assume that f is of (2, 1)-type which contracts E to a curve C ′. Then
(−KX · C ′) = (−KY + E)(−KY )E = −1 −

∑
diai(ai + 1) < 0, a contra-

diction since X is a Q-Fano 3-fold. So f is of (2, 0)-type. Then we have
−KY E2 ≥ −2 by [Taka02, Proposition 2.3]. On the other hand −KY E2 ≤
−KY ′Ẽ2 = −2. Hence there is no flip. So (−KY )2E = (−KY ′)2Ẽ = 1 and
hence again by [Taka02, Proposition 2.3], f is the blow-up at a 1

2(1, 1, 1)-
singularity or the weighted blow-up at a QODP with weights 1

2(1, 1, 1, 2)
(we use the coordinate as stated in the definition of QODP).
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Table 1.

Proof of Theorem 0.10 (A). (1) is easily checked. The former half of
(2) follows from [Taka02, Proposition 2.1 (4)]. (3) follows from Corollary
3.4. We prove the latter half of (2). Assume the contrary. Then there is
a non-trivial fiber l of f ′ intersecting two li’s. l must be a flopping curve
containing two 1

2(1, 1, 1)-singularities on Y1, where Y ′
99K Y1 is the anti-flip,

a contradiction to Corollary 3.4.

Proof of Theorem 0.10 (B).

(i) Assume that S is reducible. The following argument is similar to
[Muk93, Section 4]. The possibilities of an irreducible component T
are classified in [Reid94]. We have genus formulae and degree for-
mulae of curves on T and by virtue of these formulae, we obtain a
contradiction except No. 1.6, 1.10 and 1.11. We treat only No. 1.6
here. In this case, there is a possibility that C is contained in a smooth
quadric T such that C is a divisor of (2, 6)-type. Note that −KX′ |T
is of (4, 4)-type. Hence −KX′ |T − C is not effective, a contradiction
to the assumption (2).
Note that if S is irreducible and nonnormal, then C ′ := Sing S ' P1

and −KS · C ′ = 1 by [Reid94]. Hence C 6⊂ Sing S.
(ii) We show that conditions of Proposition 0.8 are satisfied. By (i), Ẽ =

f ′∗S − E′ and Ẽ is irreducible. On the other hand li are (z + 2)-
secant lines with respect to 1

z+1(−KX′). Thus by easy case by case
calculations, we see that (2-4), (3) and (4) hold. Since Bs|−KX′ −C|
is the union of C, li and 1

2(1, 1, 1)-singularities, Bs|−KY ′ | is the union
of li and 1

2(1, 1, 1)-singularities. For (5) in case n = 0, we have only to
take R as the extremal ray different from one associated to f ′. Other
conditions are clearly satisfied.

Proof of Theorem 0.10 (C). We construct an example of the data given
in (B).

Let S be a smooth Cartier divisor in X ′ such that S ≡ z
z+1(−KX′). We

can take such an S (it is well-known if I(X ′) = 1. If I(X ′) > 1, see [San96,
Remark 4.1]). S is a del Pezzo surface. We represent S as blow-up at r
points of P2 in a general position, where r := e + n. Let li (0 ≤ i ≤ r − 1)
be its exceptional curves and l the total transform of a line in P2. Let
D := l + l0 + · · · + ln−1 and C := −KX′ |S − D. Then we show that |C| is
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free. By computing intersection numbers with (−1)-curves, we can check
that C is nef in any case in the table. Let M := C − KS . Check that
M2 > 4. Hence if |C| is not free, there is an effective divisor l such that
M · l = 1 and l2 = 0 whence −KS · l = 1 by Reider’s theorem [RI]. But
l · (KS + l) = −1 is a contradiction. So |C| is free.

Hence we can take a smooth member from |C|. We denote it by C. li
are (z + 2)-secant lines of C which are mutually disjoint. Moreover since
h1(OX′(−KX′ −S) = 0, Bs|−KX′ −S| is the union of 1

2(1, 1, 1)-singularities
and −KX′ |S − C = D, Bs|−KX′ − C| is the union of C, li and 1

2(1, 1, 1)-
singularities.

Table 2.

Proof of Theorem 0.11 (A). The proof is almost clear.

Proof of Theorem 0.11 (B). For simplicity, we assume that Pi are
ODP’s.

(i) f ′ is constructed as follows (see also [Taka02, Proposition 2.2]). Let

ν ′ : X̃ ′ → X ′ be the composite of the blow-ups at P0 ∼ PN−2 and Fi
′

the exceptional divisor over Pi. Let µ′ : X̂ ′ → X̃ ′ be the blow-up along
the strict transform C̃ of C and F ′ the µ′-exceptional divisor. We
denote the strict transforms of the two fibers of Fi

′ ' P1×P1 through
Fi

′ ∩ C̃ by lij (j = 1, 2). Note that −K �
X′

· lij = 0. We can easily see
that |−K �

X′
| is free by P ∩ X ′ = C, where P is the linear subspace

spanned by C and −K �
X′

is big. Hence lij ’s are flopping curves on

X̂ ′ and we can see that the classes of li1 and li2 belong to the same

ray. Let X̂ ′
99K X̂ ′

+
be the flop. Then the strict transforms of Fi

′’s

on X̂ ′
+

are P2’s and we can contract them to 1
2(1, 1, 1)-singularities.

Let g′ : X̂ ′
+

→ Y ′ be the contraction morphism. Then the natural
morphism f ′ : Y ′ → X ′ is what we want.

(ii) We use the notation in the proof of (i) below. Since |−K �
X′

+ | is free,
the assertion follows.

(iii) Let E′ (resp. F ′+) be the strict transform of F ′ on Y ′ (resp. X̂ ′
+
).

Then −K �
X′

+ −F ′+ = g′∗(−KY ′ −E′). Moreover h0(−K �
X′

+ −F ′+) =

h0(−K �
X′

− F ′). Note that there is a smooth member of |−K �
X′
|

containing C̃ because Bs|−K �
X′

− C̃| = C̃. Hence we have N �
C/

�
X′

'

O(−1) ⊕ O(−2). Hence F ′ ' F1 and −K �
X′
|F ′ ∼ C0 + l, where
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C0 is the minimal section of F ′ and l is a fiber of F ′. So we have
h0(−K �

X′
|F ′) = 3 and H0(−K �

X′
) → H0(−K �

X′
|F ′) is surjective since

|−K �
X′
| is free. Thus h0(OY ′(−KY ′ − E′)) = 1 since h0(−K �

X′
) = 4.

(iv) For (5), we have only to take R as the extremal ray different from one
associated to f ′. The assertion of (3) and (4) follows from (i) and (ii)
except the irreducibility of Ẽ. Note that in the proof of Proposition
0.8, we need the irreducibility of Ẽ only after the proof of Claim 4.1.
Hence we can proceed as in the proof of Proposition 0.8 to the proof
of Proposition 4.1 and know that f is a divisorial contraction. Let F
be f -exceptional divisor and E

′
the strict transform of E′ on Y . By

setting D = E
′
and D′ = F , we can apply the construction in [Taka02,

Set up 3.2]. Moreover by taking f ′ as f in [Taka02, Set up 3.3] and

applying [Taka02, Lemma 3.5], we can write E
′
= z(−KY ) − uF . By

[Taka02, Lemma 3.6], z, u ∈ N. Moreover we have z ≤ u by (ii) and
[Taka02, Claim 3.8]. Note that (−KY ′)3 = N+3

2 , (−KY ′)2E′ = N+1
2 ,

(−KY ′)E′2 = N−5
2 and E′3 = N−23

2 . Thus we can figure out the
solutions of the equations in [Taka02, §3]. We see that z = u = 1,
Y ′

99K Y is a flop and f is an extremal contraction of (2, 0)4-type or
(2, 0)10-type. As a consequence, F is the strict transform of Ẽ.

In the proof below, the hardest part is the proof of Q-factoriality of X ′.

Proof of Theorem 0.11 (C) for No. 2.1. Let C be a line in P5 and P1,
P2 ∈ C two points. Let ν : B → P5 be the composite of the blow-ups
at P1 and P2 and µ : A → B the blow-up along the transform C ′ of C.
Let Ei

′ be the strict transform of the exceptional divisor over Pi, F the
exceptional divisor over C ′ and H the total transform of a hyperplane of
P5. Let G := 3H − 2E1

′ − 2E2
′ − F .

Claim 1. (1) |G| is free.
(2) For an irreducible curve on A, G · l = 0 if and only if l is a fiber of

F ' P3 × P1 → P3.

Proof.

(1) Since G = (H − E1
′ − E2

′ − F ) + (H − E1
′) + (H − E2

′), and |H −
E1

′ − E2
′ − F |, |H − E1

′| and |H − E2
′| are free, |G| is free.
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(2) First we show that F ' P3 × P1. Note that A → P5 is the composite
of the blow-up along C and the blow-ups along the fiber over Pi’s.
Hence F ' P3 × P1.
By the decomposition as in (1), if G · l = 0, then (Ei

′ + F ) · l = 0 for
i = 1, 2. From this, it is easy to see that l ⊂ F . By easy calculations,
we can see that −F |F ∼ H1 + H2, where H1 (resp. H2) is the pull-
back of a hyperplane of P3 (resp. P1). Hence G|F ∼ H1. So (2) is
now clear.

In particular |G| is not composed of a pencil and hence its general
member G′ is smooth.

Set Q := 2H−E1
′−E2

′−F . Similarly we see that |Q| is free and general
member Q′ of |Q| is smooth. Set X ′′ := G′ ∩Q′. We can assume that X ′′ is
smooth. Let g : A → A be the Stein factorization of the morphism defined
by |G|. We denote the image on A of an object ∗ on A by ∗. Then by Claim
1, we can see that Q′ has only terminal hypersurface singularities (along
Q′ ∩ F ) and X ′′ is an ample divisor of Q′. Hence by the Grothandieck-
Lefschetz theorem [Gro68, p. 135, 3.18], we have ρ(X ′′) = ρ(Q′). Since
g|X′′ and g|Q′ is primitive, we have ρ(X ′′) = ρ(Q′) = 4. Denote the image
of X ′′ on P5 by X ′. Then we can see that X ′ is factorial and Pi’s are ODP’s
of X ′.

Proof of Theorem 0.11 (C) for No. 2.2. We construct X ′ with only
ODP’s.

Claim 1. Let V (resp. X ′) be a (2, 2)-complete intersection in P6

(resp. a quadric section of V ) with the following properties.

(1) V (resp. X ′) contains a smooth conic C, and
(2) V (resp. X ′) has three ODP’s P0 ∼ P2 on C and outside Pi’s, V

(resp. X ′) is smooth.

Then X ′ is factorial.

Proof. We claim that V contains the plane P spanned by C. Let σ
be the pencil which consists of quadrics in P6 containing V . Since Pi is an
ODP on V , there is a quadric in σ which is singular at Pi. If there is a
quadric in σ which is singular at all Pi’s, then it is singular on P and hence
V is singular along C, a contradiction. So σ is generated by two quadrics
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which are singular at some Pi. But such quadrics contains P and hence V
contains P .

Let ν : Ṽ → V be the composite of the blow-ups at P0 ∼ P2 and Fi

the exceptional divisor over Pi. Let X̃ ′ be the strict transform of X ′ on
Ṽ and H the total transform of a hyperplane section of V . Then X̃ ′ ∼
2H − F0 − F1 − F2. Note that |H − Fi − Fj | is free outside the strict
transform lij of the line through Pi and Pj and |H − Fk| is free (note that

lij is contained in V since lij ⊂ P ). By this, we can easily see that |X̃ ′| is

free and X̃ ′ is numerically trivial only for lij ’s ((i, j) = (0, 1), (1, 2), (2, 0)).

Let φ be the morphism defined by |X̃ ′|. Then φ-exceptional curves are

lij ’s. We prove that Leff(Ṽ , X̃ ′) holds and X̃ ′ meets every effective divisor

on Ṽ . By [H, p. 165, Proposition 1.1] and the argument of [H, p. 172, the

proof of Theorem 1.5], it suffices to prove that cd(Ṽ − X̃ ′) < 3, i.e., for any

coherent sheaf F on Ṽ −X̃ ′, H i(Ṽ −X̃ ′, F ) = 0 for all i ≥ 3. Let V := φ(Ṽ )

and X ′ := φ(X̃ ′). Consider the Leray spectral sequence

Epq
2 = Hp(V − X ′, Rqφ′

∗F ) =⇒ Ep+q = Hp+q(Ṽ − X̃ ′, F ),

where φ′ := φ| �
V −

�
X′

. Since V −X ′ is affine and the dimension of every fiber

of φ ≤ 1, we have Epq
2 = 0 for p ≥ 1 or q ≥ 2 whence Ep+q = 0 for p+q ≥ 2.

So the assertion follows.

Moreover since X̃ ′ is nef and big, H i(Ṽ ,O(−nX̃ ′)) = 0 for n ≥ 1
and i = 1, 2 by KKV vanishing theorem. Hence by the Grothandieck-
Lefschetz theorem [G, p. 135, 3.18] (or [H, p. 178, Theorem 3.1]), we have

Pic X̃ ′ ' Pic Ṽ ' Z4. So ρ(X̃ ′/X ′) = 3 which imply that X ′ is factorial.

We give a pair (V,X ′) satisfying the condition of Claim 1. Let C be
a smooth conic in P6 and P0 ∼ P2 three points on C. We can choose a
coordinate of P6 such that C = {x0x1 + x1x2 + x2x0 = x3 = x4 = x5 =
x6 = 0} and Pi = {xj = 0 for j 6= i}.

Claim 2. Let X ′ be a (2, 2, 2)-complete intersection in P6 satisfying
the following conditions.

(1) X ′ is factorial,
(2) X ′ contains a smooth conic C, and
(3) X ′ has three ODP’s P0 ∼ P2 on C and outside Pi’s, X ′ is smooth.
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Then X ′ is the intersection of three quadrics Q1 ∼ Q3 of the following forms
by permuting Pi’s if necessary.

Q1 := {m0x0 + m1x1 + q1 = 0},

Q2 := {pm1x1 + m2x2 + q2 = 0}, and

Q3 :=

{
x0x1 + x1x2 + x2x0 +

6∑

i=3

lixi = 0

}
,

where p ∈ C, mi (resp. qi) is a linear form (resp. a quadratic form) of
x3 ∼ x6 and li is a linear form of x0 ∼ x6.

Conversely if X ′ = Q1 ∩Q2 ∩Q3, where Qi is of the form as above and
mi, qi and li are suitably general, then X ′ satisfies (1) ∼ (3).

Proof. Let γ be the net which consists of quadrics containing X ′. γ
contains a member Q1 which is singular at P2. Then Q1 is of the form
as above. If m1 = m2 = 0, then Q1 is singular on the plane P spanned
by C and hence X ′ is singular along C, a contradiction. Hence m1 6= 0 or
m2 6= 0. By permuting P1 and P2 if necessary, we may assume that m1 6= 0.
γ contains a member Q2 which is singular at P0. Q2 is of the form as

{m1
′x1 + m2x2 + q2 = 0},

where m1
′ and m2 (resp. q2) are linear forms (resp. is a quadratic form)

of x3 ∼ x6. γ also contains a member Q′ which is singular at P1. If Q1,
Q2 and Q′ generate γ, then X ′ contains the plane P , a contradiction to the
factoriality and F (X ′) = 1. Hence Q′ is contained in the pencil generated
by Q1 and Q2. So m1

′ = pm1 for some p ∈ C and

Q = {−pm0x0 + m2x2 + (q2 − pq1) = 0}.

Since X ′ does not contain P as noted above, γ contains a member Q3 of
the form as in the statement. Q3 is not contained in the pencil generated
by Q1 and Q2 and hence Qi’s generate γ.

Conversely let X ′ := Q1∩Q2∩Q3, where Qi is of the form as above and
mi, qi and li are suitably general. We can easily check that X ′ satisfies (2)
and (3). Set V := Q1 ∩ Q2. We may assume that V satisfies the condition
of Claim 1. Hence by Claim 1, X ′ is factorial.

Table 3.
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Proof of Theorem 0.13 (A). This is almost clear.

Proof of Theorem 0.13 (B). (1) The assertion follows because X ′ is
an intersection of quadrics.

(2) By (i), the rank of the natural map H0(−KY ′) → H0(O(−KY ′ |E′)) is
3. Hence there is a unique member Ẽ of |−KY ′−E′| since h0(−KY ′) =
4.

(3) The conditions of Proposition 0.8 are easily checked except irreducibil-
ity of Ẽ. The proof of irreducibility of Ẽ is similar to one of No. 2.2
so we omit it.

Proof of Theorem 0.13 (C). We construct an example of the data given
in (B). The Grassmannian G(2, 5) (parameterizing 2-dimensional subspaces
of 5-dimensional vector space) can be embedded into P9 by the Plücker
embedding. Its defining equations are xijxkl − xikxjl + xjkxil = 0 for all
1 ≤ i < j < k < l ≤ 5, where xpq (1 ≤ p < q ≤ 5) is a Plücker coordinate.
Let Q be the point defined by xpq = 0 for any (p, q) 6= (1, 2). Let m1 (resp.
m2) be the line ⊂ G(2, 5) defined by xpq = 0 for any (p, q) 6= (1, 2), (1, 3)
(resp. (p, q) 6= (1, 2), (2, 4)). Let m3 be the line ⊂ G(2,5) defined by the
equations xpq = rpqx12 for (p, q) 6= (1, 2) such that r34 = r35 = r45 = 0,
r13r24 − r23r14 = 0, r13r25 − r23r15 = 0, r14r25 − r24r15 = 0 and r15r25 6= 0.
Let H be the 3-plane spanned by m1, m2 and m3. Then G(2, 5) ∩ H =
m1∪m2∪m3. Hence by [MM85, Proposition 6.8], there are two hyperplane
H1, H2 and a quadric Q such that X ′ := G(2,5) ∩ H1 ∩ H2 ∩ Q is smooth
and X ′ contains m1, m2 and m3. Since the tangent space of X ′ at Q also
contains all the lines on X ′ through Q, it is equal to H. Hence there are
only three lines on X ′ through Q.

The proof of the following lemma is easy so we omit it.

Lemma 4.2. Let f : X → Y be the blow-up of a smooth 3-fold Y along
a smooth curve C on Y and E the exceptional divisor. Then

(1) E3 = − deg NC/Y ,
(2) (−KX)E2 = 2g(C) − 2,
(3) (−KX)2E = (−KY · C) + 2 − 2g(C),
(4) (−KX)3 = (−KY )3 − 2{(−KY · C) − g(C) + 1}.

Claim 4.3. Consider the situation as in [Taka02, Set up 3.2]. Assume
that
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(1) f is of (3, 2)-type.
(2) X ' P2.
(3) There exists a degenerate fiber l ⊂ Reg Y of f .

Then z, u ∈ N.

Proof. z ∈ N and the positivity of u are proved in [Taka02, Claim
3.6]. Note that there exists a smooth rational curve m ⊂ Reg Y such that
D · m = 1. Hence u = z(−KY ′) · m − D′ · m ∈ N.

Table 4, I.

Proof of Theorem 0.15 (A).

Claim 4.4. f ′|l0 is an isomorphism and f ′(l0) does not pass the vertex
v of X ′.

Proof. Let L′ ∈ |−KY ′ − Ẽ| be a general member. Note that f ′(L′)
is a ruling of X ′. Then L′ · l0 = 1 and l0 does not pass through 1

2(1, 1, 1)-
singularities. Hence f ′|l0 is birational. By L′ · l0 = 1, f ′(l0) ∼ 2r, where r
is a ruling of X ′. Thus f ′(l0) is smooth and so f ′|l0 is an isomorphism. If
v ∈ f ′(l0), then f ′(l0) must be reducible, a contradiction.

Let F1 be the µ1-exceptional divisor and γi irreducible components
intersecting l0 of degenerate fibers of f ′. Then −KW1

is relatively nef over
X ′. Let R1 be the other extremal ray of W1 over X ′ than that associated to
µ1. Then supp R1 =

⋃
γi and R1 is a flopping ray. Let W1 99K W1

′ be the
flop and R1

′ the other extremal ray of W1
′ over X ′ than the flopped ray.

Let γ be the transform of a non-degenerate fiber intersecting l0 and γi
+ the

flopped curves. Since G1 · γi
+ > 0 and G1 · γ < 0, we have G1 · R1

′ < 0,
where G1 is the strict transform of f ′−1f ′(l0) on W1

′. So the contraction
ν1 : W1

′ → Y1
′ is an extremal contraction of (2, 1)-type whose exceptional

divisor is G1. Let li (i ≥ 1) be flipped curves different from l0. Since
Bs|−KY ′ | is the union of li (i ≥ 0) and 1

2 (1, 1, 1)-singularities, Bs|−KW1
′ | is

the union of li (i ≥ 1) and 1
2(1, 1, 1)-singularities. Then by easy calculations

based on Lemma 4.2, we have (−KY1
′ ·m1) = 2n+6 and (−KY1

′)3 = 4n+13.

Claim 4.5. li (i ≥ 1) does not intersect γj on W1
′.

Proof. If li (i ≥ 1) intersects γj on W1
′, then γj is a flopped curve on

Y1, where Y ′
99K Y1 is the anti-flip. But γj passes through two 1

2(1, 1, 1)-
singularities, a contradiction to Corollary 3.3.
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Hence we know that −KY1
′ · li = 1 (i ≥ 1) and Y1

′ is a weak Fano
3-fold. We can apply the construction in [Taka02, Set up 3.3] starting from
f1

′ : Y1
′ → X ′ by setting D = L1. By Claim 4.3, z, u ∈ N.

Claim 4.6. |−KY1
′ − L1| 6= ∅.

Proof. By h0(−KW1
) = 5 and h0(−KW1

|F1
) = 3, we have |−KW1

−
F1| 6= ∅. Hence we have the assertion.

Then we can figure out the solutions of the equations as in [Taka02, §3]
and we know that

(i) the case n = 2 does not occur, and
(ii) in case n = 1, Y1

′ is a Q-Fano 3-fold with the properties as stated
in Theorem 0.15 (1), (2) and Y2

′ is a quadric bundle over X2
′ ' P1,

where Y2
′ is obtained from Y1

′ by the flip.

From now on assume that n = 1. Y2
′ can be embedded in a P3-bundle

P(E ) over P1, where E :=
⊕3

i=0 O(ai) is a vector bundle of rank 4. We may
assume that

(4.5) a0 = 0 ≤ a1 ≤ a2 ≤ a3.

Let H be the tautological divisor and M a fiber. In P(E ), Y2
′ is linearly

equivalent to 2H − aM for some a ∈ Z. Since −KY2
′ = 2H|Y2

′ + (2 + a −∑3
i=0 ai)L2

′ and (−KY2
′) = 16, we have (−KY2

′)3 = 16a− 8
∑3

i=0 ai + 48 =
16. So we obtain

(4.6)
3∑

i=0

ai = 2a + 4.

Note that L̃1 ∼ −KY2
′ −L2 = 2H|Y1

′ − (a + 3)L2 by (4.6), where L̃1 is the
strict transform of L1 on Y2

′. Let α+ be a flipped curve for Y1
′
99K Y2

′.
Then since L̃1 · α

+ = −2 and −KY2
′ · α+ = −1, we have

(4.7) 2H · α+ = a + 1 ≥ 0.

Moreover since −3M ′ is not effective, we have

(4.8) h0(2H − (a + 3)M) ≤ h0((2H|Y1
′ − (a + 3)L2) = 4.

Thus we have a = −1 and a1 = 0 and a2 = a3 = 1 by (4.5), (4.6), (4.7) and
(4.8).
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Proof of Theorem 0.15 (B). Similarly to the proof of Proposition 0.8,
we see that there is an anti-flip Y2

′
99K Y1

′ whose flipped curves are con-
nected components of V ∩Y2

′ and Y1
′ has only 1

2(1, 1, 1)-singularities. More-

over we know that L1 := −KY1
′ − L̃2 is nef, where L̃2 is the strict trans-

form of L2. By the base point free theorem (see [KMM87]), L1 is semi-
ample. Since (L1)

3 = 0 and (L1)
2 6≡ 0, a sufficient multiple of L1 defines

a conic bundle structure f ′
1 : Y1

′ → X ′. In particular Y1
′ is a Q-Fano 3-

fold since both of its extremal rays are KY1
′-negative. Since −KY2

′ − L2 =
2(H|Y2

′ − L2) and the transform of H|Y2
′ − L2 on Y1

′ is not Cartier, we
know that X ′ ' F2,0 whence we know that |L1| is actually free.

Let G1 be ν1-exceptional divisor and F1
′ the strict transform of

f ′
1
−1f ′

1(m1). By a similar argument to (A), we know that there is a flop
W1

′
99K W1 over X ′ and an extremal contraction µ1 : W1 → Y ′ over X ′ of

(2, 1)-type, whose exceptional divisor F1 is the strict transform of F1
′ on

W1. Let l0 := µ(F1). Since Bs|−KY1
′−m1| is the union of m1 and 1

2(1, 1, 1)-
singularities, Bs|−KY ′−l0| is the union of l0 and 1

2(1, 1, 1)-singularities. It is
easy to see that −KY ′ · l0 = −1 by (A)(1) and Lemma 4.2. Hence Bs|−KY ′ |
is the union of l0 and 1

2 (1, 1, 1)-singularities.

(1) D2 ∈ |H|Y2
′ − L2| be a general smooth member and D1 (resp. D)

its strict transform on Y1
′ (resp. Y ′). Since −KD2

= H|Y2
′ , −KD2

is nef and big and numerically trivial only for two flipped curves on
D2. Thus D1 is a del Pezzo surface with two ODP’s at 1

2(1, 1, 1)-
singularities of Y1

′. Since D1 99K D is a composite of a blow-up at
a smooth point and a blow-down at a smooth point, D is a weak del
Pezzo surface with two ODP’s. Consider the exact sequence

0 −→ OY ′(−KY ′ − D) −→ OY ′(−KY ′) −→ OD(−KY ′) −→ 0.

By singular Riemann-Roch theorem on surfaces with only canoni-
cal singularities [Reid87b, (9.1) Theorem] and KKV vanishing the-
orem, we have h0(OD(−KY ′)) = 5. Note that Bs|−KY ′ | ∩ D con-
sists of one point and |−KY ′ |D| is free outside two ODP’s. Thus
dim Im(H0(OY ′(−KY ′)) → H0(OD(−KY ′))) = 4. On the other hand,
we have h0(OY ′(−KY ′)) = 5 and so |−KY ′ −D| has a unique member
Ẽ. We prove that Ẽ is irreducible. If Ẽ is reducible, it is a union of
an irreducible surface Ẽ′ which is a generically a 2-section for f ′ and
surfaces which are mapped to curves on X ′. Hence h0(−KY ′−L) 6= 0.
Since |D| is movable, Ẽ|D is effective for a general D. Hence by the
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exact sequence

0 −→ OY ′(−KY ′ − L) −→ OY ′(−KY ′ − D) −→ OD(−KD) −→ 0,

we have h0(−KY ′ − L) = 0, a contradiction.
(2) (2-3) is checked before the proof of (i). Other conditions are easily

checked.

Proof of Theorem 0.15 (C). Let Y2
′ be a smooth divisor in P(O⊕2�

1 ⊕
O�

1(1)⊕2) linearly equivalent to 2H + M . Let L2 := M |Y2
′ . Since Y2

′ is
an ample divisor, ρ(Y2

′) = 2 by [Gro68, p. 135, 3.18]. By looking on the
local charts, we can easily see that if we take Y2

′ generally, Bs|−KY2
′ | =

Bs |H|Y2
′ − L2| = V ∩ Y2

′, which is a disjoint union of two sections. We
denote by L1 a general member of |L1|.

Claim 4.7. L1 is a del Pezzo surface of degree 2.

Proof. Denote by L̃1 the strict transform of L1 on Y2
′. Since −K �

L1
=

L2| �
L1

, |−K �
L1
| is free and (−K �

L1
)2 = 0. Since π : L̃1 → L1 is the blow-up at

two points, L1 is a weak del Pezzo surface of degree 2. Assume that there
is a (−2)-curve δ on L1. Then on L̃1, δ is a component of a degenerate

fiber of L̃1 → X2
′ and does not intersect any π-exceptional curve. Then

another component δ′ of the fiber containing δ intersects both of two π-
exceptional curves. Then, however, δ′ satisfies −KY1

′ · δ′ = 0 on Y1
′. But

this contradicts the fact that Y1
′ is a Q-Fano 3-fold.

We can regard L1 as a surface obtained by blowing up P2 at 7 points
and let ei (i = 1, . . . , 7) be the exceptional curves, where we may assume
that e1 is a section of f1

′ and ei (i ≥ 2) are components of different 6
degenerate fibers. Let m1

′ := 4l− 3e1 −
∑7

i=2 ei, where l is the pull-back of
a line in P2.

Claim 4.8. |m1
′| is free.

Proof. Since m1
′ = (3l−2e1 −

∑7
i=2 ei)+ (l− e1), |m1

′| is nef. Assume
that |m1

′| is not free. Since m1
′ − K �

L1
′

is nef and (m1
′ − K �

L1
′
)2 > 4, by

[Reide88], there is an effective divisor Z such that

(i) (m1
′ − K �

L1
′
) · Z = 0 and Z2 = −1 or
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(ii) (m1
′ − K �

L1
′
) · Z = 1 and Z2 = 0.

In case (i), we have (−K �

L1
′
) · Z = 0 and Z2 = −1 but this contradicts

the genus formula. In case (ii), we have (−K �

L1
′
) · Z = 0 and Z2 = 0

by the genus formula and moreover (−K �

L1
′
) ≡ aZ for some a ∈ Q. By

(−K �

L1
′
) · m1

′ = 3 and Z · m1
′ = 1, we have a = 3. On the other hand, by

(−K �

L1
′
).e1 = 1, Z.e1 = 1/3, a contradiction. Hence we have the assertion.

Let m1 ∈ |m1
′| be a general smooth member.

Claim 4.9. Bs|−KY1
′ − m1| = m1.

Proof. Since |−KY2
′ − L̃1| = |L2|, Bs|−K ′

Y1
−m1| is at most the union

of L1 and two flipping curves. Consider the exact sequence

0 −→ OY1
′(−KY1

′ − L1) −→ OY1
′(−KY1

′) −→ OL1
(−KY1

′) −→ 0.

Since −2KY1
′ −L1 is nef and big, h1(O(−2KY1

′ −L1)) = 0 by KKV vanish-
ing. Hence H0(OY1

′(−KY1
′)) → H0(OL1

(−KY1
′)) is surjective. Moreover

we have |−K ′
Y1
|L1

−m1| = |l|. We may assume that m1 is disjoint from two
flipping curves on Y1

′. Thus Bs|−KY1
′ − m1| = m1.

It is easy to see that m1 has other properties as in (A)(2).

Table 4, II.

Proof of Theorem 0.17 (A) and (B). These are almost clear.

Proof of Theorem 0.17 (C). We know that there is an example for this
case by Corollary 2.3 and the existence of an example for No. 1.1 (h = 6
and N = 2) since only No. 4.3 satisfies h = 6 and N = 1.

Table 4, III.

Proof of Theorem 0.18 (A). Let F1 be µ1-exceptional divisor. By an
argument similar to the proof of Theorem 0.15 (A), we know that there is
a flop W1 99K W1

′ over X ′ and an extremal contraction ν1 : W1
′ → Y1

′ of
(2, 1)-type over X ′ whose exceptional divisor G1 is the strict transform of
f ′−1f ′(l0) on W1

′. Let li (i ≥ 1) be flipped curves different from l0. Since
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Bs|−KY ′ | =
⋃n−1

i=0 li, Bs|−KW1
′ | =

⋃n−1
i=1 li. Then by easy calculations, we

have (−KW1
′)2G1 = n+3 and (−KW1

′)3 = 6. By Lemma 4.2, (−KY1
′ ·m1) =

n+1 and (−KY1
′)3 = 2n+10. Similarly to the proof of Claim 4.5, we know

that any li (i ≥ 1) does not intersect flopping curves for W1 99K W1
′. Hence

we have G1 · li = 1 and −KY1
′ · li = 0 (i ≥ 1). Thus Y1

′ is a weak Fano
3-fold.

Assume that X is a Q-Fano 3-fold of No. 4.4. We can apply the con-
struction in [Taka02, Set up 3.3] starting from f1

′ : Y1
′ → X ′ by setting

D = L1. By Claim 4.3, z, u ∈ N and similarly to the proof of Claim 4.6,
we can see that |−KY1

′ − L1| 6= ∅. Then we can figure out the solutions of
the equations as in [Taka02, §3] and we know that Y1

′ is a Fano 3-fold with
(−KY1

′)3 = 12 and two conic bundle structures. By [MM81, Table 1], we
know that Y1

′ and m1 are as in the statement of Theorem 0.18 (A-1).
Assume that X is a Q-Fano 3-fold of No. 4.5–No. 4.7. Y1

′ has a flopping
ray since n ≥ 2. We use the notation of Theorem 0.18 (A-2). Let F2 be
µ2-exceptional divisor. By an argument similar to the proof of Theorem
0.15 (A), we know that there is a flop W2 99K W2

′ over X ′ and an extremal
contraction ν2 : W2

′ → Y2
′ of (2, 1)-type over X ′ whose exceptional divisor

G2 is the strict transform of f1
′−1

f1
′(l1) on W2

′. Let m2 := ν2(G2). Then
by easy calculations based on Lemma 4.2, we have (−KY2

′ · m2) = n and

(−KY2
′)3 = 4n + 10. Note that Bs|−KW2

′ | =
⋃n−2

i=2 li outside m1.

Claim 4.10. l1 ∩ li = ∅ (i ≥ 2).

Proof. If l1∩li 6= ∅, then Y ′ has a non-degenerate fiber δ intersecting l0,
l1 and l2. Then −KY1

· δ = 1/2 and there are three 1
2(1, 1, 1)-singularities

on it. If there is a member of |−KY1
| which does not contain δ, then

−KY1
· δ ≥ 3/2, a contradiction. So δ ⊂ Bs|−KY1

|. But this contradicts
Corollary 3.3.

Similarly to the proof of Claim 4.5, we know that any li (i ≥ 2) does
not intersect flopping curves for W2 99K W2

′. Hence we have G2 · li = 1 and
−KY1

′ · li = 1 (i ≥ 1). Hence Y2
′ is a weak Fano 3-fold. We can apply the

construction in [Taka02, Set up 3.3] starting from f1
′ : Y1

′ → X ′ by setting
D = L1. By Claim 4.3, z, u ∈ N and similarly to the proof of Claim 4.6, we
can see that |−KY1

′ −L1| 6= ∅. Then we can figure out the solutions of the
equations as in [Taka02, §3] and we know that Y2

′ is actually a Fano 3-fold
with (−KY2

′)3 = 4n + 10. Since Y2
′ has a conic bundle structure, we know

that Y2
′ and γ are as in the statement of Theorem 0.18 (A-2) by [MM81,

Table 1].
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Claim 4.11. (i) γ, m1 and m2 intersect the common n − 2 points
simply.

(ii) li (i ≥ 2) are fibers of h which intersect m1 or m2.
(iii) γ, m1 and m2 are smooth rational curves of degree n − 1.

Proof. By Claim 4.10, (i) follows. By [MM83, Theorem 5.1 (1)], we
have −KY2

′ = L2+M2, where L2 (resp. M2) is the pull-back of a hyperplane
section of X ′ (resp. X2

′). Since −KY2
′ · li = 1 and L2 · li = 1, we have

M2 · li = 0. Hence li are fibers of h. Moreover by −KY2
′ · mj = n and

L2 · li = 1, we have M2 · mj = n − 1. Hence by −KY2
′ = 2M2 − G3, where

G3 is h-exceptional divisor, we have G3 · mj = n − 2. Thus (ii) holds. (iii)
follows from (i) and (ii).

Proof of Theorem 0.18 (B). First we consider the case X is a Q-Fano 3-
fold of No. 4.4. Let G1 be ν1-exceptional divisor and F1

′ the strict transform
of f ′

1
−1f ′

1(m1), where f ′
1 : Y1

′ → X ′ ' P2 is one of two structure morphisms
of conic bundles. By an argument similar to the proof of 0.15 (A), we
know that there is a flop W1

′
99K W1 over X ′ and an extremal contraction

µ1 : W1 → Y ′ of (2, 1)-type over X ′ whose exceptional divisor F1 is the
strict transform of F1

′ on W1.

(i) Let f1
′′ : Y1

′ → X1
′ ' P2 be the morphism of the other conic bundle

structure. By [MM83, Theorem 5.1 (1)], we have −KY2
′ = L1 + M1,

where L1 (resp. M1) is the pull-back of a hyperplane section of X ′

(resp. X1
′). Hence f ′

1
−1f ′

1(m1) + f ′′
1
−1f ′′

1 (m1) ∈ |−KY1
′ |. Let Ẽ′′

be the strict transform of f ′′
1
−1f ′′

1 (m1) on W1
′. Then F1

′ + Ẽ′′ +

G1 ∈ |−KW1
′ |. Hence the strict transform Ẽ of Ẽ′′ on Y ′ satisfies

Ẽ ∼ −KY ′ −L. Conversely we can easily see that if Ẽ ∼ −KY ′ −L is
effective, it is the strict transform of f ′′

1
−1f ′′

1 (m1). Hence the unique-

ness of Ẽ follows. We prove that Ẽ is irreducible. If Ẽ is reducible,
it is a union of an irreducible surfece Ẽ′ which is a generically a 2-
section for f ′ and surfaces which are mapped to curves on X ′. Hence
h0(−KY ′ − 2L) 6= 0. Since |L| is free, Ẽ|L is effective for a general L.
Hence by the exact sequence

0 −→ OY ′(−KY ′ − 2L) −→ OY ′(−KY ′ − L) −→ OL(−KL) −→ 0,

we have h0(−KY ′ − 2L) = 0, a contradiction.



167-08 : 2002/9/5(14:33)

200 H. TAKAGI

(ii) Since Bs|−KY1
′ − m1| = m1, Bs|−KY ′ − l0| = l0. We can easily see

that other conditions of Proposition 0.8 are satisfied.

Next we consider the case X is a Q-Fano 3-fold of No. 4.5–No. 4.7. By
[MM85, (7.7)], Y2

′ is a Fano 3-fold with a conic bundle structure f ′
2 : Y2

′ →
X ′ ' P2. By the assumption, m1 ∩ m2 = ∅ on Y2

′. Let li (2 ≤ i ≤ n − 1)
be fibers of h over m1 ∩ m2 ⊂ X2

′.

Claim 4.12. (a) There is a unique hyperplane section of X2
′ con-

taining m1 and m2.
(b) Bs|−KY2

′ − m1 − m2| = m1 ∪ m2 ∪ l2 ∪ · · · ∪ ln−1.

Proof.

(a) Let h′ : Y2
′′ → X2

′ be the blow-up of X2
′ along m1 and G3

′ h′-
exceptional divisor. Then by [MM85, (7.7)], Y2

′′ is a Fano 3-fold
with a conic bundle structure f2

′′ : Y2
′′ → X ′′. By [MM83, Theorem

5.1 (1)], we have −KY2
′′ = L2

′ + M2
′, where L2

′ (resp. M2
′) is the

pull-back of a hyperplane section of X ′′ (resp. X2
′). Hence we have

L2
′ = M2

′−G3
′. So the image of f2

′′−1
f2

′′(m2) on X2
′ is a hyperplane

section of X2
′ containing m1 and m2 and such a hyperplane section

is obtained by this way.
(b) By [MM83, Theorem 5.1 (1)], we have −KY2

′ = L2 + M2, where L2

(resp. M2) is the pull-back of a hyperplane section of X ′ (resp. X2
′).

Since −KY2
′ · mj = n and M2 · mj = n − 1, we have L2 · mj =

1. Let L2,j (j = 1, 2) be the member of |L2| containing mj. Let

Ẽ′′ be the strict transform of a hyperplane section of X2
′ containing

m1 and m2. Since Bs |M2 − mj | = mj ∪ l2 ∪ · · · ∪ ln−1, we have

Bs|−KY2
′ −m1 −m2| ⊂ (L2,1 ∩L2,2∩ Ẽ′′)∪ (m1 ∪m2 ∪ l2 ∪ · · · ∪ ln−1).

Since L2,1∩L2,2∩mi ⊂ L2,1∩L2,2∩Ẽ′′ and L2,1 ·L2,2 ·Ẽ
′′ = 2, we have

L2,1 ∩ L2,2 ∩ Ẽ′′ = L2,1 ∩ L2,2 ∩ (m1 ∪ m2). So we have the assertion.

Let G2 be ν2-exceptional divisor and F2
′ the strict transform of L2,2,

where f ′
2 is the structure morphism of conic bundle. By similar argument

to the proof of Theorem 0.15 (A), we know that there is a flop W2
′
99K W2

over X ′ and an extremal contraction µ2 : W2 → Y1
′ of (2, 1)-type over X ′

whose exceptional divisor F2 is the strict transform of F2
′ on W2. By Claim

4.12,

(4.9) Bs|−KY1
′ − m1 − l1| = m1 ∪ l1 ∪ · · · ∪ ln−1
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Let G1 be ν1-exceptional divisor and F1
′ the strict transform of f ′

1
−1f ′

1(m1),
where f ′

1 : Y1
′ → X ′ is the natural morphism. By a similar argument to

above, we know that there is a flop W1
′
99K W1 over X ′ and an extremal

contraction µ1 : W1 → Y ′ of (2, 1)-type over X ′ whose exceptional divisor
F1 is the strict transform of F1

′ on W1.

(i) Since L2,1 + Ẽ′′ ∈ |−KY2
′ | (see the proof of Claim 4.12 for the no-

tation), the strict transform Ẽ of Ẽ′′ on Y ′ satisfies Ẽ ∼ −KY ′ − L,
where L is the pull-back of a line of X ′. Conversely we can easily
see that if Ẽ ∼ −KY ′ −L is effective, it is the strict transform of Ẽ′′.
Hence the uniqueness of Ẽ follows from Claim 4.12. The irreducibility
of Ẽ can be proved similarly to No. 4.4.

(ii) By 4.9, Bs|−KY ′ − l0 − l1| = l0 ∪ l1 ∪ · · · ∪ ln−1. But since l0 ∪ l1 ⊂
Bs|−KY ′ |, we have Bs|−KY ′ | = l0 ∪ l1 ∪ · · · ∪ ln−1.

Claim 4.13. li are mutually disjoint.

Proof. It suffices to prove that li (i ≥ 2) do not intersect flopping
curves for W2

′
99K W2 or W1

′
99K W1. This follows from Claim 4.12

because otherwise there exists a member of |−KW1
′ | (resp. |−KW2

′ |)
which intersects a flopping curve for W2

′
99K W2 (resp. W1

′
99K W1)

but does not contain it, a contradiction.

We can easily see that other conditions of Proposition 0.8 are satisfied.

Proof of Theorem 0.18 (C). For No. 4.4, the proof is almost clear. For
No. 4.5–No. 4.7, we prove that on Bd (d = 3, 4, 5), there exist three smooth
rational curves γ, m1 and m2 of degree d − 2 which intersect the common
d − 3 points simply. First note that there exists at least one such a curve
on a smooth hyperplane section H of Bd. Call it γ. Since Bs |H − γ| = γ
by [MM85, Proposition 6.8], There exists two other hyperplane sections H1

and H2 containing γ. It is easy to see that we can take mi on Hi as desired.

Table 4, IV.

Proof of Theorem 0.19 (A) and (B). These are almost clear.
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Proof of Theorem 0.19 (C). Let Z1 := P(O�
2 ⊕ O�

2(−1)), π : Z1 →
X ′ ' P2 the natural projection and E ' P2 the unique member of the
tautological linear system. Let P1 ∼ P6 be six points in a general position
on X ′. We denote by Pi

′ the point on E corresponding to Pi. Let Fij be the
pull-back of a line of X ′ through Pi and Pj and lij the section of Fij inter-
secting E at two points Pi

′ and Pj
′. We may assume l12, l34 and l56 do not

intersect mutually. Let Z1 99K Z2 be the elementary transformation along
l12, Z2 99K Z3 the elementary transformation along the strict transform of
l34, Z3 99K Y ′ the elementary transformation along the strict transform of
l56. Let Ẽ be the strict transform of E and L the pull-back of a line on Y ′.
Ẽ is obtained by blow-up E at P1

′ ∼ P6
′. Let mi be the exceptional curve

over Pi
′. Then we can prove that −KY ′ = L + 2Ẽ and Ẽ| �

E
= 2l −

∑
mi,

where l is the total transform of a line of E. Let Ci1i2i3i4i5 be the (−1)-curve
on Ẽ linearly equivalent to 2l − mi1 − mi2 − mi3 − mi4 − mi5 . Let R be
the other extremal ray of NE(Y ′) than one generated by the class of fiber
of Y ′ → X ′. We check the following.

(1) −KY ′ is nef and big,
(2) R is generated by the class of Ci1i2i3i4i5 and Supp R =

⋃
Ci1i2i3i4i5 ,

and
(3) −KY ′ · R = 0.

Since Ẽ · Ci1i2i3i4i5 = −1 and ρ(Y ′) = 2, we have Ẽ · R < 0. Hence

R ⊂ Im(NE(Ẽ) → NE(Ỹ ′)). On the other hand it is easy to check that
−KY ′ | �

E
is nef and numerically trivial only for Ci1i2i3i4i5 ’s. Hence we have

−KY ′ · R = 0 and (2) follows. (3) becomes also clear. For (1), the nefness
is already checked. The bigness follows from a direct calculation. In fact
we have (−KY ′)3 = 14.

Table 5, I.

Proof of Theorem 0.20 (A). The proof is similar to [Take96]. Since Y ′

is a smooth del Pezzo fibration whose fibers are del Pezzo surfaces of degree
4, Y ′ can be embedded in P4-bundle. Let E :=

∑4
i=0 ⊕O(ai) be the associ-

ated vector bundle of rank 5, where we may choose a0 = 0 and a0 ≤ a1 ≤
a2 ≤ a3 ≤ a4. Let H be the tautological divisor and F a fiber. In P(E), Y ′

is a complete intersection of V1 ∈ |2H − aF | and V2 ∈ |2H − bF | for some a
and b. We may assume that a ≥ b. Since −KY ′ = H|Y ′ +(a+b+2−

∑
ai)L,

we have (−KY ′)3 = 10(a + b) − 8
∑

ai + 24 = 4. So we obtain

(A1) 5(a + b) = 4
∑

ai − 10.
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Note that Ẽ ∼ −KY ′ − L = H − (a+b+6
4 )L by (A1). Let c := a+b+6

4 .
Since H−cF−V1 and (H−cF )|V1

−Y ′ is not effective, we have h0(H−cF ) ≤
h0((H − cF )|V1

) ≤ h0((H − cF )|Y ′) = 1. So we obtain

(A2) a3 < c and a4 ≤ c.

This gives
∑

ai ≤ 4c− 3 = a + b + 3 and hence by (A1), we obtain a + b ≤
2. On the other hand, there is a flipped curve m1

′ on Ẽ, which satisfies
Ẽ ·m1

′ = −2 and F ·m1
′ = 1. Hence H ·m1

′ = a+b−2
4 . This is non-negative

so we have a + b ≥ 2. So we obtain a + b = 2 and by (A1),
∑

ai = 5.
Together with (A2), we have E := O�

1 ⊕ O �
1(1)⊕3 ⊕ O�

1(2). If a ≥ 3, then
V1 must be non-reduced or reducible by looking at a local coordinate. If
a = 2, then Ẽ must be singular along m1

′. Hence we have a = b = 1 and
we are done.

Proof of Theorem 0.20 (B).

(1) Let µ : Q → P(E) be the blow-up along l0 and G the exceptional
divisor. Since Nl0/

�
(E) = O �

1(1)⊕3⊕O �
1(2), G contains the subvariety

W which corresponds to the surjection O�
1(1)⊕3⊕O�

1(2) → O�
1(1)⊕3.

Note that |V ′ := µ∗(2H−F )−G| is free since µ∗(H−F )−G and µ∗H
is free. We can easily prove that for an irreducible curve l, V ′ · l = 0 if
and only if l is a fiber of the natural projection W ' P2×P1 → P2 and
if V ′ · l = 0, then KQ · l = 0. So the Stein factorization of Φ|V ′| (we call
it ν : Q → R) is a crepant primitive birational contraction and R has
only hypersurface singularities. Hence by the Grothandieck-Lefschetz
theorem [Gro68, p. 135, 3.18], a complete intersection of two members
of |ν(V ′)| has the same Picard group as R. So for the strict transform
Vi

′ of Vi, ρ(ν(V1
′) ∩ ν(V2

′)) = 2 and hence ρ(Y ′) = 2.
(2) Since −KY ′ = H − F |Y ′ , Bs|−KY ′ | = l0.
(3) By h0(H − 2F ) = 1, it is easy to see that h0((H − 2F )|Y ′) = 1. The

irreducibility of Ẽ can be proved similarly to No. 4.4.
(4) This is easily proved.

Proof of Theorem 0.20 (C). It is easy to see that we can take Y ′ as in
(A) by looking on the local charts.

Table 5, II.
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Proof of Theorem 0.21 (A). Let F1 be µ1-exceptional divisor. Since
−KY ′ is relatively very ample over X ′, |−KW1

| is relatively free and big
over X ′. Let R1 be the extremal ray of W1 over X ′ other than that associ-
ated to µ1.

Claim 4.14. (1) R1 is a flopping ray and an irreducible curve whose
numerical class generates R1 is a transform of a curve γ on X with
−KX ·γ = 1/2 passing the 1

2 (1, 1, 1)-singularity on l0
−, where l0

− ⊂ X
is the strict transform of flipping curve corresponding to l0.

(2) Let l1 be a flipped curve different from l0. Then γ does not intersect
l1 on W1.

Proof.

(1) By Theorem 0.3, there is a curve γ on X with −KX · γ = 1/2 passing
the 1

2(1, 1, 1)-singularity on l0
−. By [Taka02, Proposition 2.1 (4)], we

have −KY ′ · γ = 1
2 + α and Ẽ · γ = 2α + β for a positive rational

number α ∈
�

2 and a non-negative rational number β. α (resp. β)
describes the effect of the flip Y1 99K Y ′ (resp. the flop Y 99K Y1)
(see [Taka02, §3] for the notation). By L ∼ −KY ′ − Ẽ, we have
L·γ = 1

2−α−β. Since L is nef, we have α = 1/2 and β = 0. Moreover
by −KW1

= µ∗
1(−KY ′)−F1, we have −KW1

·γ = 0. So the numerical
class of γ generates R1. Conversely let γ′ be an irreducible curve whose
numerical class generates R1. When the fiber of f ′ containing γ′ is
anti-canonically embedded in a projective space, γ′ is a line and hence
F1 · γ

′ = 1. Since Ẽ is smooth along l0, we have µ∗
1L ∼ −KW1

− Ẽ′,

where Ẽ′ is the strict transform of Ẽ on W1. Hence we have Ẽ′ ·γ′ = 0
and Ẽ ·γ′ = 1. By reversing the argument above, we can easily see that
γ′ is a curve as in the statement of Claim 4.14 on X. The finiteness
of the number of γ′’s follows from Theorem 0.3. In particular R1 is a
flopping ray.

(2) If γ intersects l1, then γ is a flopped curve on Y1, where Y 99K Y1 is
the flop. But γ passes two 1

2 (1, 1, 1)-singularities, a contradiction to
Corollary 3.3.

Let R′
1 be the extremal ray of W1

′ over X ′ other than that associated
to the flop W1 99K W1

′ and ν1 : W1
′ → Y1

′ is the associated contraction.
Let L′ be a general fiber of W1 → X ′ and denote by L the image of L′ on
Y ′. Then by Claim 4.14, we may assume that L′ is a del Pezzo surface of
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degree 4 in case X is a Q-Fano 3-fold of No. 5.4 (resp. degree 5 in case X
is a Q-Fano 3-fold of No. 5.5). We consider L′ is anti-canonically embedded
in a projective space.

Claim 4.15. ν1 is of (2, 1)-type.

Proof. It suffices to prove that ν1 is not of (3, 2)-type. Assume that ν1

is of (3, 2)-type. Then Y1
′ is a P1-bundle over X ′. Let M be the pull-back

of a general section of Y1
′ → X ′ on W1

′ and M ′ (resp. M ′′) the transform
of M on W1 (resp. Y ′). We may assume that M ′|L′ is a smooth conic. Note
that F1|L′ is a line. Since L′ is an intersection of quadrics, M ′|L′ intersects
a line at most one point. Hence (M ′′|L)2 ≤ 1, a contradiction to the fact
that the image of Pic Y ′ → PicL is generated by −KL and (−KL)2 ≥ 4.

Let G1 be the ν1-exceptional divisor and m1 := ν1(G1). Let G1
′ (resp.

G1
′′) the strict transform of G1 on W1 (resp. Y ′). Note that G1

′|L′ is a union
of lines intersecting F1|L′ at one point. Since the image of Pic Y ′ → Pic L
is generated by −KL, we know that in case X is a Q-Fano 3-fold of No. 5.4
(resp. No. 5.5), G′|L′ is a union of five (resp. three) lines and W1

′ is a P2-
bundle (resp. a quadric bundle). Hence we can write G1

′′ = 2(−KY ′) + aL
(resp. G1

′′ = (−KY ′) + aL) for some a ∈ Z. Note that G1
′ = µ∗

1G1
′′ − 5F1

(resp. G1
′ = µ∗

1G1
′′ − 3F1). Then by easy calculations, we have

(−KW1
′)2G = 4a + 5.(4.10)

(−KW1
′)G2 = 10a − 14.(4.11)

(resp. (−KW1
′)2G = 5a + 2.(4.12)

(−KW1
′)G2 = 6a − 8).(4.13)

Assume that X is a Q-Fano 3-fold of No. 5.4. Since W1
′ is a P2-bundle,

(−KW1
′)3 = 54. So we have a = 3, g(m1) = 9 and (−KY1

′ · m1) = 33 by
(4.10), (4.11) and Lemma 4.2. Let l1 be flipped curves different from l0.
Since Bs|−KY ′ | = l0 ∪ l1, Bs|−KW1

′ | = l1. By Claim 4.14 (2), we have
G1 · l1 = (2(−KY ′) + 3L · l1) = 1 whence (−KY1

′ · l1) = 0. Thus Y1
′ is a

weak Fano 3-fold.

Claim 4.16. Y1
′ has no crepant divisorial contraction.
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Proof. Assume the contrary. Then by the method of [Take99], we can
easily see that Y1

′ ' P(O⊕2⊕O(2)). Let H be the tautological divisor, L1 a
fiber and T the subvariety associated to the surjection O⊕2 ⊕O(2) → O⊕2.
Then T ' P1 × P1 and a horizontal fiber l satisfies −KY1

′ · l = 0. Since
there exists only a finite number of curves intersecting −KW1

′ negatively,
m1 6⊂ T . If there exists an exceptional curve m for W1

′
99K W1 contained

in the strict transform T ′ of T on W1
′, it must be the transform of a fiber

of T → X ′ intersecting m1. Note that T ·m1 = (H − 2L1) ·m1 = 1. Hence
m and m1 intersect at one point simply. Then, however, −KW1

′ · m =
2, a contradiction. Hence if we take l generally, l does not intersect an
exceptional curve for W1

′
99K W1. Thus F1 · l = F1

′′ · l = (2H + L1) · l = 1
and so −KY ′ · l = 1. If l intersects l1, then l must be a flopping curve on Y1

containing two 1
2(1, 1, 1)-singularities, where Y ′

99K Y1 is the anti-flip. This
contradicts Corollary 3.4. If l intersects F1 at a point of the negative section
of F1, then l must be a flopping curve on Y1. Hence by the finiteness of the
number of flopping curves, we may assume that l intersects F1 outside the
negative section of F1 by taking l generally. Then −KY1

· l = 1/2. Since
Ẽ · l = (−KY ′ − L) · l = 0, we have E · l = 0. Since the strict transform of
Ẽ on Y1

′ is linearly equivalent to −KY1
′ − L1, it is not equal to T . Hence

we may assume that l ∩E = ∅. Thus we have −KY · l = 1/2. However this
contradicts the finiteness of the number of such curves.

Hence by the list of [Take99], Y1
′ ' P(O ⊕O(1)⊕2). By G1

′ = µ∗
1G1

′′−
5F1 and G1

′′ = 2(−KY ′) + 3L, we have 3F1
′′ = 2(−KY1

′) + 3L1. So we
obtain the description of F1

′′.
Assume that X is a Q-Fano 3-fold of No. 5.5. By (4.12), (4.13) and

Lemma 4.2, we have g(m1) = 3a−3, (−KY1
′ ·m1) = 11a−6 and (−KY1

′)3 =
16a. Since g(m1) ≥ 0, we have a ≥ 1. Let li (i ≥ 1) be transforms
of flipped curves different from l0. By Claim 4.14 (2), we have G1 · li =
((−KY ′) + aL · li) = a − 1 whence (−KY1

′ · li) = a − 2.

Claim 4.17. a 6= 1.

Proof. Assume that a = 1. Y2
′ can be embedded in a P3-bundle P(E )

over P1, where E :=
⊕3

i=0 O(ai) is a vector bundle of rank 4. We may
assume that

(4.14) a0 = 0 ≤ a1 ≤ a2 ≤ a3.

Let H be the tautological divisor and M a fiber. In P(E ), Y2
′ is linearly

equivalent to 2H − aM for some a ∈ Z. Since −KY1
′ = 2H|Y1

′ + (2 + a −
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∑3
i=0 ai)L1 and (−KY1

′) = 16, we have (−KY1
′)3 = 16a− 8

∑3
i=0 ai + 48 =

16. So we obtain

(4.15)

3∑

i=0

ai = 2a + 4.

Let Ẽ′ be the strict transform of Ẽ on Y1
′. Note that Ẽ ∼ −KY1

′ − L1 =
2H|Y1

′ − (a+3)L1 by (4.15). Since L1 · l1 = 1 and −KY1
′ · l1 = −1, we have

(4.16) 2H · l1 = a + 1 ≥ 0.

Moreover since hj(−3M) = 0 (j = 0, 1), we have h0(2H − (a + 3)M) =
h0((2H|Y1

′ − (a + 3)L1) = 1. Hence

(4.17) 2a3 = a + 3, a2 < a3.

By (4.17), we have 2(
∑3

i=0 ai) ≤ 2(a+1)+a+3 and then by (4.15), a ≤ −3.
But this contradicts (4.16).

Assume that a ≥ 2. Since Bs|−KY ′ | =
⋃n−1

i=0 li, Bs|−KW1
′ | =

⋃n−1
i=1 li.

Moreover we know that (−KY1
′ · li) = a−2 ≥ 0 by the assumption. So Y1

′ is
a weak Fano 3-fold. If Y1

′ has a crepant divisorial contraction, then by the
method of [Take99], we can easily see that (−KY1

′)3 = 8, a contradiction.
Hence by the list of [Take99], we have a = 2. Moreover since 2F1

′′ =
−KY1

′ + 2L1, −KY1
′ is divisible by 2. Thus Y1

′ is a smooth divisor in
P(O⊕2 ⊕ O(1)⊕2) linearly equivalent to 2H, where H is the tautological
divisor. By G1

′ = µ∗
1G1

′′ − 3F1 and G1
′′ = (−KY ′) + 2L, we have 2F1

′′ =
(−KY1

′) + 2L1. So we obtain the description of F1
′′.

Proof of Theorem 0.21 (B). Let G1 be ν1-exceptional divisor and F1
′

the strict transform of F1
′′. Since Bs|−KY1

′ − m1| = m1 ∪ l1 ∪ · · · ∪ ln−1,
where li are all the flopping curves on Y1

′, |−KW1
′ | is free outside li. By an

argument similar to the proof of (A), we know that there is a flop W1
′
99K

W1 over X ′ and an extremal contraction µ1 : W1 → Y ′ of (2, 1)-type over
X ′ whose exceptional divisor F1 is the strict transform of F1

′ on W1. Since
Bs|−KY1

′ −m1| = m1 ∪ l1 ∪ · · · ∪ ln−1, Bs|−KY ′ − l0| = l0 ∪ · · · ∪ ln−1. It is
easy to see that −KY ′ · li = −1 by (A1)(3) or (A2)(3). Hence Bs|−KY ′ | =
l0 ∪ · · · ∪ ln−1.

(i) Consider the exact sequence

0 −→ OY ′(−KY ′ − L) −→ OY ′(−KY ′) −→ OL(−KL) −→ 0,
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where L is a general fiber of f ′. First we treat No. 5.4. Since
Bs|−KY ′ |∩L = (L∩l0)∪(L∩l1) consists of two points and −KL is very
ample, the dimension of Im(H0(OY ′(−KY ′)) → H0(OL(−KL))) is 4.
On the other hand h0(OY ′(−KY ′)) = 5. Hence we have h0(OY ′(−KY ′

− L)) = 1.
Next we treat No. 5.5. Note that a general fiber of W1 → X ′ is a del
Pezzo surface of degree 5. Moreover Bs|−KY ′ | ∩ L = (L ∩ l0) ∪ (L ∩
l1)∪(L∩ l2) consists of three points and −KL is very ample. Thus the
dimension of Im(H0(OY ′(−KY ′)) → H0(OL(−KL)) is 4. On the other
hand h0(OY ′(−KY ′)) = 5. Hence we have h0(OY ′(−KY ′ − L)) = 1.
Hence in any case, let Ẽ ∈ |−KY ′ − L| be the unique member. The
irreducibility of Ẽ can be proved similarly to No. 4.4.

(ii) Claim 4.18. li are mutually disjoint.

Proof. It suffices to prove that li (i ≥ 2) do not intersect flopping
curves for W1

′
99K W1. This follows from Bs|−KY ′ | = l0 ∪ · · · ∪ ln−1.

In fact, otherwise there exists a member of |−KW1
′ | which intersects a

flopping curve for W1
′
99K W1 but does not contain it, a contradiction.

(2-3) is checked before the proof of (i). We can easily see that other
conditions are satisfied.

Proof of Theorem 0.21 (C). We prove that there exists m1 as in (A-1)
(3) or (A-2) (3). The assertion about the base locus is put off till Claim
4.21.

First we treat No. 5.4. Let F1
′′ ∈ |2H + L1| be a general member,

where L1 is a fiber of the natural projection p : Y1
′ := P(O �

1⊕O �
1(1)⊕2) →

X ′ ' P1. Then we show that F1
′′ is a del Pezzo surface of degree 1. Note

that Φ|H|(Y1
′) ⊂ P4 is a singular quadric Q with one ODP. Q contain a

smooth del Pezzo surface S of degree 1 embedded in P4 by |−KS + l|, where
l ' P1 such that l2 = 0. We may assume that the transform of S on Y1

′ is
isomorphic to S. We denote it also by S. Write S = aH + bL1. Let δ be
the section of p corresponding to O�

1 ⊕O�
1(1)⊕2 → O�

1. Note that δ is the
exceptional curve for Y1

′ → Q. Since S · δ = 1, we have b = 1. Moreover
since (−KS)2 = ((3 − a)H − L1)

2(aH + L1) = 1, we have a = 1. Hence
S ∈ |2H + L1| whence by taking F1

′′ generally F1
′′ is a del Pezzo surface of

degree 1.
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We can regard F1
′′ as a surface obtained by blowing up P2 at 8 points

and let ei (i = 1, . . . , 8) be the exceptional curves, where we may assume
that e1 is a section of p|F1

′′ and ei (i ≥ 2) are components of different

7 degenerate fibers. Let π : F̃1
′′
→ F1

′′ be the blow-up at F1
′′ ∩ δ and

e9 π-exceptional divisor (note that F1
′′ ∩ δ consists of one point). Since

−KF1
′′ = (H − L1)|F1

′′ and Bs |H − L1| = δ, |−K �
F1

′′ | is free. Let m1
′ :=

11l − 6e1 − 3
∑8

i=2 ei − e9, where l is the pull-back of a line in P2.

Claim 4.19. |m1
′| is free.

Proof. Since m1
′ = (3l−2e1−e2−e3−e4−e5−e6−e7)+(3l−2e1−e2−

e3−e4−e5−e6−e8)+(3l−2e1−e2−e3−e4−e5−e7−e8)+(2l−e6−e7−e8−e9),
|m1

′| is nef. Assume that |m1
′| is not free. Since m1

′ − K �
F1

′′ is nef and

(m1
′ − K �

F1

′′)2 > 4, we can apply [Reide88] and obtain a contradiction

similarly to the proof of Claim 4.8.

Let m1 ∈ |m1
′| be a general smooth member and we also denote by

m1 the image of m1 on F1
′′, which is also smooth. It is easy to check that

g(m1) = 9 and (−KY1
′ · m1) = 33.

Next we treat No. 5.5. Let V ∈ |H + M1| be a general member, where
M1 is a fiber of the natural projection p : P(O⊕2 ⊕ O(1)⊕2) → X ′. Then
we show that F1

′′ := V ∩ Y1
′′ is a del Pezzo surface of degree 2 if we take

Y1
′′ ∈ |2H| generally. Note first that H|V is ample since H is numerically

trivial only for horizontal sections of the subvariety S corresponding to
O⊕2 ⊕ O(1)⊕2 → O⊕2 and we may assume that V does not contain them.
Moreover since deg p∗OV (H|V ) = 3, we have p∗OV (H|V ) ' O(1)⊕3. Hence
V ' P2 × P1 and H|V is a divisor of (1, 1)-type. Since H0(O(2H)) →
H0(OV (2H|V )) is surjective, it suffices to prove that a general divisor of
P2 × P1 of (2, 2)-type is a del Pezzo surface. But this is clear.

We can regard F1
′′ as a surface obtained by blowing up P2 at 7 points

and let ei (i = 1, . . . , 7) be the exceptional curves, where we may assume
that e1 is a section of p|F1

′′ and ei (i ≥ 2) are components of different 6

degenerate fibers. Let π : F̃1
′′ → F1

′′ be the blow-up at F1
′′ ∩ S and ej

(j = 8, 9) π-exceptional divisors (note that F1
′′ ∩ S consists of two points).

Since −KF1
′′ = (H − M1)|F1

′′ and Bs |H − M1| = S, |−K �
F1

′′ | is free. Let

m1
′ := 7l−4e1 −2

∑7
i=2 ei − e8− e9, where l is the pull-back of a line in P2.

Claim 4.20. |m1
′| is free.
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Proof. Since m1
′ = 2(3l − 2e1 −

∑7
i=2 ei) + (l − e8 − e9), |m1

′| is nef.
Assume that |m1

′| is not free. Since m1
′−K �

F1

′′ is nef and (m1
′−K �

F1

′′)2 > 4,

we can apply [Reide88] and obtain a contradiction similarly to the proof of
Claim 4.8.

Let m1 ∈ |m1
′| be a general smooth member and we also denote by

m1 the image of m1 on F1
′′, which is also smooth. It is easy to check that

g(m1) = 3 and (−KY1
′ · m1) = 16.

Claim 4.21. Bs|−KY1
′ − m1| = m1 ∪ l1 ∪ · · · ∪ ln−1.

Proof. Consider the exact sequence

0 −→ OY1
′(−KY1

′ − F1
′′) −→ OY1

′(−KY1
′) −→ OF1

′′(−KY1
′) −→ 0.

Since h1(O(−KY1
′ − F1

′′)) = 0, H0(OY1
′(−KY1

′)) → H0(OF1
′′(−KY1

′)) is
surjective. Note that the base locus of |−KY1

′ − F1
′′| = |H|Y1

′ − L1| is
l1 ∪ · · · ∪ ln−1. Since |−K ′

Y1
|F1

′′ − m1| = |l|, we have the assertion.

§5. Excluding some possibilities

Next we exclude the cases in Tables 1′–5′. By Corollary 2.2, we may

exclude these cases assuming that X has only 1
2 (1, 1, 1)-singularities.

Proposition 5.1. Assume that X has only 1
2(1, 1, 1)-singularities.

Let l be an irreducible component of a flopping curve. Then Nl/Y ' O �
1 ⊕

O�
1(−2) or O�

1(−1) ⊕ O�
1(−1).

Proof. Since |−2KX | is very ample by Corollary 3.3 and l := f(l)
is a line with respect to −2KX , the natural map H0(O(−2KY ) ⊗ Il) →
O(−2KY ) ⊗ Il is surjective, where Il is the ideal sheaf of l. Hence there
is a smooth member S of |−2KY | containing l. The assertion follows from
this easily.

Table 1′. h = 8 and N = 3.

We prove that this case does not occur. By Proposition 5.1, Ẽ is

normal and has only canonical singularities. Let Y ′
99K Y1 be the anti-

flip and E1 ⊂ Y1 the strict transform of Ẽ. Note that there is a natural

morphism Ẽ
µ2
→ E1

µ1
→ E and the exceptional locus of µ1 is the union

of flopped curves and the exceptional locus of µ2 is the union of flipped
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curves. Set µ := µ1 ◦ µ2. Let µ3 : Ê → Ẽ be the minimal resolution and

ν := µ ◦ µ3. Then ν is a composite of 5 times of blow-ups at points. Let

Fi (i = 1, . . . , 5) be the total transforms of the exceptional curves of one

point blow-ups and l the total transform of a line of E. As in the proof of

(A) of Table 1, a flipping curve l1 intersects E1 transversely at a smooth

point and Ẽ → E1 is a two point blow-up at smooth points. Hence we may

assume that µ2 ◦ µ3(F1) ∼ µ2 ◦ µ3(F3) are flopped curves and µ3(F4) and

µ3(F5) are flipped curves, which are (−1)-curves contained in the smooth

locus of Ẽ.

Let γ be a smooth curve on E and γ̂ (resp. γ̃) the strict transform of

γ on Ê (resp. Ẽ). Then we can write γ̂ = (ν)∗γ −
∑iα

i=i1
Fi −

∑jβ

j=j1
Fi,

where i1 < i2 · · · iα ≤ 3 < j1 · · · < jβ ≤ 5. Then we have

(1) −KY ′ · γ̃ = −KY · γ + β, and

(2) Ẽ · γ̃ = E · γ + α + 2β.

In fact, (1) follows from [Taka02, Proposition 2.1 (4)], and (2) follows

from (1) and (−KÊ) · γ̂ = (−KE) · γ − (α + β).

By Riemann-Roch, we can see that h0(2l −
∑5

i=1 Fi) > 0. Let m be a

member of |2l −
∑5

i=1 Fi| and m′ := ν(m).

If m′ is a reducible (possibly non-reduced) conic, let m′ = m1 + m2 be

the irreducible decomposition. We can express m̂1 and m̂2 as γ̂. If there are

at most 2 blow-ups on the strict transform of mi, then m̂i is not a (−2)-curve

and hence it is not contracted by f ′| �
E . Since f ′| �

E(m) is a line, one of mi’s

must be contracted. Hence there are at least 3 blow-ups on one mi, say m1.

We use α and β for m1. Then we have E′ ·m̃1 = 8−(3α+4β) ≤ 8−3α ≤ −1

and −KX′ · f ′(m1) = 9− 3(α+β) ≤ 0. Hence m̃1 is a fiber of E′ and α = 3

and β = 0, i.e., m̂1 = ν∗m1 − F1 − F2 − F3.

Next we show that m̂2 = ν∗m2−F4−F5. It suffices to prove that neither

F1, F2 or F3 contains F4 or F5. If otherwise, one of µ3(F4) and µ3(F5), say

µ3(F4) intersects one of µ3(F1) ∼ µ3(F3). If a flipping curve intersects an

irreducible component a of a flopped curve, then a become a fiber of E′ on

Y ′ by [Taka02, Proposition 2.2 (4)]. By m̂1 = ν∗m1 − F1 − F2 − F3, the

centers of F4 are not on the strict transform of m1. Hence the transform of

a on E′ intersects m̃1, a contradiction to irreducibility of a fiber of E′. In

particular we know that m1 6= m2. So we have Ẽ·m̃2 = 2 and −KY ′ ·m̃2 = 3.

Hence E′ · m̃2 = 0 and −KX′ · f ′(m̃2) = 3. The latter shows that f ′(m̃2) is

a line on X ′ and hence m̃2 6⊂ E′. So the former shows that E′ ∩ m̃2 = ∅.
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In particular m̃1 ∩ m̃2 = ∅. But this is a contradiction since there is no

blow-up at the intersection of m1 and m2 by m = m̂1 + m̂2.

If m′ is a smooth conic, m′ is the strict transform of m. We have

E′ · m′ = −1 and −KX′ · f ′(m′) = 3. Hence f ′(m′) is a line on X ′. But

f ′(m′) = C since m′ ⊂ E′, a contradiction.

Table 2′. N = 7.

We deny the possibility of N = 7 in Table 2′ in Theorem 0.3. By the

same method, we obtain some properties of No. 2.3 and No. 2.4 in Table 2

of Theorem 0.3.

Let P be a Gorenstein singularity on C. Let g : Z → X ′ be the blow-up

of P and F the exceptional divisor. Since (P ∈ X ′) ' (o ∈ ((xy + zw =

0) ⊂ C4)) or (o ∈ ((xy + z2 + w3 = 0) ⊂ C4)) by [Taka02, Proposition 2.2]

and X ′ is Q-factorial, ρ(Z) = 2. Since −KX′ is very ample and −KZ =

g∗(−KX′) − F , |−KZ | is free and (−KZ)3 > 0. Hence Z is a weak Fano

3-fold. Starting by g, we consider the following diagram similar to one in

Section 3 and do calculations similar to one there.

Z
g

��� � � � � � � �

�����
Z ′

g′

�� ��������

X ′ X ′′.

Let F̃ be the strict transform of F on Z ′. Then by a similar way, we

have (−KZ′)2F̃ = 2, (−KZ′)(F̃ )2 = −2 and (F̃ )3 = 2 − e′, where e′ is a

non-negative integer. Set d := (−KZ′)3 and input these into (1-1)–(5-1).

Then we obtain the following.

If N = 5, then e′ = 6 and g′ is a conic bundle over P2 with deg ∆′ = 6,

where ∆′ is the discriminant divisor for g′.

If N = 6, then e′ = 5 and g′ is of (2, 1)-type and X ′′ ' P3. Let F ′ be

the exceptional divisor of g′. Then F ′ ∼ 3(−KZ′) − 4F̃ . For the center C ′

of g′, deg C ′ = 8 and pa(C
′) = 6.

If N = 7, then e′ = 4 and g′ is of (2, 1)-type and X ′′ ' Q3. (Since X ′′

is Q-factorial, X ′′ is a smooth quadric.) Let F ′ be the exceptional divisor

of g′. Then F ′ ∼ 2(−KZ′) − 3F̃ . For the center C ′ of g′, deg C ′ = 8 and

pa(C
′) = 4.

Assume that N = 7. Then Z ′ has 5 Gorenstein singular points on the

strict transform of C. Since X ′′ is smooth, C ′ must have 5 singular points

by [Cu, Theorem 4]. But by pa(C
′) = 4, this is impossible.
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Table 4′. h = 5 and N = 6, 7.

Let l be the fiber containing two 1
2(1, 1, 1)-singularities and Q a

1
2(1, 1, 1)-singularity. Let g : Z → Y ′ be the blow-up at Q. Then the trans-

form l′ of l is a flipping curve. Let Z 99K Z ′ be the flip. Then Z ′ has a conic

bundle structure g′ : Z ′ → W over W ' F2. There is a natural morphism

µ : W → X ′. Let ∆′ be the strict transform of ∆ on W . Note that ∆ does

not pass through the vertex of X ′ by [Taka02, Proposition 2.4 (3-1)].

If deg ∆ = 2, then ∆′ ∼ C0 + 2f , where C0 is the negative section

and f is a fiber. Since ∆′ is disjoint from C0, ∆′ ' P1. This contradicts

[MM85, Proposition 4.7 (1)]. Hence this case does not occur and moreover

by Corollary 2.3, the case that deg ∆ = 0 does not occur.

Table 4′. h = 6 and N = 6, 7.

If deg ∆ = 1, then ∆ ' P1. Hence this case does not occur by [MM85,

Proposition 4.7 (1)]. If deg ∆ = 2, then by the same reason, ∆ must be a

reducible conic. But this contradicts [MM85, Proposition 4.7 (2)].

Table 5′. h = 4.

We deny the possibilities of Table 5′ in Theorem 0.3. By the same

method, we obtain some properties of No. 5.1 below.

By Riemann-Roch theorem, we can see h0(−KY ′ − Ẽ) = 1. Let D ∈
|−KY ′ − Ẽ| be the unique member. Since 2D ∼ F , 2D is a multiple fiber

and since the reduced part of any fiber is irreducible, D is irreducible.

Since D is not Cartier at 1
2(1, 1, 1)-singularities, all 1

2(1, 1, 1)-singularities

are contained in D. Let Q be a 1
2(1, 1, 1)-singularity and g : Z → Y ′ be the

blow-up at Q. Let G be the exceptional divisor and D′ the strict transform

of D on Z. Set D′ = g∗D − δG. We can prove that |−KZ | is free outside

the transforms of flipped curves. By considering extremal rays over X ′, we

obtain a diagram

Z0 := Z 99K Z1 99K · · · 99K Zk := Z
g′
−→ Y ′′

similar to one in [Taka02, Lemma 3.2]. Let Gi (resp. Di) be the strict

transform of G (resp. D′) and Ri the extremal ray in NE(Zi/X ′) which

is other than the ray associated to g if i = 0 or KZi
-negative if i ≥ 1.

If R0 is a crepant divisorial ray, then the exceptional divisor is D′. By

(−KZ)2D′ = (−KZ)2(g∗D − δG) = deg D − δ = 0, δ ∈ N. But since D is

not a Cartier divisor, δ cannot be an integer, a contradiction.

Claim 3. Di · Ri < 0.
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Proof. The proof is similar to one of Claim 4.1.

Hence g′ is KZ′-negative divisorial contraction of Dk. By calculations

similar to [Taka02, Lemma 3.1], we have

(−KZ′)2Dk = deg D − δ −
∑

aidi,(1)

(−KZ′)(Dk)
2 = −2δ2 −

∑
ai

2di, and(2)

(Dk)
3 = −4δ3 −

∑
ai

3di − e,(3)

where e, ai and di are defined similarly to [Taka02, Lemma 3.1]. Note that

ai is a non-positive integer and e ≤ 0. Assume that g′ is of (2, 1)-type.

Then by

(4) (−KZ′ + Dk)
2Dk = deg D − δ(2δ + 1)2 −

∑
diai(ai + 1)2 − e = 0.

On the other hand,

(5) (−KZ′−Dk)
2Dk = −4(−KZ′)(Dk)

2 = 8δ2+4
∑

diai
2 = 8(1−g)−2m,

where g is the genus of g′(Dk) and m is an natural number. Hence δ = 1/2.

But this contradicts (4) since deg D = 3 or 4.

Assume that f is of (2, 0)-type. By [Taka02, Proposition 2.3], we have

(−KZ′)(Dk)2 ≥ −2. So by (2), we have δ = 1/2 and ai = −1 if ai 6= 0.

By [Taka02, Proposition 2.3], we have e = 0 (i.e., there is no flop while

Z 99K Z ′) and if deg D = 3, then g′ is of (2, 0)1-type and
∑

di = 3/2 and

if deg D = 4, then g′ is of (2, 0)5-type and
∑

di = 1. In any case Y ′′ is

smooth.

If deg D = 4, then Y ′′ → X is a quadric bundle. Hence by [Mor82,

Theorem (3.5)], we can write −KY ′′ ∼ 2H +aF ′, where F ′ is a fiber, H is a

divisor such that H|F ′ is a hyperplane section and a is an integer. Let H ′ be

the transform of g′∗H on Y . Then we have −KY ∼ 2H ′+(2a−3)(−KY −E)

(note that D ∼ −KY − Ẽ). So there is a divisor E such that E ∼ 2E, a

contradiction. Hence the case deg D = 4 does not occur.

Assume that deg D = 3 below. Since n = 0, −KZ is nef and big and so

is −KY ′′ . By calculations similar to [Taka02, Lemma 3.1], we can see that

Y ′′ has a flopping ray and after the flop Y ′′
99K Y ′′+, there is an extremal

contraction h : Y ′′+ → W of (2, 0)1-type such that W is A18. Note that the

strict transform of G is obtained from G by blow-up three points on the

line l := D′
⋂

G and contracting the strict transform of l.
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Corollary 5.2. Let X be a Q-factorial Q-Fano 3-fold with (1)–(4)
in Main Assumption 0.1. Then (−KX)3 and aw(X) are effectively bounded
as in Theorem 0.3.

Proof. By Theorem 0.3 and Theorem 2.0, we obtain the assertion since
(−K)3 and aw are invariant under a deformation.
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