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CLASSIFICATION OF THE PERIODIC MONODROMIES

OF HYPERELLIPTIC FAMILIES

MIZUHO ISHIZAKA

Abstract. We classify the periodic monodromies which are realized as the
monodromies of hyperelliptic families.

Introduction

Let φ:S −→ ∆ be a proper surjective holomorphic map from a complex
surface S (i.e., a complex analytic manifold of dimension two) to a small disk
∆ := {t ∈ C| |t| < ε} such that φ−1(t) is a nonsingular complex analytic
curve of genus g ≥ 2 for any t ∈ ∆∗ := ∆ \ {0}. We call (φ, S,∆) a degen-

eration of curves. If all φ−1(t) for t ∈ ∆∗ are hyperelliptic curves, we call
(φ, S,∆) a hyperelliptic family. Note that a hyperelliptic family (φ, S,∆)
is bimeromorphic to a double covering ψ0:S0 −→ W0 := P1 × ∆ branched
along a divisor B0 of W0 (cf. [Ho1]). Two degenerations (φ, S,∆) and
(φ′, S′,∆′) are said to be topologically equivalent if there exist orientation-
preserving homeomorphisms ψ:S −→ S ′ and ψ:∆ −→ ∆′ which satisfy
φ′ ◦ ψ = ψ ◦ φ.

For a topological equivalence class of a degeneration, we can uniquely
determine the topological monodromy (called the monodromy, for short)
as a conjugacy class in the mapping class group of genus g (cf. [MM1],
[MM2]). In [AI], we classify all the topological equivalence classes in the
case of genus three.

An orientation preserving homeomorphism f of a compact real surface
of genus g is said to be periodic if there exists an integer n such that f n

is isotopic to the identity map. The smallest positive such integer n is
called the period of f . By Kerchhoff’s theorem (cf. [Ke]), for each periodic
homeomorphism f , there exist a Riemann surface Σg of genus g and an
analytic automorphism f̄ : Σg → Σg isotopic to f such that f̄n is the identity.
For each point P on Σg, we denote by rP the cardinality of the orbit of P
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under f̄ , and let lP := n/rP . Let δP be the smallest nonnegative integer
such that (f̄)rP is the rotation of angle 2πδP /lP near each point in the orbit.
Denote by sP the smallest positive integer satisfying δP sP ≡ 1 (mod lP )
if δP 6= 0, and set sP := 0 when δP = 0. The symbol sP /lP is called the
valency of the orbit of P .

Note that the valencies of all but a finite number of orbits are zero. The
set of the positive valencies is called the total valency of f̄ and expressed as
the formal sum

∑
sP/lP of symbols.

We define the total valency of a periodic homeomorphism f as the total
valency of f̄ . It is well-known that the conjugacy class of a periodic map
in the mapping class group is determined by its period and total valency.

Thus a periodic monodromy [f ] of a degeneration is determined by its
period n and the total valency that is expressed as n1/l1 +n2/l2 · · ·+nk/lk
for positive integers l1, . . . , lk and n1, . . . , nk. This means that there exists
an analytic automorphism f̄ of Σg of period n as above such that its orbits of

cardinality less than n are {P
(i)
1 , P

(i)
2 , . . . , P

(i)
n/li

} for i = 1, . . . , k. Moreover,

f̄n/li(P
(i)
j ) = P

(i)
j for all i and j, and f̄n/li is isotopic to the rotation of angle

2δiπ/li near P
(i)
j for a positive integer δi satisfying δini ≡ 1 (mod li).

In this paper, we classify the periodic monodromies which are realized
as the monodromies of hyperelliptic families (Corollary 1.7). Moreover, for
a given periodic monodromy [f ], we can show that we can choose a branch
locus of φ0:S0 −→ ∆ from the list in Theorem 1.5 such that the monodromy
of the nonsingular model of S0 is [f ]. Thus, for a given hyperelliptic family
S with periodic monodromy, we can calculate the Horikawa index (cf. [AA,
§4]) from the period and the total valency of the monodromy of S.

Acknowledgements. The author wishes to express his special thanks
to Professors Tadashi Ashikaga, Kazuhiro Konno, Tatsuya Arakawa, Nariya
Kawazumi and Takayuki Morifuji for useful advice. He also thanks Profes-
sors Tadao Oda, Masanori Ishida, Takeshi Kajiwara and Shigeru Takamura
for encouragement.

§1. Classification of periodic monodromies

Let (φ, S,∆) be a hyperelliptic family of genus g. A complex surface
S is said to be normally minimal if the singularities of the reduced scheme
of the special fiber are ordinary double points and any (−1)-curve in the
special fiber intersects the other components at at least three points. In this
paper, we assume that any degenerations of curves are normally minimal.

We first review Horikawa’s canonical resolution of double coverings (cf.
[Ho2]). It is well-known that S is bimeromorphic to a double covering
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ψ0:S0 −→ W0 := P1 × ∆ branched along a divisor B0 of W0 (cf. [Ho1]).
More precisely, S0 is a hypersurface in the total space of the line bundle F0

over W0 such that F⊗2
0 is isomorphic to the line bundle [B0] associated to

B0. Let π0 be the second projection of W0 and Γt the fiber of π0 at a point
t ∈ ∆. Let φ0 be the composite π0 ◦ ψ0. We set B̃0 := B0 − Γ0 when Γ0

is a component of B0, and B̃0 := B0 otherwise. By the Hurwitz formula,
the intersection number B0Γt is equal to 2g + 2. Let IP (B0, π

−1
0 (t)) be the

local intersection number of B0 and Γt at a point P . Since S has at most
one special fiber, we see that t = 0 if IP (B0, π

−1
0 (t)) ≥ 2.

We denote the multiplicity of B0 at P by mP and denote the greatest
integer not exceeding mp/2 by [mP /2]. Let τ1:W1 −→W0 be the blowing-
up at a point P which is a singular point of B0 or satisfies IP (B0,Γ0)≥ 2.
We set π1 := π0 ◦ τ1:W1 −→ ∆, E1 := τ−1

1 (P ), B1 := τ∗1 (B0) − 2[mP /2]E1

and F1 := τ∗(F0) − [mp/2]E1. Since F⊗2
1 is isomorphic to the line bundle

[B1] associated to B1 again, we can take a double covering ψ1:S1 −→
W1 branched along B1 and naturally define a bimeromorphic morphism
τ̃1:S1 −→ S0. We set φ1 := π1 ◦ ψ1. Then φ0 ◦ τ̃1 = φ1.

Repeating this process, we obtain a sequence of blowing-ups Wr
τr−→

· · · −→W1
τ1−→W0 which satisfies the following properties:

(i) (τ1 ◦ · · · ◦ τr)
∗(Γ0) transversally intersects the strict transform of B̃0.

(ii) Br is nonsingular.

The reduced scheme of the special fiber of Sr is a normal crossing divisor
by (i). Sr is nonsingular by (ii).

Let τ̃ be the composite of the contractions of (−1)-curves such that
τ̃(Sr) is normally minimal. Then, we obtain the original normally mini-
mal model φ:S −→ ∆. We call the above process Horikawa’s canonical

resolution. We call a point P on Bi a bad point if Bi is singular at P or
IP ((τ1 ◦ · · · ◦ τi)

∗(Γ0)red, B̃i) ≥ 2, where B̃i is the strict transform of B̃0 by
τ1 ◦ · · · ◦ τi. In this paper, we always use r as the length of the sequence of
blowing-ups which satisfies the conditions (i) and (ii).

Conversely, choosing a component Er′ of (τ1 ◦ · · · τr)
∗(Γ0) whose self-

intersection number is −1, we consider a blowing-down τ ′r:Wr −→ W ′
r−1

which contracts Er′ to a point. We set B ′
r := Br − Er′ when Er′ is a

component of Br and B′
r := Br, otherwise. Let m be the intersection

number Er′B
′
r. Since (τ ′r)∗(Br + 2[m/2]Er′ ) is isomorphic to (τ ′r)∗(Fr +

[m/2]Er′)
⊗2, we can take the double covering ψ′

r:S
′
r−1 −→W ′

r−1 branched

along (τ ′r)∗Br and naturally define a morphism τ̃ ′r:Sr −→ S′
r−1. Repeating

this process, we finally obtain a sequence of blowing-downs Wr
τ ′

r−→ · · · −→
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W ′
1

τ ′

1−→ W ′
0 and the double covering ψ′

r:S
′
0 −→ W ′

0 = P1 × ∆ such that
S′

0 is bimeromorphic to Sr. We call this process an inverse of Horikawa’s

canonical resolution. Note that if the multiplicity of a component E of (τ1 ◦
· · · ◦ τr)

∗Γ0 is one, we can find an inverse of Horikawa’s canonical resolution
such that (τ ′1 ◦ · · · ◦ τ

′
r)∗E is P1, i.e., we can consider that (τ ′1 ◦ · · · ◦ τ

′
r)∗E

is Γ0. We call this an inverse of Horikawa’s canonical resolution associated

to E.
If the monodromy of (φ, S,∆) is periodic, the configuration of the spe-

cial fiber F = n0M0 +
∑l

i

∑ki

j=1 α
i
jD

i
j satisfies the following conditions (cf.

[MM1], [MM2]):

(i) Each Di
j is a nonsingular rational curve.

(ii) M0 is a nonsingular curve of genus g′ (0 ≤ g′ ≤ g) and l ≥ 3 if g′ is
equal to zero.

(iii) The integer n0 coincides with the period of the monodromy.

(iv) M0D
i
1 = Di

jD
i
j+1 = 1 (j = 1, · · · , ki − 1), M0D

i
j = 0 (j ≥ 2), Di

jD
i
j′ =

0 (|j − j′| ≥ 2), Di
jD

i′

j′ = 0 (i 6= i′).

(v) n0 > αi
1 > · · · > αi

ki
for all i.

We call M0 the main component of (φ, S,∆).

Lemma 1.1. Let E be a component of (τ1 ◦ · · · ◦ τi)
∗(Γ0). Assume

that there exists a bad point Q on E and that Q is not contained in the

components of (τ1◦· · ·◦τi)
∗(Γ0) other than E. Let E0 be the strict transform

of E by τi+1 ◦ · · · ◦ τr and let
∑k

j=1 njEj be the maximal subdivisor of (τ1 ◦
· · · ◦τr)

∗(Γ0) which is contracted to Q by τi+1 ◦ · · · ◦τr. Let τ̄ :Sr −→ S′ be a

composite of blowing-downs of some (−1)-curves, where the reduced scheme

of the special fiber of S ′ is a normal crossing divisor. If τ̄((ψ∗
r (E0))red) is a

nonsingular curve, then not all ψ∗
r (Ej)red are contracted by τ̄ .

Proof. We may only consider the case where all ψ∗
r (Ej)red (j = 1, 2,

. . . , k) are nonsingular rational curves. Let n0 be the multiplicity of E0 and
assume that the dual graph of

∑k
j=0 njEj is linear, i.e., EjEj+1 = 1 for all j

(1 ≤ j ≤ k − 1) and EjEj′ = 0 for (j, j ′) which satisfy |j − j ′| ≥ 2. Assume
that all ψ∗

r (Ej) (j = 1, 2, . . . , k) are contracted by τ̄ . Since τ̄((ψ∗
r (E0))red)

is nonsingular, we see that the dual graph of
∑
ψ∗

r (Ei) has no loop.

Case 1. Assume that E0 is a component of the branch locus of ψr. In
this case, E1 is not a component of the branch locus. If B̃r intersects E1

transversally, then E2 is not a component of the branch locus of ψr, because
ψ∗

r (E1) is a nonsingular rational curve. Moreover, since
∑k

j=0 ψ
∗
r (Ej) has
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no loop, each Ei (i ≥ 2) is not a component of the branch locus and does
not intersect B̃r.

Thus, the configuration of
∑k

j=0 njEj is as in Figure 1 (a) and nk =
n0, nk−1 = 2n0, . . . , n1 = kn0. In Figure 1 and Figure 2, the dotted lines
mean the components of

∑k
j=0 njEj which are not components of the branch

locus. The solid lines mean the components of the branch locus and the
waves mean B̃r. This contradicts the assumption that all ψ∗

r (Ej)red (j =

1, 2, . . . , k) are contracted by τ̄ . Then, we may assume that B̃r does not
intersect E1 and that E2 is a component of the branch locus or k = 1. When
k = 1, we cannot contract ψ∗

r(E1). When k 6= 1, by an argument similar
to that above, the configuration of

∑k
j=0 njEj must be as in Figure 2 (a).

Considering an inverse of Horikawa’s canonical resolution, i.e., contracting∑k
j=1 njEj, we see that B̃i intersects E transversally at Q, a contradiction.

Case 2. Assume that E0 is not a component of the branch locus of ψr. If
E1 is not a component of the branch locus and E1 intersects B̃r, then the
dual graph of

∑k
j=0 njψ

∗
r (Ej) has a loop, a contradiction. Thus, E1 does not

intersect B̃r, if we assume that E1 is not a component of the branch locus.
However, in this case, each Ej (j > 1) does not intersect B̃r, because the
dual graph of

∑
ψ∗

r (Ej) has no loop. Hence, we see that the configuration
of

∑k
j=0 njEj must be as in Figure 1 (b). This contradicts the assumption

that Q is a bad point. Thus, we see that E1 is a component of the branch
locus. By the same arguments as in Case 1, the configuration of

∑k
j=0 njEj

is as in Figure 2 (b), a contradiction to the assumption that Q is a bad
point.

When the dual graph of
∑
njEj is not linear, by the assumption that∑

njψ
∗
r (Ej) is contracted to a point, we can find the composite of the

contractions τ ′′ of (−1)-curves such that τ ′′(
∑
njψ

∗
r (Ej)) is linear. Then, we

can reduce the arguments to the case where the dual graph of
∑
njψ

∗
r (Ej)

is linear.

Corollary 1.2. In the notation as above, we also assume that E0 is a

component of the branch locus. If τ̄((ψ∗
r (E0))red) is a nonsingular curve and

τ̄(ψ∗
r (ΣEj)) is a nonsingular rational curve which transversally intersects

ψ∗
r (E0)red at a point, then E intersects B̃i at Q transversally.

Proof. By Lemma 1.1,we may assume that the dual graph of
∑k

j=0 njEj

is linear. Since the dual graph of τ̄(ψ∗
r (ΣEj)) has no loop, by the same

argument as in the proof of Lemma 1.1, the configuration of
∑k

j=0 njEj

must be as in Figure 1 (a) or Figure 2 (a). The configuration is not as in
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Figure 1 (a) by the assumption that τ̄(ψ∗
r (ΣEj)) is a nonsingular rational

curve. Hence, we see that the configuration is as in Figure 2 (a) and k = 1.

Lemma 1.3. In the notation as above, let (φ, S,∆) be a normally min-

imal hyperelliptic family whose monodromy is periodic. Let E be the excep-

tional set of τi:Wi −→Wi−1 such that τ̃(ψ∗
r (E0)) is the main component of

(φ, S,∆). If Q is a bad point at which B̃i intersects E and if Q is not con-

tained in the exceptional sets of τ1 ◦ . . . ◦ τi other than E, then B̃i intersects

E transversally at Q.

Proof. Let
∑k

i=1 niEi be the maximal subdivisor of (τ1 ◦ . . . ◦ τr)
∗(Γ0)

which is contracted to Q by τi+1 ◦ · · · ◦ τr. Note that, by the properties
of the configuration of the special fiber and Lemma 1.1, the dual graph
of

∑k
i=1 niψ

∗
r (Ei) is linear and all ψ∗

r (Ei) are nonsingular rational curves.
Assume that E0 is not a component of the branch locus and that Bi inter-
sects E at Q not transversally. Since each ni is greater than or equal to the
multiplicity of E, the multiplicity of each ψ∗

r (Ei)red is greater than or equal
to that of the main component. Since

∑k
i=1 niψ

∗
rEi cannot be contracted

to a point by Lemma 1.1, there exists a component of the special fiber of S
whose multiplicity is greater than or equal to that of the main component,
a contradiction to the properties of the configurations of the special fibers
of families with periodic monodromies.

Assume that E0 is a component of the branch locus. Since the dual
graph of

∑k
i=1 niψ

∗
r (Ei) is linear, we see that the configuration of

∑k
i=1 niEi

must be as in Figure 2 (a). Hence, by Corollary 1.2, we obtain the assertion.

The points which satisfy the same conditions as Q in Lemma 1.3 are
called middle points. We use the same notation as in Lemma 1.3.

Lemma 1.4. Let (φ, S,∆) be a normally minimal hyperelliptic family

whose monodromy is periodic but not the identity. Then there exists a

component Ẽ of (τ1 ◦ · · · ◦ τr)
∗(Γ0) which satisfies the following conditions :

(i) The multiplicity of Ẽ is one.

(ii) Ẽ intersects B̃r at at most one point.

(iii) The vertex corresponding to Ẽ in the dual graph of (τ1 ◦ · · · ◦ τr)
∗(Γ0)

is a terminal of the graph.
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Proof. Let M be the component of (τ1◦· · ·◦τr)
∗Γ0 such that τ̃(ψ∗

r (M))
is the main component. By an inverse of Horikawa’s canonical resolution,
we can consider a composite τ1 ◦ · · · ◦ τr′ of blowing-ups such that B̃r′ is
nonsingular except at middle points. Since the multiplicity of a terminal
component is one, we can find a component Ẽ satisfying (i) and (iii). Since
the monodromy is not the identity, ψ∗

r (Ẽ) is a nonsingular rational curve.
Thus, B̃r intersects Ẽ at at most two points. Suppose B̃r intersects Ẽ at
two points. Let M + Ẽ + Σi=1Ei be the minimal connected subdivisor of
(τ1 ◦ · · · ◦ τr)

∗(Γ0) which contains Ẽ and M . Then, Ẽ intersects Σi=1Ei at
a point which is not contained in the branch locus. Thus, the dual graph of
ψ∗

r (M+ Ẽ+Σi=1Ei) has at least one loop. This contradicts the assumption
that the monodromy is periodic.

Theorem 1.5. Let PHg be the set of the conjugacy classes of periodic

maps in the mapping class group of genus g which are realized as the mon-

odromies of hyperelliptic families. Let (x, t) be local coordinates of P1 × ∆
and Eg the set of double coverings over P1 × ∆ defined by the following

equations:

(I) y2 = (x− 1)Πδ
i=1(x

p − αit
q),

(II) y2 = x(x− 1)Πδ
i=1(x

p − αit
q),

(III) y2 = Πδ
i=1(x

p − αit
q),

(IV) y2 = tΠδ
i=1(x

p − αit
q),

(V) y2 = (x− 1)Π2g+1
i=1 (x− αit),

(VI) y2 = Π2g+2
i=1 (x− αi),

where p and q are relatively prime positive integers with p 6= 1 and {αi} is

a set of mutually distinct complex numbers. Let Θ: Eg −→ PHg be the map

which sends a double covering to its monodromy. Then Θ is surjective.

Proof. For [f ] ∈ PHg, we choose a normally minimal hyperellip-
tic family (φ, S,∆) whose monodromy is [f ]. We consider an inverse of
Horikawa’s canonical resolution associated to a component E which sat-
isfies the conditions of Lemma 1.4. Putting (τ ′1 ◦ . . . ◦ τ ′r)∗(E) to be Γ0,
we use the same notation as in the explanation of Horikawa’s canonical
resolutions. Since E satisfies the conditions of Lemma 1.4, there exist at
most two bad points of B0 on Γ0 and there exists a unique bad point which
satisfies mp ≥ 3. Let τ1 ◦ · · · ◦ τr′ be the composite of the blowing-ups
which appear in the process of Horikawa’s canonical resolution such that
B̃r is free from bad points except middle points. Since the dual graph
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of (τ1 ◦ . . . ◦ τr′)
∗(Γ0) is linear and B̃r′ intersects (τ1 ◦ . . . ◦ τr′)

∗(Γ0)red
transversally by Lemmas 1.1 and 1.3, we can deform the local equation of
B0 near the bad point P to Πδ

i=1(x
pi − αit

qi) = 0 or tΠδ
i=1(x

pi − αit
qi) = 0

(2g + 1 ≤ Σipi ≤ 2g + 2). We may assume the pairs (pi, qi) to be relatively
prime integers. Let n be the period of f and n̄:∆′ −→ ∆ a morphism of
degree n branched at the origin. We also use t as a parameter of ∆′. Let

ψ
(n)
0 :S

(n)
0 := S0 ×∆×P1 (∆′ × P1) −→ ∆′ × P1 be the base change of ψ0

obtained by n̄. Then the local equation of the branch locus B
(n)
0 of ψ

(n)
0

near n̄−1(p) is given by Πδ
i=1(x

pi − αit
nqi) = 0 or tΠδ

i=1(x
pi − αit

nqi) = 0.
By the definition of the period of monodromy, the nonsingular model of

S
(n)
0 is a smooth family of genus g.

We consider the case n ≥ 2. We first consider the canonical resolution
of the branch locus whose equation is Πδ

i=1(x
pi −αit

nqi) = 0, Σpi = 2g+ 2.
Assume that there exists i such that pi > nqi ≥ 2. Since Γ0 is the tangent
line of the curve {(xpi−αit

nqi) = 0} at (x, t) = (0, 0), the strict transform of
the curve {(xpi −αit

nqi) = 0} by τ1◦. . .◦τr intersects the components whose
multiplicities are greater than or equal to two. Note that the number of the
irreducible components of the strict transform of the divisor {θ̌i := (xp1 −
α1t

nq1) · · · (xpi−1 − αi−1t
nqi−1)(xpi+1 − αi+1t

nqi+1) · · · (xpδ − αδt
npδ) = 0} is

smaller than or equal to 2g− 1 because pi is greater than or equal to three.
Let M be the component such that ψ∗

r (M) is a nonsingular curve of genus
g. Since the multiplicity of M is one, the number of the branch points on
M is at most 2g + 1 even if {θ̌i = 0} intersects M , a contradiction to our
assumption that the genus of ψ∗

r (M) is g. Hence we have pi ≤ nqi for all i.

Let Er′′ be the exceptional set of the blowing-up τr′′ :Wr′′ −→ Wr′′−1

such that the strict transform of Er′′ by τr′′+1 ◦ . . . ◦ τr is M . If there exists
a bad point on Er′′ , the special fiber of the nonsingular normally minimal
model of S0 has at least two components by Lemma 1.1. Thus, there exists

no bad point on Er′′ , and B̃r′′
(n)

intersects Er′′ transversally at at least
2g + 1 distinct points.

When B̃
(n)
r′′ intersects Er′′ at 2g + 1 points, the local equation of B

(n)
0

at the bad point must be (x − αtnqδ)Πδ−1
i=1 (xpi − αit

nqi) = 0 and the strict
transform of the curve {Πδ−1

i=1 (xpi − αit
nqi) = 0} by τ1 ◦ · · · ◦ τr′′ intersects

Er′′ at 2g + 1 distinct points. Since the multiplicity of Er′′ is one and
pi ≤ nqi, we see that nqi is the multiple of pi and nqi/pi = nqj/pj for all
i, j (1 ≤ i, j ≤ δ − 1). Then, we see that pi = pj and qi = qj because of
gcd(pi, qi) = 1 for all i.
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When B̃
(n)
r′′ intersects Er′′ at 2g + 2 points, we can conclude that the

local equation of B
(n)
0 is given by Πδ

i=1(x
p−αit

nq) = 0 by similar arguments.
From the above arguments, when Γ0 is not a component of the branch locus
of ψ0 and Σpi = 2g + 2, we see that the local equation of B0 is given by
(x − αtqδ)Πδ−1

i=1 (xp − αit
q) = 0 or Πδ

i=1(x
p − αit

q) = 0. If p > q, then two
complex surfaces of the nonsingular models of y2 = (x − αtqδ)Πδ−1

i=1 (xp −
αit

q) and y2 = xΠδ−1
i=1 (xp − αit

q) have the same monodromy. Let [q/p] be
the greatest integer not exceeding q/p. If p < q, then, by repeating the
elementary transformation in the sense of [Ho1] [q/p] + 1 times, we obtain
the equation of type (I)

Next we consider the case of y2 = Πδ
i=1(x

pi − αit
qi), Σpi = 2g + 1. By

arguments similar to those above, we see that pi ≤ nqi and that the nqi is a
multiple of pi. Since, for each i, all the irreducible components of the strict
transform of {(xpi − αit

nqi) = 0} must intersect M whose multiplicity is
one, we conclude that nqi/pi = nqj/pj . Hence, we have qi = qj and pi = pj

because gcd(pi, qi) = 1. When the local equation of B0 at the bad point
is tΠδ

i=1(x
pi − αit

qi) = 0, we conclude that pi = pj and qi = qj by similar
arguments. Thus, it is sufficient to consider only the following equations as
the defining equation of S0:

(I) y2 = (x− 1)Πδ
i=1(x

p − αit
q),

(II) y2 = x(x− 1)Πδ
i=1(x

p − αit
q),

(III) y2 = Πδ
i=1(x

p − αit
q),

(IV) y2 = tΠδ
i=1(x

p − αit
q),

(V) y2 = (x− 1)Π2g+1
i=1 (x− αit),

(VI) y2 = Π2g+2
i=1 (x− αi),

(VII) y2 = tx(x− 1)Πδ
i=1(x

p − αit
q),

(VIII) y2 = t(x− 1)Πδ
i=1(x

p − αit
q),

(IX) y2 = xΠδ
i=1(x

p − αit
q),

(X) y2 = txΠδ
i=1(x

p − αit
q),

where p and q are relatively prime positive integers with p 6= 1 and {αi} is
a set of mutually distinct complex numbers. Note that, in the case of the
equations (I) through (IV) and (VII) through (X) with p = 1, we can trans-
form them to the equations of (V) or (VI) by elementary transformations.
The equation of (V) gives the very important monodromy, hyperelliptic in-
volution. The equation of (VI) gives the monodromy whose period is one,
i.e., the identity which is not covered in the above arguments. However,
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the equations of (VII) through (X) are transformed to (I) by a suitable el-
ementary transformation. In the cases of (VII) and (VIII), the blowing-up
at (x, t) = (1, 0) and the blowing-down of a (−1)-curve which is the strict
transform of Γ0 give the type (I). In the case of (IX), p > q, the blowing-up
at (x, t) = (0, 0) and the blowing-down of a (−1)-curve which is the strict
transform of Γ0 give the type (I) or (VIII). We see that (VIII) is reduced
to (I). In the case of (IX) p < q, we can reduce this to the case of (IX) of
p > q by suitable elementary transformations. By similar arguments, we
see that the equations of the type of (X) can be transformed to the type
(I) by elementary transformations. Hence, we see that [f ] is in the image
of Θ.

Remark 1.6. Since any hyperelliptic family is realized as the nonsingu-
lar model of a double covering of P1 ×∆, the monodromies of hyperelliptic
families are induced by the monodromies of P1 × ∆ \B0 −→ ∆ defined by
the lifting of the vector field of a simple closed curve on ∆, where B0 is the
branch locus of the double covering. Then it is clear that PHg is a subset
of Hp

g, where Hp
g is the set of the conjugacy classes of periodic maps which

commute with one of the mutually conjugate hyperelliptic involutions in the
mapping class group of genus three. Conversely, let F be a periodic map of
order n which is an element of one of the mutually conjugate hyperelliptic
mapping class groups in the mapping class group. Since the group G gen-
erated by F and a hyperelliptic involution is a finite group, by Kerchhoff’s
theorem (cf. [Ke]), G acts on a hyperelliptic curve C holomorphically. Thus
we can regard F as a holomorphic automorphism of C. We define the map
F̃ :C × ∆ −→ C × ∆ by F̃ (P, t) = (F (P ), e2πi/nt). Since F̃ is holomor-
phic and the nonsingular model S

F̃
of the quotient space (C × ∆)/〈F̃ 〉 is

a complex surface, S
F̃

is a hyperelliptic family whose monodromy is the
conjugacy class of F . Hence Hp

g is equal to PHg.

Corollary 1.7. Let p and q be relatively prime integers. A periodic

monodromy which is realized as a certain hyperelliptic family of genus g is

one of the following types :

(i) n = 2p; σ1/2p + σ2/p + 1/2 + · · · + 1/2︸ ︷︷ ︸
δ times

, where pδ = 2g + 1, qσ1 ≡ 1

(mod 2p), λ(p−1)/2 ≡ 1 (mod p), qλσ2 ≡ 1 (mod p) and q is odd.

(ii) n = p, g′ = (δ − 1)/2; σ1/p + σ2/p + σ2/p, where pδ = 2g + 1,
qσ1 ≡ 1, λ(p− 1)/2 ≡ 1, λqσ2 ≡ 1 (mod p).
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(iii) n = 2p; σ1/2p + σ2/2p + 1/2 + · · · + 1/2︸ ︷︷ ︸
δ times

, where pδ = 2g, qσ1 ≡

1, λ(2p− 1) ≡ 1, qλσ2 ≡ 1 (mod 2p), p and δ are even.

(iv) n = 2p; σ1/2p + σ2/2p + 1/2 + · · · + 1/2︸ ︷︷ ︸
δ times

, where pδ = 2g, qσ1 ≡

1, λ(p− 1) ≡ 1, qλσ2 ≡ 1 (mod 2p), p is even and δ is odd.

(v) n = 2p; σ1/2p + σ2/2p + 1/2 + · · · + 1/2︸ ︷︷ ︸
δ times

, where pδ = 2g, qσ1 ≡

1, λ(2p− 1) ≡ 1, qλσ2 ≡ 1 (mod 2p), The integers p and q are odd

and δ is even.

(vi) n = p, g′ = δ/2; σ1/p + σ2/p, where pδ = 2g, qσ1 ≡ 1, λ(p − 1) ≡
1, qλσ2 ≡ 1 (mod p), δ is even and p is odd.

(vii) n = p, g′ = (δ − 2)/2; σ1/p+ σ1/p+ σ2/p+ σ2/p, where pδ = 2g + 2,
qσ1 ≡ 1, λ(p− 1) ≡ 1, qλσ2 ≡ 1, (mod p), p and δ are even.

(viii) n = p, g′ = (δ − 1)/2; σ1/p + σ1/p + σ2/(p/2), where pδ = 2g + 2,
qσ1 ≡ 1 (mod p), λ(p− 2)/2 ≡ 1, qλσ2 ≡ 1 (mod p/2), p is even

and δ is odd.

(ix) n = p, g′ = (δ − 2)/2; σ1/p+ σ1/p+ σ2/p+ σ2/p, where pδ = 2g + 2,
qσ1 ≡ 1, λ(p− 1) ≡ 1, qλσ2 ≡ 1 (mod p), p is odd and δ is even.

(x) n = p, g′ = δ/2; σ1/(p/2) + σ2/(p/2), where pδ = 2g + 2, qσ1 ≡
1, λ(p− 2)/2 ≡ 1, qλσ2 ≡ 1 (mod p/2), p and δ are even.

(xi) n = 2p; σ1/p + σ2/p + 1/2 + · · · + 1/2︸ ︷︷ ︸
δ times

, where pδ = 2g + 2, qσ1(p +

1)/2 ≡ 1, λ(p− 1)/2 ≡ 1, qλσ2 ≡ 1 (mod p), q and p are odd, and

δ is even.

(xii) n = 2; 1/2 + 1/2 + · · · + 1/2︸ ︷︷ ︸
2g+2 times

,

where n and the sums of fractional numbers mean the period and the total

valency, respectively. g′ means the genus of the main component but we

omit it when g′ = 0. p and q are relatively prime and σ1, σ2, λ are the

smallest positive integers which satisfy each specified condition.

Proof. Consider the case where the equation of S0 is (I), q = 1. By
Horikawa’s canonical resolution, we see that the configuration of the special
fiber of the normally minimal nonsingular model of S0 is as in Figure 3.
In Figure 3, the lines mean nonsingular rational curves and the numbers
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beside them are their multiplicities. Thus, the period of the monodromy is
2p and the total valency is 1/2p + (p − 1)/2p + 1/2 + · · · + 1/2︸ ︷︷ ︸

δ times

. Taking a

suitable representative f of this monodromy, there exists the set of points
{P1, P2, P3, Q

i
j} (1 ≤ i ≤ δ, 1 ≤ j ≤ p) such that f(P1) = P1, f

2(Pi) = Pi

(i = 2, 3) and f p(Qi
j) = Qi

j . Moreover, f is the rotation of angle 2π/2p near
P1 and f2 is the rotation of angle 2πλ/p near P2 and P3, where λ satisfies
λ(p− 1)/2 ≡ 1 (mod p). f p is the rotaion of angle π near Qi

j. By a base
change of degree q such that q is odd and gcd(p, q) = 1, we can make a
hyperelliptic family with monodromy [f q]. The map f q is the rotation of
angle 2πq/2p near P1, (f q)2 is the rotation of angle 2πλq/p near P2 and P3,
and fp is the rotaion of angle π near Qi

j . Then we obtain the monodromy
of type (i).

By arguments similar to that above, the monodromies (ii) are obtained
by suitable base changes of the equation of type (I), q = 2. The mon-
odromies (iii),(iv) and (v) are obtained from the case of the equation of
type (II), q = 1. The monodromies (vi) are obtained from the case of type
(II), q = 2. The monodromies (vii),(viii) and (ix) are obtained from the
case of the equation of type (III), q = 1. The monodromies (x) and (xi) are
obtained from the case of the equation of type (IV), q = 1. Note that the
monodromies which are obtained from the cases of the equations of type
(IV) and q even are equal to (xi). The monodromy (xii) is obtained from
the case of the equation of type (V).
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