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LOCAL SPLITTING FAMILIES OF

HYPERELLIPTIC PENCILS, II

TATSUYA ARAKAWA and TADASHI ASHIKAGA

Abstract. We propose certain obstructions for the existence of hyperellip-
tic splitting families of degenerations of curves. Moreover we determine the
complete system of hyperelliptic atomic fibers of genus 3.

Introduction

This paper is a continuation of [1]. We study splitting families of degen-

erations for hyperelliptic curves so that the original complicated singular

fiber decomposes into several simple singular fibers by those local deforma-

tions.

The main aims of the present paper are the following.

Firstly we show that certain invariants for the singular fiber of a hy-

perelliptic pencil are conserved in the splitting families.

Secondly, we give a complete system A of hyperelliptic ‘atomic fibers’,

i.e., the atoms of degenerations, of genus three.

The paper consists of 6 sections.

In §1, we show that an analytic splitting naturally induces a C∞-

splitting in the usual sense of topology (cf. [7]). Namely, let {ϕu : Su →
∆}u∈∆ be a splitting family of a degeneration ϕ0 : S0 → ∆ of curves over

the complex one-dimensional closed disk ∆. Then there exists a diffeomor-

phism h : S0 → Su which fixes the fibers over the boundary ∂∆. This is

analogous to the C∞ local triviality of smooth analytic families of compact

complex manifolds.

In §2, firstly we correct the definition of the type II singular fibers in

hyperelliptic pencils, which we defined in [1] but was incomplete.

Secondly as an application of the existence of splitting families, we show

in Proposition 2.6 that any fixed component of the relative canonical linear
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system of a germ of a hyperelliptic degeneration of genus 3 disappears via

a finite times of local deformations.

In §3, we define a new invariant for the singular fiber of a hyperelliptic

pencil, which we shall call the Namba number or N-number. We define it as

the number of components of the classical link which appears in a certain

natural way from the branch curve of the relative hyperelliptic involution

of the degeneration.

In §4, firstly in Proposition 4.1, we show that the Horikawa index (cf.

[1] §4) and the Euler contribution for the singular fiber of a hyperelliptic

pencil are conserved in the splitting families. Our proof is based on the

conservation of the local signature due to Endo [4] and Terasoma [14].

Secondly in Proposition 4.3, we show the similar conservation property

of the N-number.

In §5, firstly in Proposition 5.1, we show that the conservation of the

Horikawa index and the Euler contribution is not enough for the existence

of a splitting family with the preassigned invariants. In the proof of this

proposition, N-number plays a crucial role.

In the remaining part of §5 and in §6, we show that a complete system

A of hyperelliptic ‘atomic fibers’ of genus three consists of the germs of

types 00, I, II(i) and II(iii) defined in 2.2 (see Figure 1). More precisely,

any germ (ϕ, F ) of a hyperelliptic degeneration of genus 3 splits into the

members of A via several splitting families and equisingular deformations,

and any member of A does not split furthermore. By [1], (ϕ, F ) splits

stepwisely into some of germs of types 00, I, II(i), II(ii) and II(iii). We

show in Proposition 5.5 that any germ of type II(ii) splits into germs of

types I and II(iii) after an equisingular deformation. We construct this

splitting family by taking a cyclic quotient of a certain splitting family of

the stable reduction of the original degeneration. There is another way of

the construction by using the double cover of a certain splitting family of a

genus two fibration (§5.6).
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§1. Analytic splitting and C∞ splitting

In this section, we prove that an analytic splitting of a degeneration of

curves naturally induces a C∞ splitting in the sense of Matsumoto [7].

1.1 Let ∆ε (resp. ∆ε) be the open (resp. closed) disk of radius ε

with center at the origin on the complex plane C. We denote by ∂∆ε the

boundary of ∆ε. Let S be a nonsingular complex surface and let ϕ : S → ∆ε

be a degeneration of curves of genus g with a unique singular fiber (i.e. a

fiber with singularities) F = ϕ−1(0). LetM be a three-dimensional complex

manifold and let Φ : M → ∆ε ×∆δ be a proper flat surjective holomorphic

map such that Mu = Φ−1(∆ε × {u}) is a smooth surface for any u ∈ ∆δ.

We call Φ an analytic splitting family of ϕ if the following conditions are

satisfied:

(i) The restriction Φ0 : M0 → ∆ε × {0} of Φ over 0 ∈ ∆δ coincides with ϕ,

(ii) For any u ∈ ∆δ \{0}, the restriction Φu : Mu → ∆ε ×{u} has l singular

fibers where l is an integer greater than or equal to 1 and is independent

on u.

Then we say that the fiber germ [ϕ, F ] splits into the fiber germs

[Φu, Fu,1], · · · , [Φu, Fu,l] via the splitting family Φ, and sometimes write

[ϕ, F ] −→ [Φu, Fu,1] + · · · + [Φu, Fu,l]

symbolically. If l ≥ 2, then we call Φ an analytic proper splitting family of

ϕ. If l = 1, then we call Φ an equisingular deformation of ϕ.

Proposition 1.2. Let Φ : M → ∆ε × ∆δ be an analytic splitting
family of a degeneration ϕ : S → ∆ε. Then there exist real numbers ε′, δ′

(0 < ε′ < ε, 0 < δ′ < δ) such that the restriction Φ : M → ∆ε′ ×∆δ′ of Φ to
M = Φ−1(∆ε′ × ∆δ′) has the following properties:

(a) Let D be the discriminant locus of Φ in ∆ε × ∆δ. Then D does not
intersect ∂∆ε′ × ∆δ′ .

(b) Put Mu = Φ
−1

(∆ε′ × {u}) and ∂Mu = Φ
−1

(∂∆ε′ × {u}) for any
u ∈ ∆δ′ . Let Φu : Mu → ∆ε′ × {u} be the restriction of Φ over
u ∈ ∆δ′ . Then there exists a diffeomorphism

fu : M0 −→Mu
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with fu(∂M 0) = ∂Mu so that the composition map iu ◦ Φu ◦ fu|∂M0

coincides with the restriction map Φ0|∂M0
, where iu : ∆ε′ × {u} →

∆ε′ ×{0} is the natural map induced by the identity of the first factor.

Namely, an analytic splitting family Φ induces a C∞ splitting of M 0 to
Mu in the sense of [7, Definition 3.4].

Proof. We fix complex coordinates t and u on ∆ε and ∆δ, respectively.
Denote by pr1 : ∆ε × ∆δ → ∆ε and pr2 : ∆ε × ∆δ → ∆δ the natural
projections. There exist real numbers ε′ and δ′ (0 < ε′ < ε, 0 < δ′ < δ),
an open covering M = (∪i∈IUi) ∪ (∪j∈JUj) (for I ∩ J = ∅) and a system of

coordinates (z
(1)
k , z

(2)
k , uk) on Uk (k ∈ I ∪ J) which satisfy the following:

(i) I is a finite set and Φ−1(∂∆ε′ ×{0}) is contained in ∪i∈IUi. Moreover
the set Φ(∪i∈IUi) ∩ D is empty.

(ii) For sufficiently small real numbers ε′′ and δ′′ (0 < ε′′ < ε′, 0 < δ′′ < δ′),
we put the region N on ∆ε × ∆δ by

N = {t ∈ ∆ε | ε′ − ε′′ ≤ |t| ≤ ε′ + ε′′} × {u ∈ ∆δ | |u| ≤ δ′′}.
Then the set Φ(∪j∈JUj) ∩N is empty.

(iii) For k ∈ I∪J, we have uk = u. The map pr2 ◦Φ on Uk coincides with

the third projection (z
(1)
k , z

(2)
k , uk) → uk.

(iv) For i ∈ I, we have z
(2)
i = t. The map pr1 ◦Φ on Ui coincides with the

second projection (z
(1)
i , z

(2)
i , ui) → z

(2)
i .

The transition function on Uk ∩ Ul (k, l ∈ I ∪ J) is given by z
(α)
k =

f
(α)
kl (z

(1)
l , z

(2)
l , ul) (α = 1, 2) and uk = ul, where f

(α)
kl (z

(1)
l , z

(2)
l , ul) is a holo-

morphic function of variables z
(1)
l , z

(2)
l and ul. Moreover, if k, l ∈ I, then we

have f
(2)
kl (z

(1)
l , z

(2)
l , ul) = z

(2)
l . Now let {µk}k∈I∪J be the partition of unity

subordinate to the covering {Uk}k∈I∪J. We define a C∞ vector field X on
M by ∑

k∈I∪J

µk
∂

∂uk

.

Then X is written on Uk (k ∈ I ∪ J) as

(1.2.1)

2∑

α=1

(
∑

l

µl

∂f
(α)
kl

∂uk
)

∂

∂z
(α)
k

+
∂

∂uk
.
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Moreover, on Ui ∩ Φ−1(N) (i ∈ I), X is written as

(1.2.2) (
∑

l

µl

∂f
(1)
kl

∂uk
)
∂

∂z
(1)
k

+
∂

∂uk
.

By changing δ sufficiently small if necessary, it follows from the fundamental
theorem of ordinary differential equation that there exists the integral curve
with respect to X. Namely, there exists a diffeomorphism

f : M0 × ∆δ −→M.

By (1.2.1) and (1.2.2), f naturally induces the desired diffeomorphism.
Q.E.D.

§2. Special classes of fiber germs and relative canonical system

2.1 Let ϕ : S → ∆ε be a hyperelliptic degeneration of curves of genus

g with a unique singular fiber F = ϕ−1(0). In [1] §1, we defined special

classes type 00, class I and class II of singular fiber germs of hyperelliptic

degenerations. However the definition of class II were incomplete there.

Here we correct it in the following way.

Let B be a branch curve on W = P1 ×∆ε corresponding to the double

cover of W which is birationally equivalent to the relative canonical map of

ϕ. B is determined up to elementary transformations of the ambient P1-

bundle W . Let ψ : W → ∆ε be the natural projection and Γ0 the fiber of

ψ over 0 ∈ ∆ε. If B contains Γ0, then we set Bhor := B−Γ0 and otherwise

we set Bhor = B, which we call the horizontal part of B.

The branch curve B is said to be trivial if one of the following two

conditions is satisfied:

(a) Bhor intersects Γ0 at just one point Q1 and Bhor is not tangential to

Γ0 at Q1, i.e. for the blow-up at Q1, the proper transform of Γ0 and

that of Bhor do not intersect.

(b) Bhor intersects Γ0 at just two points Q1 and Q2 such that Bhor is

smooth at Q1 meeting transversally to Γ0 and Bhor is not tangential

to Γ0 at Q2.

A branch curve which is not trivial is called nontrivial. Note that

any trivial branch curve is modified to nontrivial one via a finite times of

elementary transformations and vice versa.
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Now we say the [ϕ, F ] belongs to class II if at least one nontrivial

branch curve B contains Γ0 and moreover any nontrivial branch curve B

with B ⊃ Γ0 have the five properties (a) through (e) in §1.3.3 of [1].

Note that the definition in [1] lacks the non-triviality condition.

2.2 Let us recall the classification [1] of the fiber germs of hyperellip-

tic degenerations of genus three which belong to these special classes (See

Figure 1):

(1) [ϕ, F ] is of type 00 if and only if we can choose a branch curve B

which is smooth and meets Γ0 transversally except at one point P

where the order of contact is two. In this class, the singular fiber F

is an irreducible stable curve with one node.

(2) [ϕ, F ] belongs to class I if and only if we can choose a branch curve B

which does not contain Γ0 and meets Γ0 transversally except at one

point P which is an ordinary singularity of B of multiplicity 4. In this

class, the singular fiber F is a stable curve with two nodes consisting

of two smooth elliptic components.

(3) Class II consists of three subclasses II(i), II(ii) and II(iii). In any cases

we can choose a branch curve B such that B contains Γ0 and Bhor

has the following properties, respectively:

(II(i)) Bhor meets Γ0 at two points P and Q, which are ordinary singularities

of B of multiplicity 4 and 6, respectively. Then F is a stable curve

with one node consisting of two smooth components of genera one

and two respectively.

(II(ii)) Bhor meets Γ0 at two points P and Q and both of them are as follows:

B has three local irreducible components which are smooth and mu-

tually tangential of order two. (Note that one of them is Γ0.) Then F

has an irreducible decomposition 2F ′ +2F ′′ + 2F ′′′ where F ′, F ′′ and

F ′′′ are nonsingular curves of genera one, zero and one respectively,

and the intersection numbers are (F ′)2 = (F ′′′)2 = −1, (F ′′)2 = −2,

F ′F ′′ = F ′′F ′′′ = 1 and F ′F ′′′ = 0.

(II(iii)) Bhor meets Γ0 at one point P . B has five local irreducible components

at P which are smooth and mutually tangential of order two. (Note

that one of them is Γ0.) Then F is written as F = 2F ′ where F ′ is a

nonsingular curve of genus two.
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(Figure 1)

2.3 Horikawa [6] gives a method to determine relative (pluri)canonical

systems of fiber germs of hyperelliptic degenerations explicitly. Here we will

give a brief sketch of this method for class II (i) fiber germs of hyperelliptic

degenerations of genus three.

Let B be a branch curve on W with the properties in 2.2 (II(i)). Then

a canonical resolution of B is given by the minimal embedded resolution

σ = σ2σ1 : W2 →W of B where σi is a blow-up (i = 1, 2). The exceptional

set of σ is written as D1 +D2 where D1, D2 are nonsingular rational curves

on W2. Let B2 denote the proper transform of B on W2 and S2 the double

cover of W2 whose branch curve is B2. Then a holomorphic 2-form on S2

is the pull back of a section of the bundle KW2
+ L2 on W2 where L2 is a

square-root bundle of B2. Let H denote a section of ψ : W → ∆ε. Since

B2 = σ∗B−4D1−6D2, KW2

∼= σ∗KW +D1+D2, B ∼= 8H and KW
∼= −2H,

we have KW2
+L2

∼= σ∗(2H)−D1−2D2. Consequently we get the following

identification:

(2.3.1) Γ(KS2
) ∼= {ψ ∈ Γ(2H);σ∗(ψ) ≥ −D1 − 2D2}

Let (x : y, t) be coordinates of W = P1 ×∆ε such that σ∗(x) ≥ D1 and

σ∗(y) ≥ D2. Since σ∗(t) ≥ D1 +D2, we conclude that the right hand side

of (2.3.1) is generated by t2x2, txy and ty2 over C{t}.
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Moreover, since the identification (2.3.1) is given by (ψ) 7→ σ∗(ψ) −
D1 − 2D2, we also have Bs|KS2

| = 2E where E is the reduced part of the

pull back of the proper transform of Γ0 ⊂W .

Since S2 is given by a blow-up of S whose exceptional curve is E, we

finally conclude that the center of this blow-up, which is nothing but the

node of the singular fiber, is the unique base point of the (relative) canonical

system.

Applying the same arguments for fiber germs in other classes, we have:

Lemma 2.4. With an appropriate choice of the coordinates (x : y, t) of
W , the relative canonical system of a fiber germs [ϕ, F ] of a hyperelliptic
degeneration of genus three is generated by ϕ0, ϕ1, ϕ2 over C{t} where

(ϕ0, ϕ1, ϕ2)

=





( x2, xy, y2 ) if [ϕ, F ] belongs to type 00

( x2, xy, ty2 ) if [ϕ, F ] belongs to class I
( t2x2, txy, ty2 ) if [ϕ, F ] belongs to class II(i) or II(ii)
( tx2, xy, ty2 ) if [ϕ, F ] belongs to class II(iii)

Corollary 2.5. The relative canonical system of a singular fiber germ
of genus three is fixed point free if the germ belongs to type 00, class I or
class II. If the germ belongs to type 00 or class I, the relative canonical
system has no base point either.

Note that the first half of Corollary 2.5 is well known by the general

theory (cf. [10]).

By [1], any germ of a hyperelliptic degeneration of genus 3 splits into

the set of germs in 00, I, II(i), II(ii) and II(iii) via a finite times of

hyperelliptic splitting families. Hence we have the following:

Proposition 2.6. Any fixed component of the relative canonical sys-
tem of a germ of a hyperelliptic degeneration of genus three disappears via
a finite times of local deformations.

Remark 2.7. If we choose alternative branch curves for a fiber germ,
we may obtain other generators of the canonical system. In fact, if we apply
the above method to the proper transform B ′ of the branch curve B in §2.3
by the elementary transformation W → W whose center is the 6-ple point
of B, we get generators (x2, xy, ty2) instead of (t2x2, txy, ty2) in Lemma 2.4
(with an appropriate choice of coordinate systems) .
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§3. A monodromy invariant

In this section, we define a certain monodromy invariant of a fiber germ

of a hyperelliptic degeneration and calculate it for the fiber germs of genus

three which belong to the special classes defined in §2.2.

3.1 We use the same notation as in §2.1. Let γ ⊂ ∆ε be a simple

closed path winding around the origin 0 ∈ ∆ε once. Then the restriction of

ψ on Supp B induces an unramified covering of γ. Moreover ψ−1(γ)∩Supp

B is contained in ∆N × γ ⊂ W , where ∆N is a disk in P1 of sufficiently

large radius. Since ∆N × γ is canonically embedded in a three-dimensional

sphere, we may consider ψ−1(γ) ∩ Supp B as a classical link.

Let N (B) denote the number of components of the link ψ−1(γ)∩Supp

B. Note that N (B) does not depend on the choice of the closed path γ.

Furthermore:

Proposition-Definition 3.2. N (B) does not depend on the choice

of the branch curve B. We denote it by N ([ϕ, F ]), and call it the N-number

(Namba number) of the germ [ϕ, F ].

First proof of Proposition 3.2. Let B and B ′ be two branch curves on

W corresponding to ϕ. If we restrict ϕ over a neighborhood of γ, then the

relative canonical map of ϕ becomes a morphism. Let R be the ramification

divisor of this morphism. Then both Supp B and Supp B ′ are isomorphic

to Supp R over there. Therefore ψ−1(γ) ∩ Supp B is homeomorphic to

ψ−1(γ)∩ Supp B ′. Hence N (B) = N (B ′). (Remark that ψ−1(γ)∩ Supp B

and ψ−1(γ)∩Supp B ′ are not necessarily equivalent to each other as links.)

Q.E.D

3.3 In order to give an alternative proof of Proposition 3.2, let us

recall the notion of the braid monodromy of branched coverings (cf. [12]).

Let U ⊂ ∆ε be an open neighborhood of γ such that the branch curve B

restricted over U is an unbranched covering of U of degree n = 2g + 2.

Hence we have a natural homomorphism

ΨB : π1(U, p) → Bn

where p ∈ γ is the base point and Bn is the braid group of n-strings. We

call ΨB the braid monodromy of the branch curve B. Note that ΨB(γ) gives

a braid representation of the link ψ−1(γ) ∩ Supp B.
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Now let τ : W → W be an elementary transformation and let B1 be

the transformation of B by τ as the branch curve (cf. [5], [6]). Then we

have:

Lemma 3.4. The braid ΨB1
(γ) ∈ Bn is given as a transform of ΨB(γ)

∈ Bn by a full Dehn twist, and hence N (B) = N (B1) (=: N ([ϕ, F ]).

Proof. Let x and t be a local coordinate of the fiber and of ∆ε, respec-
tively. Then the elementary transformation τ : W → W is given by (x, t) 7→
(tx, t). On the other hand, suppose that γ is given by θ 7→ t = exp(2π

√
−1θ)

where θ ∈ [0, 1] is a parameter. Then τ is given by x → exp(2π
√
−1θ) · x

over a point t(θ) of γ. This implies the assertion.

Proposition 3.2 follows from Lemma 3.4, since every two branch curves

B and B′ on W corresponding to the same degeneration ϕ are transformed

to each other via a finite number of elementary transformations.

The following characterizations are useful to calculate N -numbers of

given hyperelliptic degenerations:

Lemma 3.5. (i) N ([ϕ,F ]) coincides with the number of local irreducible
components of B which are not vertical.

(ii) N ([ϕ, F ]) coincides with the number of cyclic permutations in the
minimal decomposition of the image of γ ∈ π1(U, p) in the symmetric group
Sn.

Proof. The assertion (i) is clear by the definition, while (ii) follows
from (i) since each of the local irreducible components of B which are not
vertical induces one of the cyclic permutations appearing in the minimal
decomposition of the image of γ ∈ π1(U, p).

The following is a direct consequence of Lemma 3.5 (i):

Lemma 3.6. Let [ϕ, F ] be a fiber germ of hyperelliptic degenerations of
genus three which belongs to either Type 00, Class I or Class II. Then

N ([ϕ, F ]) =





7 if [ϕ, F ] belongs to 00

8 if [ϕ, F ] belongs to I or II(i)
4 if [ϕ, F ] belongs to II(ii) or II(iii)
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§4. Conservations of invariants

Let ϕ : S → ∆ε be a hyperelliptic degeneration of curves of genus g with

a unique singular fiber F = ϕ−1(0). Let E(F ), H([ϕ, F ]) and N ([ϕ, F ]) be

the Euler contribution, the Horikawa index (cf. [1] §4) and the N-number

respectively. Let Φ : M → ∆ε × ∆δ be a hyperelliptic splitting family of ϕ,

i.e. Φ is an analytic splitting family of ϕ such that the general fiber of Φ is

a hyperelliptic curve. In this section, we discuss the conservation properties

of the above three invariants under Φ.

Proposition 4.1. Assume that the germ [ϕ, F ] splits into the germs
[Φu, Fu,1], · · · , [Φu, Fu,l] via a hyperelliptic splitting family Φ. Then :

E(F ) =

l∑

i=1

E(Fu,i), H([ϕ, F ]) =

l∑

i=1

H([Φu, Fu,i])

for any u ∈ ∆δ.

Proof. By the argument of Terasoma [14], there exist a compact com-
plex surface V and a hyperelliptic holomorphic family µ : V → P1 of genus
g which satisfy the followings: Let {Q0, Q1, . . . , Qn} ⊂ P1 be the set of all
critical values of µ. Let ∆ be a small disk neighborhood around Q0 and let
µ̃ := µ|Ṽ : Ṽ = µ−1(∆) → ∆ be the restriction map. Then:

(i) There exist orientation preserving diffeomorphisms h : S → Ṽ and
α : ∆ε → ∆ such that µ̃ ◦ h = α ◦ ϕ.

(ii) We have
σtop([ϕ, F ]) = σtop([µ, µ−1(Q0)])

where σtop is the topological local signature of the germ defined by
Endo [4].

(iii) For any 1 ≤ i ≤ n, µ−1(Qi) is a Lefschetz fiber.

Now we fix u ∈ ∆δ \ {0}. After shrinking ∆ε if necessary, Φu : Mu →
∆ε × {u} is naturally diffeomorphic to ϕ : S → ∆ε by Proposition 1.2.

Therefore from the condition (i), we can patch the two pieces µ|V \Ṽ : V \
Ṽ → P1 \ ∆ and Φu : Mu → ∆ε × {u} along their boundaries, and obtain

a locally analytic fibration (in the sense of [7] and [4]) µ′ : V ′ → P1 such

that:
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(a) µ′ is a hyperelliptic (differentiable) family which has just l + n singu-

lar fibers. Each of them is isomorphic to each of [Φu, Fu,1], . . . , [Φu, Fu,l],

[µ, µ−1(Q1)], . . . , [µ, µ
−1(Qn)] as holomorphic fiber germs.

(b) V ′ is naturally diffeomorphic to V .

Since the topological Euler number χtop(V ) of V coincides with

χtop(V ′), the first assertion follows from the equalities

χtop(V ) = E(F ) + n− 2(2g − 2), χtop(V ′) =

l∑

i=1

E(Fu,i) + n− 2(2g − 2).

Now Endo’s theorem [4] says that

Sign(V ) = σtop([ϕ, F ]) +
n∑

i=1

σtop([µ, µ−1(Qi)]),

Sign(V ′) =
l∑

i=1

σtop([Φu, Fu,i]) +
n∑

i=1

σtop([µ, µ−1(Qi)])

where Sign(V ) is the signature of the intersection form on H2(V,R) and so

on. Therefore we have

σtop([ϕ, F ]) =

l∑

i=1

σtop([Φu, Fu,i]).

On the other hand, let σ := 1/(2g + 1) · (gH − (g + 1)E) be the algebro-

geometric local signature defined in [1, Definition 4.6]. Then σ coincides

with σtop by Terasoma’s theorem [14]. Hence we have

σ([ϕ, F ]) =
l∑

i=1

σ([Φu, Fu,i]).

Therefore from the first assertion and the definition of σ, the second asser-

tion also follows.

Q.E.D.

4.2. Let γ ⊂ ∆ε be a closed path around the origin such that γ×∆δ

does not intersect the discriminant locus on ∆ε × ∆δ with respect to Φ.

Then, there does not exist any singular fiber of Φu on the outside-region of γ

in ∆ε×{u} for each u ∈ ∆δ. Let Bu be a branch curve onWu = P1×∆ε with
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respect to the hyperelliptic degeneration Φu with several singular fibers, and

let Ψu : Wu → ∆ε be the natural projection. By the same way as in §2, the

number Nu of components of the link Ψ−1
u (γ) ∩ SuppBu is well-defined.

Proposition 4.3. Let Φ : M → ∆ε × ∆δ be a hyperelliptic splitting
family of ϕ. Then we have N ([ϕ, F ]) = Nu for any u ∈ ∆δ.

Proof. Let ΦKM/∆ε×∆δ
: M → W be the relative canonical rational

map of Φ. If we restrict Φ over a neighborhood of γ ×∆δ, then the ramifi-
cation divisor R on M with respect to ΦKM/∆ε×∆δ

is well-defined. Moreover

Ψ−1
u (γ) ∩ SuppBu is homeomorphic to Φ−1

u (γ) ∩ SuppR. Since the restric-
tion of SuppR over γ is unbranched covering of γ, SuppR is homeomorphic
to the direct product (Φ−1

0 (γ)∩SuppR)× ( γ× ∆δ) over γ×∆δ. Therefore,
for each u ∈ ∆δ, Φ−1

u (γ) ∩ SuppR is homeomorphic to Φ−1
0 (γ) ∩ SuppB,

which we identify with ϕ−1(γ) ∩ SuppB. Hence the assertion follows.

Q.E.D

4.4 Let Fu,j = Φ−1
u (Pu,j) (j = 1, 2, . . . , l) be all the singular fibers of

Φu for u 6= 0. Then the braid monodromy Φ : π1(∆ε−{Pu,1, . . . Pu,l}) → Bn

is defined. In this situation, with an appropriate choice of branch curve,

the image of the simple closed path γ given in 4.2 by the braid monodromy

of [ϕ, F ] is a product of the braid monodromies of [ϕ1, Fu.1], . . . , [ϕl, Fu.l]

in a suitable order. Therefore we have:

Lemma 4.5.

2g + 2 −Nu ≤
l∑

j=1

(
2g + 2 −N ([ϕj , Fu,j ])

)
.

§5. Existence and non-existence of certain splittings

Let J be the set of fiber germs of hyperelliptic degenerations of genus

3 of types 00, I, II(i), II(ii) and II(iii) defined in 2.2. By Example 4.5 of

[1] and easy calculations, the Horikawa indices and the Euler contributions

of these types of germs are as follows:

00 I II (i) II (ii) II (iii)

H-index 0 2/3 5/3 10/3 8/3

E-cont. 1 2 1 4 2
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Let Φ be a hyperelliptic proper splitting family [ϕ, F ] → [Φu, Fu,1] + · · · +
[Φu, Fu,l] of a degeneration ϕ such that all the germs [ϕ, F ], [Φu, Fu,1], · · · ,
[Φu, Fu,l] belong to J . Proposition 4.1 implies that there are only two

possibilities of this splitting as follows:

(a) II(ii) → 00 + 00 + II(i) + II(i),

(b) II(ii) → I + II(iii).

We prove the non-existence of the family (a) and the existence of the family

(b).

Proposition 5.1. There exists no hyperelliptic splitting family [ϕ, F ]
→ [Φu, Fu,1] + [Φu, Fu,2] + [Φu, Fu,3] + [Φu, Fu,4] such that the germs [ϕ, F ],
[Φu, Fu,1], [Φu, Fu,2], [Φu, Fu,3] and [Φu, Fu,4] are of types II(ii), 00, 00, II(i)
and II(i), respectively.

Proof. Assume that such a splitting family Φ exists. Since N ([Φu,Fu,1])
= N ([Φu, Fu,2]) = 7 and N ([Φu, Fu,3]) = N ([Φu, Fu,4]) = 8 by Lemma 3.6,
it follows that Nu ≥ 6 by Lemma 4.5. Since N ([ϕ, F ]) = 4, this contradicts
Proposition 4.3.

Q.E.D.

Corollary 5.2. The conservation properties of the Horikawa indices
and the Euler contributions described in Proposition 4.1 are not sufficient
for the existence of hyperelliptic splitting families.

Remark 5.3. By a slight modification of the argument in Proposition
5.1, we can show that a fiber germ of type II(ii) does not split into four
germs as in (a) not only via one splitting family but also via stepwise several
splitting families.

5.4 For the discussion of the family (b), we prepare some arguments

of the monodromy. In general, let ϕ : S → ∆ε be a degeneration of curves

of genus g ≥ 2 with a unique singular fiber F = f−1(0). If we fix t0 ∈ ∆∗,
then the monodromy action of π1(∆

∗, t0) ' Z defines modulo isotopy an

orientation-preserving homeomorphism fϕ : St0 → St0 of the smooth fiber

St0 . Since the change of the base point t0 corresponds to the conjugation

in the mapping class group Mg of genus g, ϕ induces a unique element

[fϕ] ∈ M̂g where M̂g is the set of conjugacy classes of Mg. We call [fϕ] the

topological monodromy of ϕ. Matsumoto-Montesinos’ theorem [8] says that
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the element of M̂g is realizable as a topological monodromy of a certain

degeneration if and only if it is a conjugacy class of a pseudo-periodic map

of negative twist. Moreover this class is completely determined by the

invariants which are called valencies, screw numbers and the action of the

extended partition graph ([13], [9]).

Now we consider fiber germs [ϕ, F ] of types I, II(ii) and II(iii). We

determine the topological monodromy of these fiber germs, and at the same

time describe their semi-stable reductions explicitly.

If [ϕ, F ] is of type I, then F itself is a stable curve and the topological

monodromy is a full Dehn twist along the vanishing cycle which is a disjoint

union of two simple closed curves.

Suppose [ϕ, F ] is of type II(ii). The branch curve B on W = P1 ×∆ε

corresponds to ϕ is written by Γ+
∑4

i=1Bi where Γ is a fiber of π : W → ∆ε,

Γ and Bi (i = 1, 2) are mutually two-tangential at a point P and Γ and Bi

(i = 3, 4) are mutually two-tangential at a point Q (Q 6= P ) (see Figure 2).

modification

blow up double cover

2 : 1 base change

G1

G2

E1 E2

−2

−2

−2−2

(Figure 2)

Let µ : ∆√
ε → ∆ε be the double cover with the branch point at the

origin. Put µ̃ = idP1 × µ : W̃ = P1 × ∆√
ε →W where idP1 is the identity

map of P1. The pull back µ̃∗B is written by 2Γ′ +
∑4

i=1

∑2
j=1B

′
ij where

Γ′ is a fiber of π̃ : W̃ → ∆√
ε, Γ′ and B′

ij (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) intersect

transversally at a point P ′ and Γ′ and B′
ij (3 ≤ i ≤ 4, 1 ≤ j ≤ 2) intersect

transversally at a point Q′ (Q′ 6= P ′). Therefore the normalization of the
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fiber product of S and ∆√
ε over ∆ε coincides with the double cover S̃ of

W̃ branched along
∑4

i=1

∑2
j=1B

′
ij. Let S∗ be the nonsingular model of S̃

obtained by the canonical resolution ([5]). Then the natural map

ϕ̃ : S∗ → ∆√
ε

has the singular fiber F̃ = G1 + G2 + E1 + E2 where Gi (i = 1, 2) are

nonsingular elliptic curves, Ei (i = 1, 2) are nonsingular rational curves,

G2
1 = G2

2 = E2
1 = E2

2 = −2, GiEj = 1 (1 ≤ i, j ≤ 2) and G1G2 = E1E2 = 0

(see Figure 2). ϕ̃ is the semi-stable reduction of ϕ.

On the other hand, there exists an automorphism ρ : S∗ → S∗ of order

2 compatible with the canonical involution of ∆√
ε so that ρ acts on F̃ as

follows: ρ acts on Gi (i = 1, 2) as an automorphism of order 2 without

fixed points, ρ(E1) = E2 and ρ(E2) = E1. The quotient space of the fiber

space ϕ̃ by ρ coincides with the original fiber space ϕ.

Therefore the topological monodromy of the degeneration ϕ is isotopic

to the pseudo-periodic map f : Σ3 → Σ3 of negative twist of a real two

dimensional orientable closed manifold Σ3 of genus 3 as follows: The ad-

missible system C of cut curves consists of two disjoint simple closed (real)

curves C1 +C2 so that Σ3 −C consists of two connected components B1,B2

of genus 1 (see Figure 3). f acts on Bi (i = 1, 2) as a periodic map of order

2 without fixed points, f(C1) = C2, f(C2) = C1 and f2 acts on Σ3 as the

two-times Dehn twist along each of Ci (i = 1, 2).

c2

c1

(Figure 3)

Suppose [ϕ, F ] is of type II(iii). We get the stable family after a two-

to-one base change. This is nothing but a smooth family of genus 3. The

topological monodromy is isotopic to a periodic map of order 2 without

fixed points.
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Proposition 5.5. There exists a hyperelliptic splitting family [ϕ, F ]→
[Φu, Fu,1]+[Φu, Fu,2] such that the germs [ϕ, F ], [Φu, Fu,1] and [Φu, Fu,2] are
of types II(ii), I and II(iii), respectively.

Proof. We fix the coordinates t and u on ∆ε and ∆δ, respectively.
Put ∆ := ∆ε × ∆δ. We denote by (x : y : z) a system of homogeneous
coordinates of P2. Let W be the divisor on ∆ε × ∆δ × P2 defined by the
equation

(5.5.1) (t2 − u2)(x2 + y2 + z2) + xy = 0.

Let π : W → ∆ be the natural map and put pr1 : ∆ → ∆ε and pr2 :
∆ → ∆δ the first and the second projection, respectively. We denote by
D the discriminant locus of π. Since δ is sufficiently small, D is written by
D1 +D2 where D1 = {t+ u = 0} and D2 = {t− u = 0}. The fiber space π
has a conic bundle structure so that π−1(Q) (Q ∈ D) consists of two lines,
which we denote by LQ,1 + LQ,2.

We fix mutually distinct non-zero complex numbers α and β. Let Hi

(1 ≤ i ≤ 4) be the divisors on ∆×P2 defined by the equations x+y+αz = 0,
x + y + βz = 0, x + y − αz = 0 and x + y − βz = 0, respectively. We set
Bi = Hi ∩W (1 ≤ i ≤ 4) and put B =

∑4
i=1Bi. Then π−1(Q)∩B consists

of mutually distinct eight points for any Q ∈ ∆. Moreover if Q ∈ D, then
four points of π−1(Q)∩B are on LQ,1 and the other four points are on LQ,2.

Let ρ′ : V → W be the double cover branched along B. V is smooth
and is realized on ∆×P2 ×C by the equations (5.5.1) and

ξ2 + (x+ y + αz)(x + y + βz)(x+ y − αz)(x+ y − βz) = 0,

where ξ is the coordinate of C. We set

ρ = π ◦ ρ′ : V → ∆.

Then the general fiber ρ−1(Q) (Q ∈ ∆\D) is a smooth hyperelliptic curve of
genus 3, while the singular fiber ρ−1(Q) (Q ∈ D) consists of two nonsingular
elliptic curves G1 +G2 so that G1 and G2 meet transversally at two points
P1 and P2.

Now we define the action τ on ∆×P2 ×C by

t 7−→ −t, u 7−→ u; x 7−→ −x, y 7−→ −y, z 7−→ z; ξ 7−→ −ξ.
Then τ preserves the divisor V and the restriction τ := τ |V induces an
automorphism of V of order 2. The action τ is free from fixed points and
has the following properties:
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(i) We denote by Qu,j (u ∈ ∆δ, 1 ≤ j ≤ 2) the points on ∆ defined
by pr−1

2 (u) ∩ Dj . Then τ maps the fiber π−1(Qu,1) isomorphically onto
π−1(Qu,2).
(ii) If the point Q on ∆ is on the locus pr−1

1 (0), then the restriction of τ
to π−1(Q) induces an automorphism.
(iii) The restriction map of τ on the fiber π−1(0) over the origin 0 ∈ ∆

induces the involution on each components G1 and G2, so that the map
interchanges P1 and P2.

Let M ′ be the quotient smooth threefold of V by the group generated
by τ . We denote by ∆ε2 the quotient of ∆ε by the involution t 7−→ −t.
Then the natural map

Φ′ : M ′ −→ ∆ε2 × ∆δ

induces a fiber space of hyperelliptic curves of genus 3. We denote by
Φ′

u : M ′
u → ∆ε2 × {u} the restriction of Φ′ over u ∈ ∆δ. Then:

(a) For u 6= 0, M ′
u is smooth and the degeneration Φ′

u has just two singular
fibers so that the topological structures of these germs coincide with the
topological structures of germs of type I and II(iii), respectively.
(b) The fiber of Φ′

0 is smooth except over 0. The fiber (Φ′
0)

−1(0) is the

union of two multiple of two nonsingular elliptic curves 2G̃1 + 2G̃2 so that
G̃1 and G̃2 intersect at a point P . Moreover M0 has an A1-singularity at
P .

After the two-to-one base change ∆√
δ
→ ∆δ, the A1-singularity P is

resolved by the method of Atiyah [3]. Considering the observation in §4.4,
the resolution space becomes a desired splitting family.

Q.E.D.

Note that the germ of type II(ii) constructed in Proposition 5.5 has a

very special analytic structure.

5.6 Here we give another construction of a splitting of a fiber germ in

II(ii). This construction is simpler than the former, but the former seems

more useful in the study of the monodromy types of singular fibers of the

general members of the splitting families.

Let t denote a coordinate on ∆ε and (x : y) a homogeneous coordinate

of P1. Let B be the divisor on W = P1 × ∆ε defined by the equation

(5.6.1) t(x4 − t2y4)(t2x4 − y4) = 0.
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Let ϕ : S → ∆ε be a hyperelliptic degeneration of genus three whose branch

curve is B. Then the corresponding fiber germ [ϕ, F ] is of type II(ii) (cf.

2.2). Let σ : W →W be the action given by

x 7−→ −x, y 7−→ y, t 7−→ t.

Then σ preserves the divisor B and is lifted to S as a fiber-preserving

holomorphic involution in two ways, namely if one is σ̃ : S → S, then

another is σ̃h : S → S where h : S → S is the hyperelliptic involution. It

is easy to see that the fixed point locus of one of them, say σ̃, is F ′ + F ′′′

while that of the other, say σ̃h, is F ′′ where F ′, F ′′ and F ′′′ are the same

as in 2.2 (II (ii)).

Let S → T1 be the double covering induced by the involution σ̃. Then

T1 is a smooth surface and has a pencil of curves of genus two whose only

singular fiber is of the form Γ1 = Γ′ + 2Γ′′ + Γ′′′, where Γ′, Γ′′′ and Γ′′′

are nonsingular curves of respective genera one, zero, one with intersection

numbers Γ′Γ′′ = Γ′′Γ′′′ = 1, Γ′Γ′′′ = 0, (Γ′)2 = (Γ′′′)2 = −2 and (Γ′′)2 = −1.

Moreover the branch locus on T1 is BT1
= Γ′ + Γ′′′. Let T1 → T be the

contraction of the (−1) curve Γ′′. Then naturally T also has a pencil of

curves of genus two and the branch locus BT on T coincides with the unique

singular fiber Γ on T .

Let BT,u be the family of divisors on T where u ∈ ∆δ is a parameter

and BT,u is defined as the fiber of T → ∆ε over the point t = u ∈ ∆ε.

Then since BT,u’s are smooth curves of genus two for u 6= 0 and BT,0 = BT

has an ordinary double point as the unique bad point, we get a splitting

family Φ : M → ∆ε × ∆δ of genus 3 which satisfies (i) the degeneration

Φ0 : M0 → ∆ε × {0} coincides with ϕ : S → ∆ε and (ii) the degeneration

Φu : Mu → ∆ε × {u} (u 6= 0) has two singular fibers Fu,1 = Φ−1
u (0) and

Fu,2 = Φ−1
u (u).

Accola’s result ([2] Lemma 5.10) says that a compact Riemann surface

of genus three which is a double covering of a compact Riemann surface of

genus two is hyperelliptic. Therefore the general fiber of Φ : M → ∆ε ×∆δ

is hyperelliptic.

§6. Hyperelliptic atomic fibers of genus 3

Definition 6.1. The set of germs of fibers A = {[ϕi, Fi]}i∈I of hy-
perelliptic degenerations of genus g is said to be the complete system of
hyperelliptic atomic fibers of genus g if the following conditions are satis-
fied:
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(i) There exists no hyperelliptic proper splitting family of [ϕi, Fi] for any
i ∈ I.

(ii) The germ [ϕ, F ] of any hyperelliptic degeneration of genus g splits
into the members of A via a finite number of hyperelliptic splitting
families.

More precisely, [ϕ, F ] has an equisingular deformation to [ϕ′, F ′] so

that [ϕ′, F ′] splits into [Φu, Fu,1], · · · , [Φu, Fu,l] via a certain hyperelliptic

splitting family Φ : M → ∆ε ×∆δ. If [Φu, Fu,i] for some i (1 ≤ i ≤ l) is not

contained in A, then [Φu, Fu,i] has a hyperelliptic splitting family after an

equisingular deformation (if it is necessary). We continue this process. Then

after a finite steps, all the germs of singular fibers of resulting degenerations

are contained in A.

Theorem 2. Let A be the set of germs of types 00, I, II(i) and II(iii).
Then A is the complete system of hyperelliptic atomic fibers of genus 3.

Proof. By [1], any germ of a hyperelliptic degeneration of genus 3
splits into the set of germs of types 00, I, II(i), II(ii) and II(iii) via a finite
number of hyperelliptic proper splitting families (without using equisingular
deformations).

Let [ϕ, F ] be any germ of type II(ii). Then [ϕ, F ] has an equisingu-
lar deformation to the special germ of type II(ii) which is constructed in
Proposition 5.5. Indeed, the equation of a representative of the branch
curve B of [ϕ, F ] on W = P1 × ∆ε is written by

t
2∏

i=1

4∏

j=1

{t+ (x− ai)
2(bij + gij(t)) + (x− ai)

3fij(t, x)} = 0

where t is the coordinate of ∆, x is the inhomogeneous coordinate of P1,
a1 and a2 are mutually distinct complex numbers, bi1, · · · , bi4 (i = 1, 2)
are mutually distinct non-zero complex numbers, gij(t) and fij(t, x) are
holomorphic functions of t and (t, x) respectively. We define the divisor B

on W = W × ∆δ by

t
2∏

i=1

4∏

j=1

{t+ (x+ (−1)iu+ aiu− ai)
2((kij − bij)u+ bij + (1 − u)gij(t))

+(1 − u)(x+ (−1)iu+ aiu− ai)
3fij(t, x)} = 0
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where u is the coordinate of ∆δ and kij (1 ≤ i ≤ 2, 1 ≤ j ≤ 4) are complex
numbers which satisfy k11 = −k12 = k21 = −k22, k13 = −k14 = k23 = −k24

and k11 6= k13. Then the resolution space of the double cover of W branched
along B has the desired germ over u = 1.

This germ splits into germs of types I and II(iii) by Proposition 5.5.
Since any germ of type 00, I, II(i) or II(iii) does not have proper splitting
family by Proposition 4.1, the assertion follows.

Q.E.D.

Remark 6.3. By similar arguments as those in the proof of Theorem
6.2, we can show that any singular fiber germ of type II(ii) has an equisin-
gular deformation to the special germ which is constructed in 5.6.

References

[1] T. Arakawa and T. Ashikaga, Local splitting families of hyperelliptic pencils I,
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