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MOTIVIC ZETA FUNCTIONS FOR

PREHOMOGENEOUS VECTOR SPACES AND

CASTLING TRANSFORMATIONS

FRANÇOIS LOESER

Abstract. We study the behaviour of motivic zeta functions of prehomoge-
neous vector spaces under castling transformations. In particular we deduce
how the motivic Milnor fibre and the Hodge spectrum at the origin behave
under such transformations.

§1. Introduction

1.1. Let us recall the classification of irreducible regular prehomoge-

neous vector spaces due to Sato and Kimura [18]. A prehomogeneous vector

space over a field k [18] consists of the datum (G,X) of a connected linear

k-algebraic group G together with a linear representation ρ of G on a finite

dimensional affine space X = Am
k over k having a Zariski dense G-orbit.

The complement of the Zariski dense G-orbit is called the singular locus

of the prehomogeneous vector space. When X is an irreducible G-module,

one says the prehomogeneous vector space (G,X) is irreducible.

One may find a general definition of regular prehomogeneous vector

spaces in [18], which, when the group G is reductive, is equivalent to the

condition that the singular locus is an hypersurface. From now on, except

for Section 7, we shall always assume the group G to be reductive. When

(G,X) is an irreducible regular prehomogeneous vector space, the singular

locus is an irreducible hypersurface f = 0 in X.

In the theory of Sato and Kimura, a fundamental role is played by

castling transforms, which are defined as follows.

Let G be a connected reductive k-algebraic group and ρ be a linear

representation of G on Am
k . Write m = r1 + r2. Then set X1 = Mm,r1

and

let G × SLr1
act on X1 by

ρ1(g, g1)x1 = ρ(g)x1
tg1.
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Similarly set X2 = Mm,r2
and let G × SLr2

act on X2 by

ρ2(g, g2)x2 = tρ(g)−1x2
tg2.

Assume Gj = Imρj is an irreducible regular prehomogeneous vector space

for j = 1, 2 with singular locus the irreducible hypersurface fj = 0. In this

case one says that the prehomogeneous vector spaces (G1, X1) and (G2, X2)

are related by a castling transformation. Furthermore, cf. 4.1, f1 and f2

are homogeneous polynomials whose degrees satisfy deg fj = rjd, for some

integer d. We shall say that two irreducible regular prehomogeneous vector

spaces over k are equivalent if, up to isomorphism, they may be included

in a finite chain of irreducible regular prehomogeneous vector spaces whose

consecutive terms are related by a castling transform. In each equivalence

class there is a unique prehomogeneous vector space with dimX minimal.

Such an object is called reduced in the terminology of Sato and Kimura.

When k is algebraically closed of characteristic zero, the set of all reduced

irreducible regular prehomogeneous vector spaces has been divided into 29

types by Sato and Kimura [17]. If k is of characteristic zero and one restricts

to k-split groups, then the absolute classification restricts to a relative one.

1.2. Thus, if one wants to compute the value of some invariant for ir-

reducible regular prehomogeneous vector spaces, it is enough: a) to under-

stand the behaviour of the invariant under castling transformations; b) to

compute the invariant explicitly for reduced prehomogeneous vector spaces.

For instance, when k = C, if one denotes by bj the b-function of fj, we have

the following relation due to Shintani (cf. [11]):

(1.2.1) b2(s)
∏

1≤i≤r1

∏

0≤j<d

(
s +

(i + j)

d

)
= b1(s)

∏

1≤i≤r2

∏

0≤j<d

(
s +

(i + j)

d

)
,

and the b-functions of all 29 types, except for one, have been tabulated by

Kimura in [11] and the remaining case has been settled by Ozeki and Yano

[23]. When k is a p-adic field and Zj denotes Igusa’s local zeta function

attached to fj, then Igusa proved in [8] the relation

(1.2.2) Z2(s)
∏

1≤j≤r1

( 1 − q−j

1 − q−(ds+j)

)
= Z1(s)

∏

1≤j≤r2

( 1 − q−j

1 − q−(ds+j)

)
,

where q denotes the cardinality of the residue field and the coefficients of

each polynomial fj are assumed to belong to the valuation ring but not all

to the valuation ideal; furthermore, Igusa was able to compute Z(s) for 24

out of the 29 types, see [9], [10].
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1.3. Another important invariant of singularities of functions is the

Hodge spectrum [20], [21], [22] and a natural question is to understand

its behaviour under castling transformations. It is not clear to us how to

answer this question using classical techniques, and the aim of the present

paper is to explain how this can be achieved using motivic integration. In

fact, replacing p-adic integration with integration on arc spaces, Denef and

Loeser defined in [1], [3], [2] a motivic zeta function Zf for a function f

which is a geometric analogue of Igusa’s local zeta function. The motivic

zeta function Zf contains a great amount of information on f . In particular

one can read off the whole Hodge spectrum of f from Zf . The main result of

the present paper is Theorem 4.2 where a relation completely analogous to

(1.2.2) is proved for motivic zeta functions. We then deduce the behaviour

of the Hodge spectrum under castling transformations in Corollary 6.8. To

prove Theorem 4.2, it would be natural to imitate Igusa’s proof in the p-adic

case as much as possible. In fact, we were not able to follow Igusa’s proof

to closely, since in that proof crucial use is made of properties of the Haar

measure on a locally compact p-adic group, especially of its uniqueness, for

which no complete analogue is available yet on the motivic integration side,

though highly desirable1. Hence we are led to follow a more down to earth

approach, relying on some direct computations in spaces of matrices, as in

Lemma 5.4.

Finally, in Section 7 we give some generalizations of our results to

prehomogeneous vector spaces which are no longer assumed to be irreducible

and regular.

I would like to thank Jan Denef and Akihiko Gyoja for conversations

that raised my interest on the questions considered in the present paper

and also Akihiko Gyoja for useful remarks on the first draft of the paper.

§2. Notations and conventions

2.1. Grothendieck groups of varieties

We fix a field k of characteristic zero. By a variety over k we shall

mean a separated and reduced scheme of finite type over k. Let S be an

algebraic variety over k. By an S-variety we mean a variety X together with

a morphism X → S. The S-varieties form a category denoted by VarS , the

arrows being the morphisms that commute with the morphisms to S.

1A motivic Haar measure is constructed in the recent paper [4], but uniqueness is still
lacking.
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We denote by K0(VarS) the Grothendieck group of S-varieties. It is

an abelian group generated by symbols [X], for X an S-variety, with the

relations [X] = [Y ] if X and Y are isomorphic in VarS, and [X] = [Y ] +

[X \ Y ] if Y is Zariski closed in X. There is a natural ring structure on

K0(VarS), the product of [X] and [Y ] being equal to [X×SY ] (here X×SY is

considered with its reduced structure). Sometimes we will also write [X/S]

instead of [X], to emphasize the role of S. We write L to denote the class

of A1
k × S in K0(VarS), where the morphism from A1

k × S to S is the

natural projection. We denote by MS the ring obtained from K0(VarS) by

inverting L. When A is a constructible subset of some S-variety, we define

[A/S] in the obvious way, writing A as a disjoint union of a finite number of

locally closed subvarieties Ai. Indeed [A/S] :=
∑

i[Ai/S] does not depend

on the choice of the subvarieties Ai.

When S = Spec(k), we will write K0(Vark) instead of K0(VarS) and

Mk instead of MS .

2.2. Equivariant Grothendieck groups

We need some technical preparation in order to take care of the mon-

odromy actions in the next section.

For any positive integer n, let µn be the group of all n-th roots of unity

(in some fixed algebraic closure of k). Note that µn is actually an algebraic

variety over k, namely Spec(k[x]/(xn − 1)). The µn’s form a projective

system, with respect to the maps µnd → µn : x 7→ xd. We denote by µ̂ the

projective limit of the µn. Note that the group µ̂ is not an algebraic variety,

but a pro-variety.

Let X be an S-variety. A good µn-action on X is a group action

µn × X → X which is a morphism of S-varieties, such that each orbit is

contained in an affine subvariety of X. This last condition is automatically

satisfied when X is a quasi projective variety. A good µ̂-action on X is an

action of µ̂ on X which factors through a good µn-action, for some n.

The monodromic Grothendieck group K µ̂
0 (VarS) is defined as the

abelian group generated by symbols [X, µ̂] (also denoted by [X/S, µ̂], or

simply [X]), for X an S-variety with good µ̂-action, with the relations

[X, µ̂] = [Y, µ̂] if X and Y are isomorphic as S-varieties with µ̂ -action, and

[X, µ̂] = [Y, µ̂] + [X \ Y, µ̂] if Y is Zariski closed in X with the µ̂-action

on Y induced by the one on X, and moreover [X × V, µ̂] = [X × An
k , µ̂]

where V is the n-dimensional affine space over k with any linear µ̂-action,

and An
k is taken with the trivial µ̂-action. There is a natural ring structure
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on K µ̂
0 (VarS), the product being induced by the fiber product over S. We

write L to denote the class in K µ̂
0 (VarS) of A1

k×S with the trivial µ̂-action.

We denote by Mµ̂
S the ring obtained from K µ̂

0 (VarS) by inverting L.

When A is a constructible subset of X which is stable under the µ̂-action,

then we define [A, µ̂] in the obvious way. When S consists of only one

geometric point, i.e. S = Spec(k), then we will write K µ̂
0 (Vark) instead of

K µ̂
0 (VarS).

Note that for any s ∈ S(k) we have natural ring morphisms Fibers :

K µ̂
0 (VarS) → K µ̂

0 (Vark) and Fibers : Mµ̂
S → Mµ̂

k given by [X, µ̂] → [Xs, µ̂],

where Xs denotes the fiber at s of X → S.

We shall also consider the canonical morphism of abelian groups ι :

K µ̂
0 (VarS) → K µ̂

0 (Vark) which to [X/S, µ̂] assigns [X, µ̂]. It is in general not

a ring morphism, but it can nevertheless be extended to a group morphism

ι : Mµ̂
S → Mµ̂

k by sending L−1 to L−1 [S, µ̂]. One should note that ι(XL) =

ι(X)L and ι(XL−1) = ι(X)L−1 for X in Mµ̂
S .

2.3. The arc space of X

Let k be a field of characteristic zero and let X be a variety over k.

For each natural number n we consider the space Ln(X) of arcs modulo

tn+1 on X. This is an algebraic variety over k, whose K-rational points,

for any field K containing k, are the K[t]/tn+1K[t]-rational points of X.

For example when X is an affine variety with equations fi(x) = 0, i =

1, . . . ,m, x = (x1, . . . , xn), then Ln(X) is given by the equations, in the

variables a0, . . . , an, expressing that fi(a0 + a1t+ · · ·+ antn) ≡ 0 mod tn+1,

i = 1, . . . ,m.

Taking the projective limit of these algebraic varieties Ln(X) we obtain

the arc space L(X) of X, which is a reduced separated scheme over k. In

general, L(X) is not of finite type over k (i.e. L(X) is an “algebraic variety of

infinite dimension”). The K-rational points of L(X) are the K[[t]]-rational

points of X. These are called K-arcs on X. For example when X is an affine

complex variety with equations fi(x) = 0, i = 1, . . . ,m, x = (x1, . . . , xn),

then the C-rational points of L(X) are the sequences (a0, a1, a2, . . . ) ∈

(Cn)N satisfying fi(a0 + a1t + a2t
2 + · · · ) = 0, for i = 1, . . . ,m. For any n,

and for m > n, we have natural morphisms

πn : L(X) −→ Ln(X) and πm
n : Lm(X) −→ Ln(X),

obtained by truncation. Note that L0(X) = X and that L1(X) is the

tangent bundle of X. For any arc γ on X (i.e. a K-arc for some field K
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containing k), we call π0(γ) the origin of the arc γ.

§3. Motivic zeta function

3.1. Let k be a field of characteristic zero and let X be a smooth

variety over k. We set X0 := f−1(0). Let n ≥ 1 be an integer. The

morphism f : X → A1
k induces a morphism f : Ln(X) → Ln(A1

k).

Any point α of L(A1
k), resp. Ln(A1

k), yields a K-rational point, for

some field K containing k, and hence a power series α(t) ∈ K[[t]], resp.

α(t) ∈ K[[t]]/tn+1. This yields maps

ordt : L(A1
k) −→ N ∪ {∞}, ordt : Ln(A1

k) −→ {0, 1, . . . , n,∞},

with ordt α the largest e such that te divides α(t).

We set

Xn := {ϕ ∈ Ln(X) | ordt f(ϕ) = n}.

This is a locally closed subvariety of Ln(X). Note that Xn is actually an

X0-variety, through the morphism πn
0 : Ln(X) → X. Indeed πn

0 (Xn) ⊂ X0,

since n ≥ 1. We consider the morphism

f̄ : Xn −→ Gm,k := A1
k \ {0},

sending a point ϕ in Xn to the coefficient of tn in f(ϕ). There is a natural

action of Gm,k on Xn given by a · ϕ(t) = ϕ(at), where ϕ(t) is the vector of

power series corresponding to ϕ (in some local coordinate system). Since

f̄(a · ϕ) = anf̄(ϕ) it follows that f̄ is a locally trivial fibration for the étale

topology.

We denote by X 1
n the fiber f̄−1(1). Note that the action of Gm,k on Xn

induces a good action of µn (and hence of µ̂) on X 1
n . In fact, the X0-variety

X 1
n and the action of µn on it completely determines both the variety Xn

and the morphism

(f̄ , πn
0 ) : Xn −→ Gm,k × X0.

Indeed it is easy to verify that Xn, as a (Gm,k × X0)-variety, is isomorphic

to X 1
n ×µn Gm,k, the quotient of X 1

n ×Gm,k under the µn-action defined by

a(ϕ, b) = (aϕ, a−1b).

The motivic zeta function of f : X → A1
k, is the power series over Mµ̂

X0

defined by

Zf (T ) :=
∑

n≥1

[X 1
n/X0, µ̂]L−nr T n,
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with r the dimension of X. It is a rational function of T (cf. [1], [2]). When

no confusion occurs we shall also write Zf (T ) for ι(Zf (T )).

For x a closed point of X0, one defines similarly Xn,x and X 1
n,x, by

requiring the arcs to have their origin in x.

The local motivic zeta function of f at x is the power series in Mµ̂
x

defined by

Zf,x(T ) :=
∑

n≥1

[X 1
n,x, µ̂]L−nr T n.

Lemma 3.2. Assume X is the affine space Ar
k and f is a homogeneous

polynomial of degree d on Ar
k. Then the equality

Zf (T ) = LrT−dZf,0(T )

holds in Mµ̂
k [[T ]].

Proof. By homogeneity, the mapping ϕ 7→ tϕ induces an isomorphism
between Xn and πn+d

n+1(Xn+d,0) compatible with the fibrations Xn → Gm,k

and Xn+r,0 → Gm,k. Hence [X 1
n , µ̂] = [X 1

n+d,0, µ̂]L−(d−1)r and the result
follows.

§4. Statement of the main result

4.1. Assume k is a field of characteristic zero. Let G be a connected

reductive k-algebraic group and ρ be a linear representation of G on Am
k .

Write m = r1 + r2. Then set X1 = Mm,r1
and let G × SLr1

act on X1 by

ρ1(g, g1)x1 = ρ(g)x1
tg1.

Similarly set X2 = Mm,r2
and let G × SLr2

act on X2 by

ρ2(g, g2)x2 = tρ(g)−1x2
tg2.

Assume Gj = Im ρj is an irreducible regular prehomogeneous vector space

for j = 1, 2 with singular locus the irreducible hypersurface fj = 0. One

considers the quotient spaces Xi/SLri
as embedded by the Plücker embed-

ding

Xi/SLri
↪−→ Vi := A

(m
ri
)
.

There is a natural isomorphism V1 ' V2 under which the quotient spaces

X1/SLr1
and X2/SLr2

may be naturally identified. Hence we write V for
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both V1 and V2, and up to multiplying one of them by a nonzero constant

factor, one may assume that both f1 and f2 are the pullback of the same

homogeneous polynomial f of degree d in V , cf. [17]. In particular, deg fj =

rjd, for 1 ≤ j ≤ 2.

Theorem 4.2. Let (G1, X1) and (G2, X2) be irreducible regular pre-

homogeneous vector spaces which are related by a castling transformation.

Then the relations

(4.2.1)

Zf1
(T )[SLr2,k]

∏

1≤j≤r1

(1 − T dL−j) = Zf2
(T )[SLr1,k]

∏

1≤j≤r2

(1 − T dL−j)

and

(4.2.2) Zf1,0(T )
∏

1≤j≤r1

(T−d − L−j)
∏

1≤j≤r2

(1 − L−j)

= Zf2,0(T )
∏

1≤j≤r2

(T−d − L−j)
∏

1≤j≤r1

(1 − L−j)

hold in Mµ̂
k [[T ]], with [SLr] = Lr2−1

∏
2≤i≤r(1 − L−i).

§5. Proof of Theorem 4.2

5.1. Fix 1 ≤ r ≤ m and set Z = Mm,r. The k-group scheme

GLm(k[[t]]) acts naturally on L(Z) on the left, while the k-group scheme

SLr(k[[t]]) acts naturally on L(Z) on the right. Here the group of K-points

of GLm(k[[t]]), resp. SLr(k[[t]]), is GLm(K[[t]]), resp. SLr(K[[t]]), for K a

field containing k. We shall consider the quotient space h : Z → Y :=

Z/SLr as embedded by the Plücker embedding

Z/SLr ↪−→ V := A(m
r ).

We set Z := L(Z) and Y := L(Y ). We also denote by Z ′ the subset of Z

consisting of matrices with a non zero minor of order r.

5.2. For every sequence e := (e1, . . . , er) in Nr, we denote by Ze the

subset of Z consisting of matrices of the form MA with M in GLm(K[[t]]),

and A an upper triangular (m, r) matrix with te1 , . . . , ter on the diagonal

and coefficients in K[[t]], for some field K containing k. The set Z ′ is the

disjoint union of the subsets Ze, for e in Nr.
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5.3. We shall consider the set Ve of matrices in Ze with principal

r minor (i.e. the one obtained by keeping the first r lines and columns)

of valuation |e| :=
∑

1≤i≤r ei. We may describe Ve as follows. For w in

W := Sr, the permutation group on r letters, we consider the set Ve,w of

matrices x = (xi,j)1≤i≤m,1≤j≤r in Z ′ of the form

xi,j = ai,jujt
ej +

∑

1≤k<j

λk,jai,k,

with

(a) λk,j and ai,k in K[[t]]

(b) uj a unit in K[[t]]

(c) v(ai,j) ≥ 1 when i < w(j)

(d) aw(j),j = 1

(e) aw(k),j = 0 when k < j.

The set Ve is the disjoint union of the subsets Ve,w. We denote by We

the image of Ve in Y. Let us remark that Ze, resp. h(Ze), is the union of

left translates of Ve, resp. We, by permutation matrices.

Lemma 5.4. For n ≥ |e|, with |e| :=
∑

1≤i≤r ei, the canonical mor-

phism

πn(Ve,w) −→ πn(We)

is a locally trivial fibration for the Zariski topology, with fiber Zw × AN
k ,

where

Zw := (Gm,k)
r−1

∏

1≤i≤r

A
r−1−mi

k ,

with mi the number of integers 1 ≤ k < w(i) such that k 6= w(j) for j < i
and

N := n(r2 − 1) + |e|((m − r)r + 1) −
∑

1≤i≤r

(m + 1 − i)ei.

Proof. Let us first consider the case where w = id. Let x be an (m, r)
matrix in Ve,id. For r + 1 ≤ k ≤ m and j ≤ r, we shall denote by ∆k,j

the determinant of the (r, r) submatrix of x obtained by removing the j-
th line from the (r + 1, r) submatrix of x obtained by keeping the first r
lines together with the k-th line. Set ∆ :=

∏
1≤i≤r uit

ei . We can take the

functions ∆k,j, for r + 1 ≤ k ≤ m and 1 ≤ j ≤ r, together with ∆, as
coordinates on We.
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We have the relations

∆k,r = ak,r∆

∆k,r−1 = ar,r−1∆
k,r − ak,r−1∆

. . .

∆k,i =
∑

1≤j≤r−i

(−1)j+1ai+j,i∆
k,i+j + (−1)r−iak,i∆

. . .

∆k,1 = a2,1∆
k,2 − a3,1∆

k,3 + · · · + (−1)rar,1∆
k,r + (−1)r+1ak,1∆.

Let us remark that it follows that the set We is the set defined by the
conditions ordt(∆) = |e| and ordt(∆

k,j) ≥ |e|, for r + 1 ≤ k ≤ m and
1 ≤ j ≤ r.

Let us assume n ≥ |e|. For a fixed point y in We with coordinates
(δt|e|, δk,jδt|e|) (hence δ is a unit and ordt(δ

k,j) ≥ 0) the conditions
πn(h(x)) = πn(y) may be rewritten as

∏

1≤i≤r

ui ≡ δ mod tn+1−|e|(∗)

ak,r ≡ δk,r mod tn+1−|e|(∗r)

ak,r−1 ≡ ar,r−1δ
k,r − δk,r−1 mod tn+1−|e|(∗r−1)

. . .

ak,i ≡
∑

1≤j≤r−i

(−1)r−i−jai+j,iδ
k,i+j + (−1)r−iδk,i mod tn+1−|e|(∗i)

. . .

ak,1 ≡ ar,1δ
k,r − ar−1,1δ

k,r−1 + · · ·

· · · + (−1)ra2,1δ
k,2 + (−1)r−1δk,1 mod tn+1−|e|(∗1)

It follows from that description that the morphism πn(Ve,w) → πn(We) is a
locally trivial fibration (in fact, a trivial fibration) for the Zariski topology
and that the fiber is of the form Gd−1

m,k ×AN ′

k , for some integer N ′. Indeed,
if we expand relation (∗) in terms of the coefficients ui,j and δj of the
power series ui and δ, one gets the equality

∏
1≤i≤r ui,0 = δ0, with ui,0 6=

0, which gives rise to the factor Gd−1
m,k , and some other equations which

at each level are linear with non zero coefficients in the newly occuring
variables. On the other hand, once expanded, the relations (∗r), . . . , (∗1)
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give a triangular system of linear equations in the power series coefficients
of the variables ai,j. This gives the result except for the exact value of
N ′ which can be obtained either by direct calculation or by computing
dimπn(Ve,w) − dimπn(We).

For arbitrary w, the situation reduces to the former one, since, up to
renumbering the rows, the situation is just the same except that some ai,j’s
with i, j ≤ r are now required to be of valuation ≥ 1, which has the sole
effect of replacing Zid by Zw in the statement.

Lemma 5.5. Set Y0 := h(Z0) and, for k ≥ 0, Yk = tkY0.

(1) For every e in Nr, h(Ze) = Y|e|.
(2) Assume n ≥ k ≥ 0. For every constructible subset A of πn(Yk),

consider the preimage [h−1(A)] of A in πn(Z). The relation

[h−1(A)] = [A][SLr]L
n(r2−1)+k((m−r)r+1)

∑

|e|=k

∏

1≤i≤r

L−(m+1−i)ei

holds in Mk. Furthermore, if A is constructible with µ̂-action, the

same relation still holds in Mµ̂
k .

Proof. Assertion (1) follows from the fact, noted in the proof of Lem-
ma 5.4, that the set We depends only on |e|. Let us denote it by W|e|.

To prove (2), we may assume A is contained in πn(Wk). Since the
preimage of πn(Wk) in πn(Z) is the disjoint union of the sets πn(Ve,w) with
|e| = k and w in W , we have

[h−1(A)] =
∑

|e|=k

[h−1(A) ∩ πn(Ve,w)].

One the other hand, by Lemma 5.4, we have

[h−1(A) ∩ πn(Ve,w)] = [Zw] × Ln(r2−1)+|e|((m−r)r+1)−P

1≤i≤r(m+1−i)ei ,

hence the result follows now from the relation

∑

w∈W

[Zw] = Lr2−1
∏

2≤i≤r

(1 − L−i) = [SLr].
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5.6. Let f be a homogeneous polynomial of degree d on V . We set

Yn,k :=
{
ϕ ∈ Ln(Y ) | ϕ ∈ πn(Yk) and ordt f(ϕ) = n

}
.

As in 3.1, we define f̄ : Yn,k → Gm,k, and we set Y1
n,k := f̄−1(1), which is

a variety with µ̂-action. We shall also consider the varieties Xn,k and X 1
n,k

which are the inverse images of respectively Yn,k and Y1
n,k in Ln(Z).

Lemma 5.7. The relation

[Y1
n,k] = [Y1

n−kd,0]L
k(d−1) dimY

holds in Mµ̂
k .

Proof. By homogeneity, the mapping y 7→ tky induces an isomorphism
between Yn−kd,0 and πn

n−k(d−1)(Yn,k) compatible with the fibrations onto

Gm,k.

5.8. Let us now consider the motivic zeta function of f ◦ h (or more

precisely its image in Mµ̂
k [[T ]]),

Zf◦h(T ) :=
∑

n≥1

[X 1
n , µ̂]L−n dimZ T n,

where X 1
n is the disjoint union of the varieties with µ̂-action X 1

n,k, k in N.

Remark that for kd > n, Xn,k and Yn,k are empty, hence for fixed n only a

finite number of the X 1
n,k’s are non empty. We shall also consider the power

series

Z0
f◦h(T ) :=

∑

n≥1

[X 1
n,0, µ̂]L−n dimZ T n

and

Z0
f (T ) :=

∑

n≥1

[Y1
n,0, µ̂]L−n dimY T n

in Mµ̂
k [[T ]].

Proposition 5.9. The relations

(5.9.1) Zf◦h(T ) =
∏

1≤i≤r

(1 − L−(m+1−i)T d)−1Z0
f◦h(T )
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and

(5.9.2) Zf◦h(T ) = [SLr]
∏

1≤i≤r

(1 − L−(m+1−i)T d)−1Z0
f (T )

hold in Mµ̂
k [[T ]].

Proof. Since, as follows from Lemma 5.5,

Z0
f◦h(T ) = [SLr]Z

0
f (T ),

it is enough to prove (5.9.2). By Lemma 5.5, we have

[X 1
n,k]L

−n dimZ = [SLr][Y
1
n,k]L

−n dimY Lk dimY
∑

|e|=k

∏

1≤i≤r

L−(m+1−i)ei .

It follows from Lemma 5.7 that we may rewrite the last equality as

[X 1
n,k]L

−n dimZ = [SLr][Y
1
n−kd,0]L

−(n−kd) dimY
∑

|e|=k

∏

1≤i≤r

L−(m+1−i)ei ,

and we get the result by summing up the series.

5.10. Now we can conclude the proof of Theorem 4.2. Relation (4.2.1)

follows from writing (5.9.2) for both X1 and X2, and (4.2.2) follows from

(4.2.1) together with Lemma 3.2.

§6. Applications to the Milnor fibre and the Hodge spectrum

6.1. Monodromy

In this subsection 6.1 we assume that k = C. Let x be a point of X0 =

f−1(0). We fix a smooth metric on X. We set X×
ε,η := B(x, ε) ∩ f−1(D×

η ),

with B(x, ε) the open ball of radius ε centered at x and D×
η := Dη \ {0},

with Dη the open disk of radius η centered at 0. For 0 < η � ε � 1,

the restriction of f to X×
ε,η is a locally trivial fibration, called the Milnor

fibration, onto D×
η with fiber Fx, the Milnor fiber at x. The action of a

characteristic homeomorphism of this fibration on cohomology gives rise to

the monodromy operator

Mx : H ·(Fx,Q) −→ H ·(Fx,Q).
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6.2. The motivic Milnor fibre

It is a remarkable fact, proved in [1] and [2], that expanding the rational

function Zf (T ) as a power series in T−1 and taking minus its constant

term, yields a well defined element Sf = − limT→∞ Zf (T ) of Mµ̂
X0

. This

follows from a formula for the motivic zeta function in terms of embedded

resolutions of X0 which we now recall.

Let (Y, h) be a resolution of f . By this, we mean that Y is a nonsingular

and irreducible algebraic variety over k, h : Y → X is a proper morphism,

that the restriction h : Y \ h−1(X0) → X \ X0 is an isomorphism, and that

h−1(X0) has only normal crossings as a subvariety of Y .

We denote by Ei, i ∈ J , the irreducible components (over k) of h−1(X0).

For each i ∈ J , denote by Ni the multiplicity of Ei in the divisor of f ◦h on

Y , and by νi − 1 the multiplicity of Ei in the divisor of h∗ dx, where dx is a

local non vanishing volume form at any point of h(Ei), i.e. a local generator

of the sheaf of differential forms of maximal degree. For i ∈ J and I ⊂ J ,

we consider the nonsingular varieties E◦
i := Ei \

⋃
j 6=i Ej , EI =

⋂
i∈I Ei,

and E◦
I := EI \

⋃
j∈J\I Ej.

Let mI = gcd(Ni)i∈I . We introduce an unramified Galois cover Ẽ◦
I of

E◦
I , with Galois group µmI

, as follows. Let U be an affine Zariski open

subset of Y , such that, on U , f ◦ h = uvmI , with u a unit on U and v a

morphism from U to A1
k. Then the restriction of Ẽ◦

I above E◦
I ∩U , denoted

by Ẽ◦
I ∩ U , is defined as

{
(z, y) ∈ A1

k × (E◦
I ∩ U) | zmI = u−1

}
.

Note that E◦
I can be covered by such affine open subsets U of Y . Gluing

together the covers Ẽ◦
I ∩U , in the obvious way, we obtain the cover Ẽ◦

I of E◦
I

which has a natural µmI
-action (obtained by multiplying the z-coordinate

with the elements of µmI
). This µmI

-action on Ẽ◦
I induces an µ̂-action on

Ẽ◦
I in the obvious way.

Theorem 6.3. ([3], [13]) With the previous notations, the following re-

lation holds in Mµ̂
X0

[[T ]]:

Zf (T ) =
∑

∅6=I⊂J

(L− 1)|I|−1 [Ẽ◦
I /X0, µ̂]

∏

i∈I

L−νiTNi

1 − L−νiTNi
.
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Definition 6.3.1. ([1], [3], [2]) Expanding the rational function Zf (T )
as a power series in T−1 and taking minus its constant term, yields a well
defined element of Mµ̂

X0
, namely

Sf := − lim
T→∞

Zf (T ) :=
∑

∅6=I⊂J

(1 − L)|I|−1[Ẽ◦
I ].

Moreover we set Sf,x := Fiberx(Sf ) in Mµ̂
k . We also have Sf,x = − limT→∞

Zf,x(T ).

There is strong evidence that Sf,x is the correct virtual motivic incar-

nation of the Milnor fiber Fx of f at x (which is in itself not at all motivic).

In the present setting we deduce from Theorem 4.2, the following rela-

tion between the virtual motivic Milnor fibres at the origin of two irreducible

regular prehomogeneous vector spaces which are related by a castling trans-

formation.

Theorem 6.4. Assume k is a field of characteristic zero. Let (G1, X1)
and (G2, X2) be irreducible regular prehomogeneous vector spaces which are

related by a castling transformation. Then the relation

(6.4.1) Sf1,0

∏

1≤j≤r2

(1 − Lj) = Sf2,0

∏

1≤j≤r1

(1 − Lj)

holds in Mµ̂
k .

Proof. Follows directly from (4.2.2).

6.5. Hodge structures

From now on in the remaining of this section 6, we shall assume k = C.

A Hodge structure is a finite dimensional Q-vector space H together with a

bigrading H⊗C =
⊕

p,q∈Z Hp,q, such that Hq,p is the complex conjugate of

Hp,q and each weight m summand,
⊕

p+q=m Hp,q, is defined over Q. The

Hodge structures, with the evident notion of morphism, form an abelian

category HS with tensor product. The elements of the Grothendieck group

K0(HS) of this abelian category are representable as a formal difference of

Hodge structures [H]− [H ′], and [H] = [H ′] iff H ∼= H ′. Note that K0(HS)

becomes a ring with respect to the tensor product.

A mixed Hodge structure is a finite dimensional Q-vector space V with

a finite increasing filtration W•V , called the weight filtration, such that the
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associated graded vector space GrW
• (V ) underlies a Hodge structure having

GrW
m (V ) as weight m summand. Note that V determines in a natural way

an element [V ] in K0(HS), namely [V ] :=
∑

m[GrW
m (V )].

When X is an algebraic variety over k = C, the simplicial cohomology

groups H i
c(X,Q) of X, with compact support, underly a natural mixed

Hodge structure, and the Hodge characteristic χh(X) of X (with compact

support) is defined by

χh(X) :=
∑

i

(−1)i[Hi
c(X,Q)] ∈ K0(HS).

This yields a map χh : VarC → K0(HS) which factors through MC, be-

cause χh(A1
k) is actually invertible in the ring K0(HS). When X is proper

and smooth, the mixed Hodge structure on H i
c(X,Q) is in fact a Hodge

structure, the weight filtration being concentrated in weight i.

6.6. The Hodge spectrum

The cohomology groups H i(Fx,Q) of the Milnor fiber Fx carry a nat-

ural mixed Hodge structure ([20], [22], [15], [16]), which is compatible with

the semi-simplification of the monodromy operator Mx. Hence we can de-

fine the Hodge characteristic χh(Fx) of Fx by

χh(Fx) :=
∑

i

(−1)i[Hi(Fx,Q)] ∈ K0(HS).

Actually by taking into account the monodromy action we can consider

χh(Fx) as an element of the Grothendieck group K0(HSmon) of the abelian

category HSmon of Hodge structures with an endomorphism of finite order.

Again K0(HSmon) is a ring by the tensor product.

There is a natural linear map, called the Hodge spectrum

hsp : K0(HSmon) −→ Z[t1/Z] :=
⋃

n≥1

Z[t1/n, t−1/n],

with hsp([H]) :=
∑

α∈Q∩[0,1[ t
α
(∑

p,q∈Z dim(Hp,q)α
)
tp, for any Hodge struc-

ture H with an endomorphism of finite order, where H p,q
α is the generalized

eigenspace of Hp,q with respect to the eigenvalue e2π
√
−1α.

Let us denote by r the dimension of X. We recall that hsp(f, x) :=

(−1)r−1hsp(χh(Fx) − 1) is called the Hodge spectrum of f at x.

We denote by χh the canonical ring homomorphism (called the Hodge

characteristic)

χh : Mµ̂
C −→ K0(HSmon),
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which associates to any complex algebraic variety Z, with a good µn-action,

its Hodge characteristic together with the endomorphism induced by Z →

Z : z 7→ e2π
√−1/nz.

Theorem 6.7. ([1]) Assume the above notation with k = C. Then we

have the following equality in K0(HSmon):

χh(Fx) = χh(Sf,x).

In particular it follows that

hsp(f, x) := (−1)r−1hsp(χh(Sf,x) − 1),

thus the motivic zeta function Zf,x(T ) completely determines the Hodge

spectrum of f at x.

Hence we deduce from Theorem 6.4, since hsp(χh(L)) = t, the follow-

ing:

Corollary 6.8. Assume k = C. Let (G1, X1) and (G2, X2) be irre-

ducible regular prehomogeneous vector spaces which are related by a castling

transformation. Then the following relation holds between the Hodge spectra

of f1 and f2 at 0

1 + (−1)mr1−1hsp(f1, 0)∏
1≤j≤r1

(1 − tj)
=

1 + (−1)mr2−1hsp(f2, 0)∏
1≤j≤r2

(1 − tj)
.

§7. Some generalizations

7.1. Assume k is a field of characteristic zero. We now consider the

general case of prehomogeneous vector spaces which are not necessarily

irreducible and regular. In this setting we are given a connected linear

algebraic group G together with a linear action ρ : G → EndX on a finite

dimensional (linear) affine space X over k, such that the action is transitive

on a dense open set O = X \ S. Let Sj, 1 ≤ j ≤ `, be the k-irreducible

components of the singular set S which are of codimension 1 in X and

choose for every j a defining equation fj = 0 of Sj. Recall that a non-zero

k-rational function on X is a k-relative invariant of the G-action on X, if

there exists a k-rational character ν of G such that

f(ρ(g)x) = ν(g)f(x)
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for every g in G and x in X. The functions fj are k-relative invariants and

furthermore they are a basis of k-relative invariants in the sense that any

k-relative invariant of (G, ρ) is of the form cf µ1

1 · · · fµ`

` with c in k× and µj

in Z.

7.2. Motivic zeta function for several functions

Let X be a smooth k-variety of dimension r and consider ` functions

fj : X → A1
k. We set X0 :=

⋂
1≤j≤` (fj = 0).

For every n = (n1, . . . , n`) in (N×)`, we set |n| :=
∑

1≤j≤` nj and define

Xn :=
{
x ∈ L|n|(X) | ordt fj = nj, 1 ≤ j ≤ `

}
.

Similarly as in 3.1, we have a natural morphism f̄ : Xn → G`
m,k, which

makes Xn a X0 × G`
m,k-variety, for n in (N×)`. The motivic zeta function

attached to f = (f1, . . . , f`) is the formal series

Zf (T ) :=
∑

n∈(N×)`

[Xn/X0 ×G`
m,k]L

−|n|rT n

in MX0×G`
m,k

[[T1, . . . , T`]]. It is a rational function of T = (T1, . . . , T`) (cf.

[1], [13], [2]). When ` = 1, the relation with the definition in 3.1 is the

following: the zeta function we just defined is the image of the former one

by the canonical morphism Mµ̂
X0

→ MX0×Gm,k
which to the class of a X0-

variety Y with µ̂-action assigns the class of Y ×µ̂ Gm,k in MX0×Gm,k
. For

x a point in X0(k), one defines similarly as in the ` = 1 case, Zf,x(T ) in

MG`
m,k

[[T1, . . . , T`]].

7.3. As in 4.1 we consider a connected linear algebraic group G over

k and ρ be a representation of G in Am
k . Write m = r1 + r2 and define Xj ,

Gj and ρj , j = 1, 2 as in 4.1. We assume they give rise to prehomogeneous

vector spaces for j = 1, 2, and we say that the prehomogeneous vector

spaces (G1, X1) and (G2, X2) are related by a castling transformation. We

choose a basis of k-relative invariants f1 = (f1,i), 1 ≤ j ≤ `1 and f2 = (f1,2),

1 ≤ j ≤ `2, respectively. As in 4.1, we consider the quotient spaces Xi/SLri

as embedded by the Plücker embedding the same affine space V , and up

to renumbering the f1,i’s and multiplying them by non-zero constants, one

may assume that both the f1,i’s and the f2,i’s are the pullback of the same

homogeneous polynomials fi of degree di in V , cf. [17], [6]. In particular,

we may write `1 = `2 = `. We set d = (di) in (N×)`.

We have the following generalization of Theorem 4.2.
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Theorem 7.4. Let (G1, X1) and (G2, X2) be prehomogeneous vector

spaces related by a castling transformation. Then the relations

(7.4.1)

Zf1
(T )[SLr2,k]

∏

1≤j≤r1

(1 − T dL−j) = Zf2
(T )[SLr1,k]

∏

1≤j≤r2

(1 − T dL−j)

and

(7.4.2) Zf1,0(T )
∏

1≤j≤r1

(T−d − L−j)
∏

1≤j≤r2

(1 − L−j) =

Zf2,0(T )
∏

1≤j≤r2

(T−d − L−j)
∏

1≤j≤r1

(1 − L−j)

hold in MG`
m,k

[[T ]], with T = (T1, . . . , T`) and [SLr] = Lr2−1
∏

2≤i≤r(1 −

L−i).

Proof. The proof is just the same as the proof of Theorem 4.2.

Remark 7.5. There is an obvious generalization of Theorem 7.4 to
parabolic castling transforms as introduced in [19], cf. [6]. Details are left
to the reader.

7.6. Similarly as for the case of one function in 6.3.1, Guibert proves

in [5] that, for every α in (N×)`, − limT→∞ Zf (T α) is a well defined element

of MX0×G`
m,C

, independent of α. Let us denote it by Sf and set Sf,x :=

Fiberx(Sf ). We also have Sf,x = − limT→∞ Zf,x(T α), for every α in (N×)`.

Remark 7.7. When k = C, G. Guibert shows in [5] how Sabbah’s
Alexander invariants of f (cf. [14]) may be recovered from the motivic zeta
function Zf .

Remark 7.8. It would be interesting to investigate what information is
contained in the Hodge realization of Sf . It is quite likely that there should
be some connections with recent work of A. Libgober in [12].

The following statement follows directly from Theorem 7.4.

Theorem 7.9. Let (G1, X1) and (G2, X2) be prehomogeneous vector

spaces related by a castling transformation. Then the relation

(7.9.1) Sf1,0

∏

1≤j≤r2

(1 − Lj) = Sf2,0

∏

1≤j≤r1

(1 − Lj)

holds in MX0×G`
m,C

.
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