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ON THE MODULI OF STABLE SHEAVES ON A
REDUCIBLE PROJECTIVE SCHEME AND EXAMPLES
ON A REDUCIBLE QUADRIC SURFACE

MICHI-AKI INABA

Abstract. We study the moduli space of stable sheaves on a reducible pro-
jective scheme by use of a suitable stratification of the moduli space. Each
stratum is the moduli space of “triples”, which is the main object investigated
in this paper. As an application, we can see that the relative moduli space of
rank two stable sheaves on quadric surfaces gives a nontrivial example of the
relative moduli space which is not flat over the base space.

Introduction

Simpson has constructed the moduli scheme of stable sheaves on an
arbitrary projective scheme ([17]). This result causes us to study many
examples of moduli spaces of stable sheaves on degenerate varieties. A
typical example is the moduli space of sheaves on a nodal curve studied
by Seshadri ([16]). He showed that the moduli space has the singularity
similar to that of base curve. On the other hand, Gieseker and Li used
the moduli space of stable sheaves on a reducible surface in order to prove
the irreducibility of the moduli space of rank 2 stable bundles on a smooth
surface ([3]). This result tells us an importance of the study of the moduli
spaces of stable sheaves on reducible schemes.

In this paper we shall study the moduli space of stable sheaves on a
reducible projective scheme X = X; U X5 such that X; and X5 are purely
d-dimensional and Y := X7 N X5 is a Cartier divisor of X7 and X5. In order
to study the moduli space, we shall use a generalization of the method
of Nagaraj and Seshadri ([11]), which was used on reducible curves. We
shall show that there is a bijective correspondence between the purely d-
dimensional coherent sheaves on X and the triples (Ej, Ey, f ) on X, where
E; is a purely d-dimensional sheaf on X;, Fs a purely d-dimensional sheaf
on X9 and f : Eily — Eg]y a homomorphism. In Theorem 1.10, we will
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show that the moduli space of triples exists and that the moduli spaces
of triples give a stratification of the moduli space of stable sheaves on X.
This stratification is a valuable tool for the study of the moduli space of
stable sheaves on a reducible scheme. In fact we can investigate a more
precise structure of the moduli space of triples from the construction given
in Theorem 2.1. From this construction, one sees that the moduli space of
triples has a fibration in étale topology whose fibers are open subschemes
of projective spaces. Although the dimension of the fibers of this fibration
is constant in the case of reducible curves, the dimension of fibers may
jump in higher dimensional case (Remark 2.2). On the other hand, there
is a bijective correspondence between the purely d-dimensional coherent
sheaves on X and the “parabolic triples” defined in Definition 3.1. The
moduli space of parabolic triples is an intersection of two moduli spaces of
triples.

As an application of the study of the moduli space of triples, we can
construct a non-trivial example of the relative moduli space of stable sheaves
which is not flat over the base scheme. We shall see an example of the
decomposition of the moduli space of rank 2 stable sheaves on a reducible
quadric surface by the moduli spaces of triples (Theorem 5.1). From this,
one sees that there are components of the moduli space whose dimension is
jumping. Moreover we shall study the deformations of sheaves on reducible
surfaces and apply it to degenerations of quadric surfaces. Then we can see
that “general” points of the moduli space on a reducible quadric surface
are contained in the limits of stable sheaves on smooth quadric surfaces
(Theorem 5.4 and Conclusion 5.5). From this point of view, one recognizes
that the concept of stable sheaf introduced by [17] makes a good sense in
this case.

The author would like to thank Professors Masaki Maruyama and Akira
Ishii for valuable discussions and encouragement.

Notation and convention

Let X be a projective scheme over a noetherian scheme S, Ox (1) an S-
very ample invertible sheaf and F a coherent sheaf on X. (Sch/S) denotes
the category of locally noetherian schemes over S and (Sets) the category of
sets. For an integer m, E(m) denotes E® Ox(m). If s is a point of S, then
we denote the fiber of X over s by X,, EQk(s) by E(s), dim H(X, E(s)) by
R{(E(s)) and Y ;~o(—1)'h*(E(s)) by x(E(s)). For a morphism g : T — S
of schemes, Er denotes the sheaf (1x x ¢)*(E) on X xgT. If F is a
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coherent sheaf on S, P(F) means Proj S(F') and V(F') means Spec S(F),
where S(F') is the symmetric algebra of F' over Og. For a polynomial H (z)
and an integer m, H|[m](z) is the shift of H(z) by m.

8§1. Fundamental properties of the moduli spaces of stable
sheaves on reducible projective schemes

Throughout this paper, we fix an algebraically closed field k.

DEFINITION 1.1. Let E be a non-zero coherent sheaf on an algebraic
scheme S over k. Then F is said to be of pure dimension d if dim(Supp F') =
d for any non-zero coherent subsheaf I’ of E.

In this section we will consider a projective scheme X over k with the
following properties:

X = X, U Xy where X; (i = 1,2) are closed subschemes of X such
that Oy, are of pure dimension d for : = 1,2 and Ix, NIx, =0,

(t)  where Iy, is the ideal sheaf of Ox corresponding to the closed
subscheme X;, and Y := X; N X5 is a Cartier divisor of X7 and
X5 at the same time.

Note that there is a canonical exact sequence
0 — Ox — Ox, ®0x, — Oy — 0.

Since Ox, and Oy, are of pure dimension d, Ox is also of pure dimension
d.

We will give a description of purely d-dimensional sheaves on X by data
on X1, Xs. Let E be a coherent sheaf of pure dimension d on X. Put

EW = (B|x,)/(Elx, )tors  E® = (B]x,)/(E]x,)tor:

where (E|x, )tor is the coherent subsheaf of Elx, such that dim Supp(E|x, )tor
< d and (Flx,)/(E|x,)tor is of pure dimension d. There is a canonical
injection i : E — EMW @ E@ . If we put E(® := cokeri, then we have the
following exact sequence;

0—FE-SEVaE® L EO 0

LEMMA 1.2. EO s an Oy -module.
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Proof. The composite Ix, — Ox — Oy, is injective and the image is
just the ideal sheaf Ox, (—Y") corresponding to the Cartier divisor Y of Xj.
Tensoring F to the injection Ix, — Ox, we have a homomorphism

Elx, ® Ox,(-Y) 2 E® Iy, — E.

Since F is of pure dimension d, the above homomorphism induces the homo-
morphism EM @Oy, (~Y) — E. The composition EN®@0x, (-Y) — E —
EM is just the canonical homomorphism. Note that ) ® Oy, (-Y) —
EW is injective since E(1) is of pure dimension d. We denote E(MV) ®
Ox, (=Y) by EM(-Y). Similarly we have a canonical injection E?)(—Y)
— E. Let (a,b) be a local section of EWD @ E@ and ¢ a local section of Iy,
where Iy is the ideal sheaf of Ox corresponding to the closed subscheme Y
of X. Then c can be written as ¢ = ¢ +c¢2, where ¢; € Ix, and ¢ € Ix,. So
¢ (a,b) = (cpa,c1b). Since coa € EW(-Y) C E and ¢;b € E?(-Y) C E,
we have ¢ - (a,b) € E. Hence Iy (E) @ E®) c Fandso IyE® =0. []

Let p be the composition:

p:E® « EOgE® ., pO),
a — (0,a)

Then we can easily see that p is surjective. Now we put E® = kerp®
Ox,(Y). Since E© is an Oy-module, the composite

E®(-Y)— @ 2, 5O
is zero. So we have a factorization
E®(-Y) — E@(-Y) =kerp — E®?,

Tensoring Oy, (Y) to the injection E?)(-Y) — E®(-Y), we have an
injection E® < E® and the composition E?)(-Y) — E®) « E® is
just the canonical injection obtained from the injection Ox,(—Y) — Ox,.
Since the composite kerp = E(Q)(—Y) — E@ - E@ E(Z)’y is zero,
there exists a homomorphism j : E(© — E®|y such that the following
diagram commutes:

0— kerp — E® X pO 9

! Lj
B L B,
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Let us consider the composition fz : EM|y — E©) EX E®)|y and put
o BN @ E® — EQly; o (a,b) == fulaly) — bly.
We have a canonical injection E — EM ¢ E®?) — g ¢ E@).

LEMMA 1.3. With respect to the above injection E — EM g E(z)} we
have E = ker @, .

Proof. Since the diagram

0— EF — EWaE® — EO _,9g
! Li
EM g E® 2B po),
commutes, the composite £ — E1) @ £(2) in, E®|y is zero. So we have
the inclusion £ C ker ¢y,. Conversely let (a,b) € ker ¢, C EW @ E®@ be
a local section. There exists a local section a € E such that a|x, = a in
EW. If we put b := b — a|x, (€ E?), then (0,V) = (a,b) — () € ker ¢y,
and so we have only to prove that (0,0) € E. Since 0 = ¢g(0,0) =V|y in
E@|y, ¥ € E@(=Y) = kerp ¢ E®. Hence (0,¥) is in the kernel of the
homomorphism EM ¢ E?) — E©) and so (0,V) € E. [

DEFINITION 1.4. Let Ej (resp. Eg) be a coherent sheaf of pure dimen-
sion d on X1~(resp. Xo). Let f: Eqly — E2|3f be a homomorphism. Then
we call (E1, Ea, f) a triple. Two triples (E1, Ea, f), (EY, B3, f) are said to
be isomorphic if there exist isomorphisms g1 : By — EY, g2 : E2 — E} such
that the diagram

Erly L, Byly
gily 12 g2ly 1
Bly L By
commutes.
The following proposition is a generalization of [[11], Lemma 2.3].
PROPOSITION 1.5. E (E(l),E(Q),fE) is a bijective correspondence

between the isomorphism classes of coherent sheaves of pure dimension d
on X and the isomorphism classes of triples.
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Proof. Take a triple (Ey, Ey, f). Put
¢ E1 @ Ey — Eoly;  @f(a,b) = f(aly) — bly.

We will show that (Ey, Ey, f) — ker ¢ gives the inverse map. If we put
E := ker ¢y, then we can construct the triple (E(?,E(Q),fg). Since we
know Lemma 1.3, we have only to prove that (E(l),E(Q), fE) = (E1, Eo, f).
From the definition of E(M), the homomorphism E — E; factors through
EM.

E—EY 3 R

By construction £ — FEj is surjective. On the other hand, o7 is injective
since it is injective on X; \ Y and EW is of pure dimension d. Thus o7 :
EM — E; is an isomorphism. Put v : Eg(—Y) < Ey < Fy & Fy. Then 1
factors through E. Let ¢/ : E5(—=Y) — E be the induced homomorphism.
Then

0—E(-V) Y E B —0

becomes an exact sequence. On the other hand

0— E(Q)(—Y) —E—ED 0

~

is also exact. So we have an isomorphism E?)(=Y) = Ey(—Y) with the
following commutative diagram:

0— E(Q)(—Y) —~ E — E®O _—0
B 1 | Ulow
0— FE(-Y) — E — FE —0.

This isomorphism induces the isomorphism E?) %2 B, and the diagram

E®(-Yy) — E — E®
¥ I e
Ey(-Y) — E — FEy

commutes. Since the diagrams

E — E® - FE E — E® — E®
N\ ! N\ !
Ely L Ely EW), LB RO
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both commute, we can see that the diagram

EM}y 12 pO),
! lot ! oo
Eily L By

commutes. Thus we have an isomorphism (E(l),E(Q),fE) = (El,Eg,f).

O

Now let us recall the definition of stable sheaf on X. We fix a very
ample line bundle Ox (1) on X. Then the Hilbert polynomial of a coherent
sheaf E on X with respect to Ox (1) can be written as

d —i

X(Em) =3 ai(E) (mj_di )
=0

with a;(E) integers. We put u°(E) := a1(E)/ao(E).

DEFINITION 1.6. Let E be a coherent sheaf of pure dimension d on X.

E is said to be stable (resp. semi-stable) if for any coherent subsheaf F' of
FE with 0 < CL()(F) < ao(E),

X(F(m))/ag(F) < x(E(m)) /ao(E)
(vesp. <)

for all sufficiently large integers m.

Let (Sch/k) be the category of locally noetherian schemes over k. Let
H, Hy, Hy, H{, H, be numerical polynomials of degree d such that H =

DEFINITION 1.7. We define a functor M : (Sch/k) — (Sets) by

ME(T) =
FE is a T-flat coherent sheaf on X x T
E | such that y(E(t)(m)) = H(m) and [~
E(t) is a stable sheaf for all t € T

where F ~ E’ if and only if £ = E' ® L for some line bundle L on T
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We define a functor Mg)}f{l}gz : (Sch/k) — (Sets) by
W,y

1),Hy ,H
M1, (T) =
E; is a T-flat coherent Ox, x7-module,
~ Eg is a T-flat coherent Ox. «7-module
E B s 2 ~
(Bx, By, f) and f: Ei|lyx17 — Es|yx7 is a homo- /
morphism with the property ()

where (Ey, Ey, f) ~ (E}, E}, f') if and only if there exist a line bundle L on
T and isomorphisms g; : By = E{® L, g : By = E,® L with the following
commutative diagram:

Eilyxr 1, Eslyxr
gilyxr 12 glyxr |

Ellyxr® L AN Ejlyxr ® L.

(*) For any t € T', E)(t) and Es(t) are of pure dimension d, x(F(t)(m))
= Hi(m), x(Ex(t)(m)) = Ha(m), x(Ei(t)(=Y)(m)) = Hi(m),
X(E2(t)(=Y)(m)) = Hy(m) and ker g is a stable sheaf on X x k(t),
where @y @ E1(t) @ E2(t) — Ea(t)|y xk() is the homomorphism de-
fined by @) (a,b) := f(t)(aly) — bly.

(2)7H17H2 .

We can similarly define a functor M XH|H

2),Hy , H.

E5 is a T-flat coherent Ox, x7-module,
~ El is a T-flat coherent Ox, «-module
FEi,E N 1 ~

( b Q’f) and f : EQ‘YxT — EI‘YXT is a homo- /
morphism with the property (+)

(1),Hy,Ho

where ~ is the equivalence relation defined similarly to that of M7, /",
s 117,119

(+') For any t € T, Fy(t) and Ey(t) are of pure dimension d, x(Ex(t)(m))
= Hx(m), x(Ei(t)(m)) = Hi(m), x(B(t)(=Y)(m)) = Hj(m),
X(E1(t)(=Y)(m)) = Hi(m) and ker ¢ is a stable sheaf on X x k(t),
where g4 @ Ea(t) @ E1(t) — E1(t)|y xk() is the homomorphism de-
fined by gof(t)(a,b) = f(t)(aly) — bly.
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Let (Ey, Es, f) be an element of Mg)}f{l}? (T). If we put
341,11y

¢r i E1® By — Bolyxr;  ¢f(a,b) := flalyxr) — blyxr,

then ker s is an element of ME(T). So we can define a morphism of
functors:

Q: ng)i[}?ng - Mg’ (E17E27f) — ker @f

. 1),Hy,H

PROPOSITION 1.8. The morphism ® : ./\/lg()}j[,ll’q,2
IR R

morphism. Moreover for any noetherian scheme S over k and for any

(1),H1,H2

X,H! H},

— ML is a mono-

morphism of functors hg — ME, hg X mH M
subscheme Sy of S.

1s representable by a

Proof. First we will prove that ® is a monomorphism. Take T-valued

: - O gl (1),H1,H> - _

points (E1, B, f), (E1, By, f') of MY/ ;" such that ®((Ey, Es, f)) =

~ ~ ~ ’ 1 2 ~ ~

q)((Ei, Eé, f/)) Let pf: FEi®FEy — E2|y><T and P Ei@Eé — Eé|y><T be

the homomorphisms induced by f and f’ respectively. Put E := ker ¢y and

E'" :=ker pp. Then there exist a line bundle L on T and an isomorphism
o0:E > E'®o, L. The injection

factors through E: .
(1) El(—Y) — F — FE; & Es.

On the other hand, the canonical commutative diagram

Ix,® E — E

(2) L L
Ix, ® (E1®E>) — E®E

induces the following commutative diagram:

Ix,E — E

3) Lol
El(—Y) — FEi1 & Es.

The homomorphism Iy, ® E — E;(—Y) is surjective since the canonical
homomorphism E — F4 is surjective. Hence the sequence

(4) 00— E(-Y)— F—F®0x, —0
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is exact. The injection

factors through E: 3 .
(5) Ey(=Y) = E— E1 ® Ej.

We can easily check that

(6) 0— Ey(-Y) — E—FE —0

is an exact sequence. Similarly to (4) and (6), there are exact sequences:
(7) 0— E{(-Y)—F — F ®0x, —0

(8) 0— EYy(-Y) — E' — Ej — 0.

From (4) and (7), there is an isomorphism o} : Ei(=Y) = E{(-Y) ® L
such that the following diagram commutes:

Ix,®E — E(-Y) < E

(9) 1®c |2 a1 ol
Ix, FF®L — E{(-Y)®L — FE ®L.

Let 01 : By = E} ® L be the isomorphism obtained by tensoring Ox, (V)
to of. Then we have the following commutative diagram:

) I E1
(10) ol o1 1
EF®L — E{®L.

Taking the kernels of the horizontal homomorphisms of the diagram (10)
and using (6),(8), we get an isomorphism o} : Fo(—Y) = E4(-Y)® L such
that the diagram

Ix, ®E  —  Ey(-Y) — E
(11) 1®0 |2 B ol [ ol
Ix, ®F'®L — FEY(-Y)®L — FE®L

commutes. Note that there is a commutative diagram

Ix, ® E — FEy(-Y)

[
2 — EQ.
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Let 09 : Ey — E5® L be the isomorphism obtained by tensoring Oy, (Y)
to . Then a commutative diagram

) e EQ
(12) o] o2 [
EF®eL — E,®L

is obtained. From the definition of E and E’, the diagrams

EF — E1 — EﬂyXT E — Ei — EHYXT
13 N L N Y
Ey, — Eslyxr E), — FElyxr

both commute. Hence from (10) and (12), the following commutative dia-
gram is obtained:

Eilyxr L, Esly x1
(14) oilyxr |1 o2lyxr L2

Ellyxr®L L, Elyxr ® L.

These mean that (Ey, By, f) ~ (E}, EY}, f') and so ® is a monomorphism.

Next we prove the second assertion of the proposition. Let S be a
noetherian scheme over k and ¢ : hg — M)}g a morphism of functors. ¢
is given by an element E € MZ(S). From the flattening stratification
theorem, there exists a subscheme S; of S such that for any 7' € (Sch/k)
and any morphism f : T' — S, f factors through S if and only if (1 x
[)*(E® Oyx,) is flat over T and x((E ® Ox,) @ k(t)(m)) = H(m) — Hj(m)
forallt € T. Let ¢ : Es, — Eg, ® Ox, be the canonical surjection. Since
ker g is the image of the homomorphism Iy, ® Eg, — Eg,, it is an Ox, xs,-
module. If we put B0 := kerq @ Ox, (Y), then E(M) becomes an S;-flat
Ox, xs,-module. The composition

g : ES’I — E|X1><Sl :> IX2 ®E|X1><Sl ®OX1(Y) — kerq®OX1 (Y) :) E(l)
is surjective. Since the diagram

IX2 ® E31 — E31

(15) ! Ly
Ix, - Eg, = EV(-Y) — EO

commutes, the composition EM(—Y) — Eg, % EM is just the canonical
injection induced by the inclusion Ox,(-Y) < Ox,. The image of the
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homomorphism Iy, ® kerg — Eg, is contained in EM)(—Y) and the com-
position EM(-Y) — Eg, % EM is injective. Hence Iy,kerg = 0 and so
ker g is an Oy, xs,-module. Put E?) := ker g2 O, (Y). Note that £ and
E® are both flat over S1. So there exists an open and closed subscheme Sy
of S1 such that a point s € S is in Sy if and only if the following equalities
hold:

X(BW @ k(s)(m)) = Hi(m), x(E® @ k(s)(m)) = Ha(m)

(16) " (E® @ k(s) (=Y ) (m)) = Hy(m).

Since the composite Ix, ® Eg, — Eg, 2 EW is zero, the image of the
canonical homomorphism Iy, ® Eg, — Eg, is contained in ) (—Y"). Then
we have the following composition:

gl;E‘S1 _>E‘X2><Sl :>IX1®E51®OX2(Y)—>E(2)

There exists a homomorphism « : Ek(gll) — E® |y xs, satisfying the following
exact commutative diagram:

0— E(z)(—Y) — LEg, 4, E® — 0
(17) ) I g e
0— E®@-Y) — E®@ — E@y,5 —0.

Let f: E(1)|YX51 — E(2)|YX51 be the homomorphism induced by «. Put

ED g EO E®|y s,

Prf -
(18) (a,b) — f(a\stl) — b|Y><Sl'

Let i : Eg, — EM @ E® be the homomorphism induced by the homo-
morphisms g : Fg, — E® and ¢ : Eg, — E® i is injective since its
restriction to every fiber over S; is injective ([4], IV Proposition (11.3.7)).
Moreover we can check that the sequence

(19) 0— Eg, > EMN e E® L E@)y o —0
is exact.
. 1) &2 1),H , H:
The triple (Eéo), EL(%), fs,) defines an element of M(X};,ij;,;(so). Then

we have a morphism ¢’ : hg, — M?g{l}’g?. From the exactness of (19),
s ALy,

the following diagram commutes:

hSo — hS
(20) ¢ | lé

1),H1,H2 H
M = MY
X, H!,H}, X
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In particular we have a monomorphism

(21) hsy = MGt 112 X g hs = hs.

Let ((E1, By, f), 1) be any element of M1 (T)  pqss ) S(T). Put

(22) ¢y E1@© Ey — Eolyxr;  ¢g(a,b) = flalyxr) — blyxr.

Then we have Ep = ker oy @ L for some line bundle L on T'. Replacing
(E1, Eo, f) by (E1, Es, f) ® L, we may assume that Ep = ker ¢y.
From (4),(6), there are exact sequences:

(23) 0—>E1(—Y)—>ET—>E’X2><T—>O
(24) 0 — FEy(-Y) — Ep — E; — 0.

Since E1(=Y)(t) — E(t) is injective for all ¢t € T, E|x,xr is flat over T
([4], IV Proposition 11.3.7) and x(E|x,x7(t)(m)) = H(m) — H{(m) for all
t € T. Hence the morphism 1 : T' — S factors through Sy. This proves
that hg, — Mg)HfleZQ X i hg is an isomorphism. 0

Let us recall the following well-known result. The proof is in [17] or [9].

THEOREM 1.9. (Simpson) There ezists a coarse moduli scheme M¥
H
of Mx.

As a corollary of Proposition 1.8, we have the following result.

. . 1),H1,H

THEOREM 1.10. There exists a coarse moduli scheme M)(();I/ 1151/2 of
s Ll flg

Ay (D HLH>

(1),H1,H2
M X,H!,H]},

X,H!HY - is a subscheme of M.

Moreover

Proof. From the arguments in [17] or [9], we can see that the moduli
scheme M for MI is obtained as a quotient of an open subscheme R of
a Quot-scheme by an action of PGL(V') for some vector space V over k.
Moreover R is a principal PGL(V)-bundle over M. Note that the notion of
e-stable sheaf is now needless because the boundedness of semistable sheaves
has been proven ([7]). From Proposition 1.8, there exists a subscheme R’

of R such that hp = hp X./\/lg M(1)7H17H2

. From the construction, R’ — R
X,H/,H], )

is PGL(V)-equivariant and R’ descends to a subscheme M )((1 )HI,{lHIiIQ of M.
[EE REE)

Since R — MWL 4oy principle PGL(V')-bundle, we can easily see that

X,Hi,Hé
(1)1H17H2 D

(1),H1,H2
M X,Hi,Hé :

is a coarse moduli scheme of
X,H,H} M
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The following Proposition means that M )((1);[1;12 and M have the
5114

” (1)1H17H2
of MX,H{,HQ .

same scheme structure at “general points
ProprosiTIiON 1.11. Let R be a noetherian local ring and s be the closed
point of Spec R. Let E be an R-valued point of MX. Assume that the

triple (Fy, Fy, f) corresponding to E(s) is contained in /\/l(;)HfleF{Q(k(s))
i1y,

and that f : Fily sk — F2|y><k(s) is surjective. Then E is contained in

1),Hy,H
MU (R).

Proof. The canonical homomorphism E(s) — F, is surjective since
f is surjective. Hence Fy(—Y) C E(s) is the image of the canonical ho-
momorphism Ix, ® E(s) — E(s). On the other hand there is an exact
sequence;

0 — F(~Y) — E(s) — F; — 0.

So we have an isomorphism E(s) ® Ox, — Fj. Hence the canonical ho-
momorphism Iy, ® E(s) = Fi(=Y) — E(s) is injective. Since E is flat
over S, Ix, ® E — E is injective and F ® Oy, is flat over S ([4], IV
Proposition (11.3.7)). From the proof of Proposition 1.8, E is contained in

1),Hq,H
M (R). 0

Remark 1.12. Take a member B € M (k). Let (EM E® | fp) €

(1),Hz1,H (1) (2) (2),G1,G2 :
MX,H{,HQ (k) and (EWW, E¥ gp) € MX’G,PG/2 (k) be the corresponding

triples. Then we can check that fr : EM|y — E®@|y is surjective if and
only if gg : E®|y — EW|y is injective. If a point p = [E] € M (k) satis-
fies this equivalence condition, then we can see from the proof of Proposition

(2)7G17G2
1.11 that MX,G’I,G’Q

and M )Ig have the same scheme structure at p.

The following proposition means that we can fix the rank of the sheaf
restricted to X; or X5 in considering the moduli space of stable sheaves on
X.

ProproSITION 1.13. Let S be a connected locally noetherian scheme
and E be an element of MXL(S). Then ao(E|x,xs(s)) and ao(E|x,xs(s))
are constant on S, where ag(E|x,xs(s)) is the integer defined before Defi-
nition 1.6.
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Proof. Take any point s of S. Let ty,...,tq € H(X,Ox (1)) be general
members such that Z10---NZyNY = @ and E|(z,n..nz,_,)xs(5)@0x(—1) LA
E|(zn-nz;_1)xs(s) are injective for i = 1,...,d, where Z; := Z(t;) is the
zero scheme of ¢;. Then each E|(z n..nz,)xs is flat over a neighborhood of
s. In particular El(z n..nz,)xs is finite and flat over a neighborhood of s.
Put Wy = (Zlﬂ“'ﬂZdﬂXl) x S and Wy := (Zl ﬂ---ﬂZdﬂXg) X
S. Then E|w, and E|w, are both flat over a neighborhood of s. Hence

ao(E|x,xs(t)) = X(E|w, () and ao(E|x,xs(t)) = x(E|w,(t)) are constant
on a neighborhood of s. 0

§2. Direct construction of the moduli space of triples

In this section we will give another construction of the moduli space

M )((1 )HlleIfQ of triples. There exists an integer mg such that for any integer
sily,41o

m > mg and for any geometric point (E;, Ey, f) € Mg)}?}{@(l{:),
iy,
(i) HY(Ey(m)) @ Ox, — Ei(m) and H(Ey(m)) ® Ox, — Es(m) are

surjective, and
(ii) HY(Ei(m)) =0, H'(Ey(m)) =0 and H(Ey(=Y)(m)) = 0 for i > 0.

Let Vi (resp. Va) be a vector space over k of dimension Hi(myg) (resp.
Hs(my)). Let us consider the open subschemes

Q1 :=
Vi — HO(E}) is bijective,
(Vi ® Ox, — F1] € Quotﬁléz;r?%ﬁ Ji| E1 is of pure dimension d ,
and H'(Fy) =0 for alli >0

Q2 =
Vo — HO(Ey) is bijective,
Vo ®Ox, — Eg] € QuOtCIQ@gg;TZ%(Q Ik B, is of pure dimension d
and H*(Ey) =0 for all i > 0

Hi( Ha( .
of Quotvl®ggxm%(1 sy, and Quotvj®ggxm(/))x Ji, respectively. Let ViQOx, xQ1xq.

— & and Vo ®@ Ox,xQixQs — 52 be the pull back of the universal quotient
sheaves. Then €]y xQ,xqQ, and |y xQ,xq, are flat over Q1 x Q2. From
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the result of base change theorem ([1], (1.1)), there exists a coherent sheaf
H on Q1 X @2 such that

Hom(H ® Op, M) — (77).(Hom(€1 ® Oy x1,E ® Oy w1 @ M))

for any morphism T — @1 X (2 and any quasi-coherent sheaf M on T', where
nr Y x T — T is the projection. Let us consider V(H) = Spec(S(H)).
From the property of H, the canonical homomorphism H® Oy (1) — Oy (x)
corresponds to a homomorphism:

[ & ®O0yvpy — &8 Oy v
Then we can define the following homomorphism;
o7 (Eviry © (E2)vin — 28 Oyuvny
(a,b) — f (G\YxV(H)) - b\YxV(H)-
If we put & := ker p s @ Ox(—mp), then &' is flat over V(H). We put
E'(s) is a stable sheaf on X x k(s)

P:=qse V(H)| x(&(s)(=Y)(m)) = Hi(m + mg) and
X(&2(s)(=Y)(m)) = Hy(m + mo)

If we put € := &'|x«p, then it induces a morphism

/. (1),H1,H>
II" : hP — MX,H{,Hé .

LetII: P — M )((1 )HI?IH?Q be the morphism induced by the composition
s iy, 1o

W, (1),H,Hs
— My himy — hM“)’f,’l’f,’?'
X, H! H]

hp

Put G := (GL(V1) x GL(V3))/Gy,, where G,,, — GL(V;) x GL(V3) is the
diagonal embedding.

THEOREM 2.1. II: P — M)((l)[fl[f# is a principal G-bundle.
yi1q,41g

Proof. Let S be a locally noetherian scheme over k and take elements
g € Gand z € V(H)(S). ¢ is given by a line bundle £ on S and two
isomorphisms g; : V; ® Os = V; @ Og ® L (i = 1,2). x is determined by
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quotients p; : Vi ® OX1><§ — By, p2: Vo ® Ox,xs — Eg, and a homo-
morphism f : Ei|lyxs — E2|lyxs. Let g -z be the S-valued point of V(H)
determined by the following data:

Vi®Ox,xs 25 V1 ®0x,xs @ L 25 By @ L,

Vo ® Oxyus 2 Vo ® Ox,xs @ L 25 Ey® L and
®1 ~

Ey ® L|yxs el g, ® Lly xs-

Then we can define the action:

0:GxV(H)—V(H); (g,z) —g-x.

(1),H1,H>
X,H),H},
is G-equivariant. So we obtain a morphism of functors ¢ : hp/hg —

MPFI2 where hp/hq s the functor defined by
i,y

o induces the action of G on P and the morphism II' : hp — M

(hp/hc) (S) = P(5)/G(S5)

for any locally noetherian scheme S over k. Let z and 2’ be S-valued
points of P such that II'(z) = II'(2/). Let p1 : V1 ® Ox,xs — Fj and
P2t Vo ® Ox,xs — EQ be the quotient sheaves determined by = and p} :
V1 ® Ox,xs — FE} and ph : Vo ® Ox,xs — EQ be the quotient sheaves
determined by /. Let f : Eilyxs — Eg]st and [ : Ellyxs — Eé]st
be the homomorphisms determined by z and z’ respectively. Then there
exists a line bundle £ on S such that By = Ff ® £, By = E} ® £ and the
following diagram commutes;

Eilyxs 1, Ebly s
3 I
E{ ® Llyxs L, E§®£’YX~9'

So we have an isomorphism g : V; ® Og = m.(E1) = m(E1 QL) = VIR L,
where 7 : X; x S — S is the projection. The isomorphism Ey 2 E’é ® L
induces the isomorphism go : Vo ® Og = Vo ® L. Then [(g1,92)] -2’ = z
and so 1 is a monomorphism. It is easy to see that ¢(R) is surjective for

any local ring R. Hence the sheaves associated to the presheaves hp/h¢g ,

Mg)}[}{lh}{g with respect to Zariski topology are isomorphic. From this fact
s iy, 41o
one sees that the morphism II' : P — Mg)}IF{I}II{Q is formally smooth and
341,11y

M(1)7H1 7H2

is smooth.
X,H},H},

thus the morphism II: P —
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Let us consider the morphism

@ : GxP—P XM(1>’H17H2 P.

X,Hi,Hé

We must prove that ¢ is an isomorphism. Note that P X A (Do HH P =

! !
X,HY,H)

P x (D1 P. First we will prove that ¢(R) is injective for any artinian
X,H’! H!

local ring R over k. Let (g, ), (¢',2’) be two elements of G(R) x P(R) such
that (g-x,2) = (¢’ - 2/,2'). Then z = 2/ and g~'¢’z = z. Let (E1, Ea, f)
be the triple determined by x and E be the associated coherent sheaf on
X x R. Then we have Homxyr(FE, E) = R. If we write (g1,92) := g~ !¢/,
then there are isomorphisms h; : By = Eq, hs : Eg = EQ such that the
diagrams

% ®OX1 RN E; V2®OX2 ELN Eg
gl h1 g2 11 ha |0
Vi®0Ox, - E V,®0x, 22 By

commute, where p; and po are quotients determined by z, and the diagram

Eilyxr L, Eslyxr

h1 | ha |

Eilyxr L, Eslyxr

commutes. (h1,hs) induces the automorphism E = E. Since Hom(FE, E) =
R, this isomorphism is a multiplication by an element ¢ of R. So hy =c¢-1
and hy = ¢-1. Since Vi ® R = HO(F;) and Vo ® R = H(Ey), g1 = c¢-1 and
go =c-1. Hence g '¢’ =1 in G(R) and (g,z) = (¢, 2).

Hence ¢(R) is injective for all artinian local rings R over k and so ¢ is
a monomorphism. Since v is a monomorphism, ¢(S) is surjective for any
S € (Sch/k). Hence ¢ is an isomorphism. U

Remark 2.2. If X1, Xy are non-singular curves, then H is a locally free
sheaf. However, H is not necessarily locally free in higher dimensional case.
(See Remark 5.2 for this example.)

Remark 2.3. By [[9], Proposition 4.10], there exists an integer [y such
that for any | > Iy, for any E € M%L (k) and for any coherent subsheaf F of
with 0 < ag(F) < ag(E), the inequality h°(F(1))/ao(F) < h°(E(1))/ao(E)
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holds. We assume farther that mg > ly. Then we can also prove that the
quotient P/G exists by using geometric invariant theory. Namely one can
show that all points of P are stable points with respect to the action of G
and some polarization.

Remark 2.4. Assume that Hy # 0 and Hy # 0. Consider the projective
bundle P(H) over Ql X QQ. Let f : 51 &® OYXP('H) — 52 X OYXP(H) &
Op#)(1) be the homomorphism corresponding to the canonical surjection
H@Op ) — Op)(1). Let o7 : (€1)p)@E220p 1) (1) — E200p (1) (1)@
Oy xv(w) be the induced homomorphism. Put

) ker p7(z) ® Ox(—myg) is stable,
P:=qzeP(H)| x(&(s)(=Y)(m)) = Hi(m + myg) and
X(&2(s)(=Y)(m)) = Hy(m + mo)

Then P is an open subscheme of P(#). By the same arguments as Theorem
2.1, we can see that P — M)((l)HIZIIHIZQ is a principal PGL(Vy) x PGL(V3)-
bundle.

§3. Parabolic triples

Let X be a projective scheme over k satisfying the condition () of
section 1.

DEFINITION 3.1. A parabolic triple is a triple ((E1)«, (E2)«,0), where
(E;)« is a filtration E;(-Y) C E! C E; of coherent sheaves on X; of pure
dimension d for i = 1,2 and ¢ an isomorphism o : E1/E] = Es/Ey on Y.

DEFINITION 3.2. Two parabolic triples ((E1)«, (E2)«,0) and ((F1)s,
(Fy)«, 7) are said to be isomorphic if there exist isomorphisms 6; : E; = F;
for i = 1,2 such that 6,(E}) = F/ for i = 1,2 and the diagram

E\/E; % FE,/E)
éll éQl
F/F — F/F

commutes, where 0; : E;/E! = F;/F! is the isomorphism induced by 6;.

PROPOSITION 3.3. There exists a bijective correspondence between the
isomorphism classes of coherent sheaves of pure dimension d on X and the
isomorphism classes of parabolic triples.
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Proof. Let E be a coherent sheaf of pure dimension d on X. As in the
argument in section 1, there is an exact sequence

0—FE-—EYeE® - EO

Let EY be the filtration E®(~Y) ¢ EO(~Y) ¢ E® for i = 1,2. Let
o be the canonical isomorphism EM/EM(—Y) 5 EO) 5 @) /E?)(—Y).

1) p@

Then we obtain a parabolic triple (E: ', E,”’,0) for E. It is easy to see that

E— (Eil), E£2), o) is a bijective correspondence. 0

A flat family of parabolic triples on X7 /T is a triple ((E1)«, (E2)«,0)
such that for each 4, (E;), is a filtration E;(=Y) C E! C E; of coherent
sheaves on X such that E; and E;/E] are flat over T, E;(t) is of pure
dimension d for any t € T and o : E1/E} = FEs/FE} is an isomorphism. For a
flat family ((E1)«, (E2)«, o) of parabolic triples, we define a homomorphism

UiEl@EQ %EQ/E%

by ¢,(a,b) = o(a) — b where a is the image of a by F; — Ei/E}. Let
(H;)« be sequences of numerical polynomials H;(m), H;(m), H,(m), H](m)
for i = 1,2 such that H(m) = Hyi(m) + Hy(m) = H{(m) + Ha(m).

DEFINITION 3.4. We define a functor

par—M(XHl)*’(HQ)* : (Sch/k) — (Sets)

par—/\/lgfh)*’(Hg)*(T) =
((E1)«, (F2)«,0); a flat family of parabolic
triples on X7 /T such that for any ¢t € T, / N
((E1)«, (F2)s,0) ® k(t) satisfies the
following condition (a)

where ~ is the equivalence relation defined by (b).

(2) X(B{()(Y)(m)) = Hy(m), (Ei(t)(m)) = Hi(m), x(Ej(t)(m)) =
Hl(m) and x(E;(t)(=Y)(m)) = H/(m) for i = 1,2 and ker ¢, (t) is
a stable sheaf on X x k(t).
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(b) ((E1)«, (E2)x,0) ~ ((F1)«, (F2)«, 7) if there are a line bundle L on T
and isomorphisms 6; : E; = F; ® L with 6;(E!) = F/ ® L for i = 1,2

such that the diagram

EJE, % R/FleL

ol 7l

Bo/Ey 5 R/FelL
commutes, where 0; : E;/E! = F;/F! ® L is the isomorphism induced
by 0@

We can define a morphism of functors
. par—/\/lgfh)*’(Hg)* — MY
by W((E1)«, (E2)s, 0) := ker .

*7(H2)*

ProposITION 3.5. U : par—M(XHl) — ./\/l§ s a monomorphism.

(H1)+,(H2)» _ (1),Hy,Ho (2),H1,Ho
Mo;’eover par-M = MX,H{,I?; N MX,H{,H; as subfunctors of
Mx.

Proof. Let ((E1)«, (E2)s,0) and ((F1)s«, (F2)«,7) be two T-valued
points of par—Mgg{l)*’(HQ)* such that W((E1)«, (E2)x, 0) =Y ((F1)s, (F2)«,T).
If we put E := ker ¢, and F := ker @, then there exists a line bundle L

on T such that £ =2 F ® L. From the similar arguments to the proof of
Proposition 1.8, the homomorphism

El(—Y) — F1 ¢ FEy
a —  (a,0)

factors through E and the induced sequence

0— FE(-Y)—FE—E®0x, —0
is exact. Similarly the exact sequence

0— F(-Y)—F—F®0x, —0

is obtained. Thus there exists an isomorphism E1(—Y) = F;(—=Y)® L such
that the diagram

Ix,E — E(-Y) < E

1 1 1
Ix, FQL — F(-Y)®L — FQ®L
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commutes. Then for the induced isomorphism F; = F; ® L, the diagram

FE — E1

1 1
F@L — Fi®L

commutes. Similarly we obtain an isomorphism Ey = Fy ® L such that the
diagram
FE — EQ
A A
FRL — KL

commutes. Thus we obtain an isomorphism Fs/FE} = Fy/F; @ L and the
exact commutative diagram:

0— E — E,® Es — E,/FE) —0

n n 1
0— F®L — FRRLOFKRRL — (F/F)L — 0.

This implies that ((E1)x, (F2)«,0) ~ ((F1)s, (F2)«, 7) and so ¥ is a mono-
morphism.

Take ((E1)«, (E2)s,0) € par—M(XHl)*’(HQ)*(T) and put E := ker p,. By
definition, the canonical homomorphism Fi(—Y)(t) — E(t) is injective for
all £ € T'. So the exact sequence

00— E(-Y)—F—F®0x, —0

concludes that E®Qyx, is flat over T ([4], IV Proposition (11.3.7)). Similarly
E® Oy, is also flat over T'. Hence the proof of Proposition 1.8 implies that

B e MUy o @0y,

X,H! H X,H! H)
1),H,H. 2),H,H ~
Conversely take E € M;?H{Tﬁ; (T)N Mﬁ(?ﬁin; (T). Let (Ey, Ea, f1)

and (Ey, Es, f2) be the corresponding triples. Then we have the following
two exact sequences:

0—>E—>E1@E2—>E2’Y><T—>0
0 — F— Ey® Ey — Eqilyxr — 0.

Consider the composition E}(—Y) — E — E;. Since El(—Y)(tz — Eq(t)
is injective for all t € T, Ey(—Y) — E; is injective and E;/Ei(-Y) is
flat over T' ([4], IV Proposition (11.3.7)). Moreover we have a factorization
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Ei(-Y) — E1(-Y) < Ej. Similarly we have a factorization Ey(—Y) <
Ey(=Y) < Ej. Since E(t) — E1(t) ® E»(t) is injective for any t € T, E —
E, & E» is injective and the cokernel Ej is flat over T' ([4], IV Proposition
(11.3.7)). The exact sequence

0—>E~‘1(—Y)—>E%E2—>O

implies that F;/E1(—Y) = Ey. Similarly Ey/Ey(—Y) = Ey. Hence E is

contained in par—Mgfl)*’(Hg)* (T). 0

)*,(HQ)*

THEOREM 3.6. A coarse moduli scheme par—M)((H1 of par-
/\/l(XHl)*’(HQ)* exists. Moreover par—M)((Hl)*’(Hz)* is a subscheme of MY and
is the scheme theoretic intersection MQ?IZI}? N M)(?)Ifﬁ?

Proof. The proof is similar to Theorem 1.10. 0

We will give another construction of the moduli space of parabolic

triples. There exists an integer mg such that for any integer m > mg and
for any ((E1)«, (Ea)s,0) € par-M =) (1),

(i) Ei(m),(E;/E})(m) are globally generated for i = 1,2,
(i) H’(E;(m)) =0,H((E;/E})(m)) =0 for i = 1,2 and for any j > 0.
For i = 1,2, put V; := k®Hi(m0) and

FE; is of pure dimension d,
Qi:=1{ [Vi® Ox, — Ei] € Quotyilps) x| Vi H(E) is bijective
and H/(E;) =0 for j >0

Let V; ® Ox,xq, — & be the universal quotient sheaf. Let R} be the Quot-

scheme QUOtgi/[z_oi_QIj}g? o} and (&;)r — G; be the universal quotient sheaf.

From [[19], Corollary 2.3] there exists a subscheme R; of R} such that for
any T € (Sch/k),

Ri(T) := {T — R,

Ei(=Y)r — (&)1 — (Gi)r is zero and
Hj(gz‘(t)) =0forj>0and foranyt €T |

Then (Gi)gr, is an Oy xpg,-module. Put E = kerg ® Ox,(Y), where g :
(&)r;, — (Gi)r, is the canonical surjection. There exists a coherent sheaf
‘H on Ry X Ry such that

Homp(Hr, M) = Homx,. ((G1)7, G2 @ M)
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for any T — R; X R and any quasi-coherent sheaf M on T ([1], (1.1)).
Let o : (G1)v(x) — (G2)v(r) be the homomorphism corresponding to the
canonical homomorphism H ® Oy 3y — Oy (). Put

@0t (E1)vir) @ (E2)vi) — (G2)vy: (a,b) — o(a) —b.
Set

o(s) is isomorphic, ker ¢5(s) ® Ox(—my) is stable,
P:=(¢seV(H)| x(&(s)(n)) = Hi(n+mp) and
X(&(=Y)(s)(n)) = Hi(n+my) for i = 1,2

Then ker ¢, ® Ox(—mp)|xxp induces a morphism

T: P — par—M)((Hl)*’(HQ)*.

Put G := (GL(V1) x GL(V3))/Gp.
. (H1)«,(H2)x . L
THEOREM 3.7. 7 : P — par-My is a principal G-bundle.

Proof. The same arguments as proof of Theorem 2.1 shows that 7 is
a smooth morphism. Moreover the surjectivity of m is obvious.
Let us consider the morphism

p:GxP—P X parp ()= () P.

We have only to prove that v is an isomorphism. Note that there is a

canonical isomorphism P Xpar-M(XHl)*’<H2>* P=P Xpar_M)((Hl)*,(Hg)* P. In
order to prove that % is a monomorphism, it is sufficient to show that
¥ (R) is injective for all artinian local rings R over k. Take p € P(R) and

[(91,92)] € G(R) such that [(g1,92)] - p = p. Let

Vi®Ox,x,r — E1 — Gy

Ulo
‘/2 ® OXQ Xk R — EQ I G2

be the diagram corresponding to p. Since (g1, g2) - p = p, there are isomor-
phisms 0; : E; = E;, 0; : G; = G; for i = 1,2 such that the diagrams

‘/’i®OX1XkR B ‘/Z®OXZX]€R

! l
! ) !
0;

G; — G;.
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commute for ¢ = 1,2 and the diagram

G 5 Gy
011 02
Gi1 - Gy

commutes. 6 and f induce an automorphism of ker ¢,. However, this
automorphism is a scalar multiplication by ¢ € R, since End(ker p,) = R.
Hence 01 = ¢ and 62 = ¢, and so [(g1,¢92)] = 1 in G(R), which proves that
©(R) is injective.

Take (p,q) € (P Xpar_Mg(Hl)*,(HQ)* P)(S), where S € (Sch/k). Let

V1 ®0x,x,s — E1 — G

Ulo
Vo®Oxyxs — E2 — Go

be the diagram corresponding to p and

Vi®0x,x,s — B1 — Gy

LT
Vo®Oxyxs — B2 — Go

be the diagram corresponding to q. From the choice of p, ¢, there exist a
line bundle £ on S and an isomorphism  : ker ¢, — ker ¢, ® L. 6 induces
isomorphisms hy : Eq = El ® L, 711 : Gy = él ®Q L, hy : Ey = EQ ® L and
hy : Go = G5 ® L such that the diagram

Eq — Gy L Gy — By

_h1l _7111 _712l _h2l
FiL — GIL SN Go®L +— FEy®L

commutes. The isomorphisms hi, ko induce isomorphisms g; : Vi ® Og =
V1®0s®Land go: Vo @ Og = Vo @ Og ® L such that the diagrams

Vi®Ox,xs — Ei
@1 _hal
V1®OX1><S®£ — oL
and
Vo® Ox,xs — Bz
921 _hal
Va®Oxyxs®@L — Ey®L
both commute. Then [(g1, g2)] - ¢ = p, which proves that 1 (.S) is surjective.
Hence v is an isomorphism. []
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84. Local deformations of sheaves on reducible surfaces

LEMMA 4.1. Let (A,m) be an artinian local ring with residue field k =
A/m and I an ideal of A such that Im = 0. Let X be a projective scheme
flat over A and E a coherent sheaf on X x4 A/I flat over A/I. Assume
that there exist finite points p1,...,pn of X XAk such that E®4 k is locally
free over X x4 k\{p1,...,pn}. Moreover assume that each stalk E,, can
be lifted to an Ox p,-module M; flat over A. Then there exists an element
w(E) € H*(X x k,End(E ® k)) ® I whose vanishing is equivalent to the
liftability of E to an A-flat coherent sheaf E on X such that Epi ~ M; for
each .

Proof. There exists a finite covering {U;};_; of X by affine open sets
such that E|y,nu;)ea/1 is locally free for each i, j with U; # U; and each

E|y, can be lifted to a coherent Op,-module E; which is flat over U;. Let
7; be the element of Extllji(E lu,, I ®4 Ely,) corresponding to the extension

0— I®4Ely, — E; — E|y, — 0.

Since Ei|y,nvu; and Ej|y,nu; are locally free sheaves for U; # Uj, there exists
an isomorphism of extensions:

0 — I®aFElvv;, — Eilvoy, — Eluouy,; —0

Ul |

0 — I®aFElv,v, — FEjlviny;, — Eluou; — 0.

Hence we have 7;|v,nu; = njlu,nu; and so {n;}{_; determines an element
n of HY(X,Exth (I ®4 E,E)). From the spectral sequence EL? =
HP(X,Ext%(I®AF,E)) = EPT = Exth(I®4 E, E), the following exact
sequence is obtained:

0 — HY(X,Homx(I ®4 E,E)) — Exty (I ®4 E, E)

— HY(X,Exty (I ®4 B, E)) — H*(X,Homx (I ®4 E, E)).

Let w be the image of n by HY(X,Exty (I®4 E, E)) — H*(X,Homx (I ®4
E,E)) = H*(X x k,Endx(E ®4 k) ® I). Then w = 0 if and only if
n comes from an element of Exty (I ®4 E, E), that is an extension 0 —
I®AE—>E—>E—>Osuchthat

O — I ®A E|U¢ﬂU]‘ — Ei|UiﬂUj — E|U¢ﬂU]‘ — 0

I Ll |

0— ]®AE|UmUj B E|UimUj - E|U’imUj —0



STABLE SHEAVES ON A REDUCIBLE PROJECTIVE SCHEME 161

for each 7. Hence w is the desired obstruction. []

Let R be a discrete valuation ring and k& = R/mpg be the residue field.
(We assume that k = k.) Let o be the closed point of Spec R and 7 be the
generic point of Spec R. Let X be a projective scheme flat over R such that
XT7 is a smooth surface and X := Xto = X7 U Xy, where X; and X, are
smooth surfaces and Y := X7 N X5 is a smooth curve. We will investigate
which sheaves on X can be lifted to sheaves on X.

PROPOSITION 4.2. Let E be a coherent sheaf of pure dimension 2 on
X such that rank E|x, # rank E|x,. Then E can not be lifted to a coherent
sheaf on X flat over R.

Proof. Take a very ample line bundle O¢(1). Since X is flat over R,
we may assume that H(X, 0% (1)) is a projective module over R and that
HY(X,04(1)) ® k(ty) = H°(X,0x(1)), where Ox(1) := O%(1)|x. Put
T = rankE |x, for i = 1,2. Assume that E is lifted to a coherent sheaf
E on X flat over R. Take general sections s1,50 € HO(X,0¢ +(1)). Let
Z(s;) C X be the zero scheme of s;. Then we may assume that E|Z (s1)NZ(s2)
is flat over R, E‘Z(Sl)mz(sg)mx is a locally free sheaf of rank r := rank E]X
and E\Z(Sl )nZ(s2)nx, are locally free sheaves of rank r; on Z(s1) N Z(s2) N
X; for i = 1,2. Then E|Z (s1)NZ(s2) is a locally free sheaf on Z(s;) N
Z(s2) and its rank is r = rankE|Z (s1)NZ(s2)NX1 = rankE|Z (s)NZ(s2)N %y =
rank E|Z(31 )NZ(s2)NX = T2, Which is a contradiction. 0

Let E be a coherent sheaf of pure dimension 2 on X and (EM, E?)_f)
be the corresponding triple. Assume that E® and E@ are of rank r,
locally free along Y and f : EM|y — E®)|y is injective. Let {p1,...,pn}
be the set of points of Y where f is not an isomorphism. Assume that
coker fp, = k(p;) for each i. Let M; be the stalk of E at p;.

Let Cr be the category of artinian local rings A over R with A/m4 = k.
We define a functor

Dpg : Cr — (Sets)
by

E is a coherent sheaf on X 4 flat over A
such that £ ®4 A/myg = E Q) A/my '
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We also define a functor
Dy, : Cr — (Sets)
by

Dy, (A) = {M

M is an O XA-module flat over A
such that M ®a4 A/mag = M; @k A/ma

Then we can define a morphism of functors

@1IDE—>DM1><"'XDMn

by ®1(E) := (Ep,,..., E,,). If H*(X,End(E, E)) = 0, then from Lemma
4.1, ®; is formally smooth. So we will study Dy;,. Put M := M; and
p := p;. There is an exact sequence

PDr Pr Pfp br
0— M — Oy ,®0x,, — Oy, — 0.

Let f : O?@:’p — O?Z,p be a lift of f, : O;‘?; — O;‘?;. Then the following
exact commutative diagram is obtained:

0 0
! I

0— M — O??;p @b Oi?;p v O;‘;; — 0
! fo1l |

N or or or br
0 OX,p OXI P ® OXz,p OYp 0

coker f = coker f
! l
0 0.

We consider M as a submodule of O?@Tp with respect to this diagram. We
define a functor
DMCOE?,TP :Cp — (Sets)

by

— Y @

M @4 Ajm — O?@Tp ® A/m is just the
inclusion M ®; A/m — (’)?Zp Qr A/m [~

Let Ix, be the ideal of Ox corresponding to the subscheme X; C X for
i =1,2. Then Iy, = Ox,(—Y) and so Ix, ;, is a principal ideal. So we can
write Ly, p = (f1) and Ix,p = (f2).
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LEmMA 4.3. Extp, (M,0xp) =0 fori>1.

Proof. We have the following free resolution of Oy, p:

- — Oxp A, Oxp L, Oxp REs Oxp — Ox,p — 0.
Taking the dual of this complex, we have the following exact sequence:
f f: f
O}/(,p = O}/(,p = O}/(,p 5

Thus Extégxyp(oxl > Oxp) =0fori > 1. Similarly EXté?x,p(OX%P’ Oxp) =
0 for ¢+ > 1. There is an isomorphism Iy, = Ix, , ® Ix,, and an exact
sequence

EXtéo_;p(IY,pj Oxp) — Extp, (Oyp, Ox,p) — Extio, (Oxp, Oxp)-
Thus Extlbx’p(Oym, Oxp) =0 for i > 2. From the exact sequence

®r or Pl PBr
0 M OXI P S OXz P OY,p 0,

the following exact sequence is obtained:

Extsz’p(O?Z,p@O??;p, Ox,) —>Ext§9X‘p(M, Ox,p) —>Ext§9+;p((9$;, Oxp)-

Hence we have Extﬁgxyp(M, Oxp) =0 for i > 1. 0
We will use the following lemma.

LEMMA 4.4. Let A — B be a local homomorphism of noetherian local
rings and k = A/m be the residue field. Let M be a B-module of finite type
which is flat over A and satisfies EXt1B®Ak(M ®ak,B®ak)=0. Then
Homp(M, B) is flat over A and Homp(M,B) ®4 k = Hompg ,x(M ®4a
k,B®ak).

Proof. See [12], Appendix. 0
We define a morphism of functors

q)g : DMcog’:‘p e DM

by putting ®o(M C (’)??Z p) =M
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Take any A € Cg and an ideal I C A such that Im = 0. If M € Dg(A)
and an injection M ®4 A/I C (9?(’” . is given, then from Lemma 4.3 and
A/I»
~ P®r ~ P®r . . .
Lemma 4.4, Hom(M, OXA,p) — Hom(M ®4 A/I, OXA/LP) is surjective. So

the injection M ®4 A/I € OF"  can be lifted to an injection M ¢ O™ .
Xayrp Xa,p

Hence @, is formally smooth.
Let N be the cokernel of the injection M — (’)E'Zp. We define a functor

Dy :Cr — (Sets)

Dy(A) := {]\7

Nis an O %, p—module flat over A
such that N @4 A/m =N @, A/m [

Then we obtain the following morphism of functors;

. . Y 2 2] Y
®3: Dycogr, — Dxi MO )= OF /M
It is obvious that ®3 is formally smooth.
By the assumption on f : EQ|y — E(z)]y, N is generated by one
element. So there is an exact sequence

0— Iy — Oxp—N—0.

We define a functor Drycoy , in the same way as D, - »eor and a morphism
: 4
of functors @, : DINCOX,,, — Dy in the same way as ®3.
Now let f; € Of(p and fo € OXp be lifts of fi; and f» respectively.

Then there exists an element g € O¢ » such that fl fg =tg where t € R is
a local parameter.

PROPOSITION 4.5. Let A € Cg and M be an element of Dyr(A). If g
is a unit in O 7 then tA = 0.

_ Proof. Since @3, @4 are formally smooth, M induces an A-valued point
I C Oz, p] of Diycox,- In is generated by f; and another element

h € Oxp. Then the induced homomorphism Oy, LA Oy, is injective.
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From the exact commutative diagram

0 0 0
| ! |

0— Oxp ~, Ox,p — Oyp —0
hl hl Rl

0— Oxp - Oxip — Oyp —0
| ! |
N 2 N — NN —0
| ! |
0 0 0,

one sees that N 53 N is injective. N := O%.p /I is flat over A by defini-
tion. Thus N & N is injective and N/fN is flat over A ([4] IV Propo-
sition (11.3.7)). On the other hand, since g € (’);(, t = —g ' fifo. Thus
t(N/faN) = 0. Since N/foN is faithfully flat over A, we have tA =0. []

From Proposition 4.5, we can see that M can never be lifted to a sheaf

onleglsaumtln(’) <

The following proposition is useful for the lifting problem of sheaves on
a degenerate quadric surface in the next section (Theorem 5.4).

PROPOSITION 4.6. Assume that the image g € Oy, of g is a regular
parameter. Then M can be lifted to an OXR p—madule flat over R.

Proof. There is an exact sequence
h
0 Ox 1P Ox 1,p N 0

for some h € Ox, . h can be written as h = ug + fop where u € OXI pand
¢ € Ox, p. Let 4 and ¢ be lifts of u and ¢ to O 3 v respectively. Let I be the
id~eal of O % p ~gelrlelranted by ﬂ,g + fo@, fi + ta1@. Since there is an equality
(fi +ta=1@) fo — tu~ (g + fo) = 0, we can define a homomorphism

O,/ (f2, 09 + fo) I o L/ ag + f2).

. ug+fop ... . g+ foB ... .
Since Ox, — Ox, is injective, (’)va — Of(p is injective and

(’)va/(ﬂg—i—fg@) is flat over R ([4], IV Proposition (11.3.7)). Let us consider
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the diagram

0 0 0
! ! i
0— Ox,p ELN Ox,p — Oyp —0
ig+fap | iig+fap | ug |
0— Ox,p il Oxyp — Oy, —0
! !
Oxyp/ (g + o3) L5 Oxyp/lig + fop)
! !
0 0.

Then the injectivity of Oy, -2 Oy, implies that Ox,,/(ig + fop) B
Ox, p/(@ig + f2p) is injective, and so Ox,,/(ig + fo) £ (’)X@/(&g +
fo@) is injective. Hence the homomorphism OX,p/(fg,ng + f2) Attt
O,/ (ig+ fop) is injective and Og /(fi + ti~'¢,iig + fop) = O /T is
flat over R ([4], IV Proposition (11.3.7)). Hence [I C Ox ] is an element of
Diycoy,(R). Since ®3(R) is surjective, there exists an element [M c Oi’%’:p]
of Dyscoer (R) such that oggfp JM = 0Og [I. M is the desired lift of M.

0

85. Moduli space of rank 2 stable sheaves on a reducible quadric
surface

Let Hy, Hy be two distinct planes in P? and put Qo := H;UH,. We con-
sider the reduced structure on QQg. We put L := H; N Hs. Then @)y satisfies
the hypothesis () in section 1. We consider the polarization with respect

to Og,(1) := Ops(1)|g,- Fix a positive integer ny and put P,SS’O) (m) =
4(m;2) —2(m + 1) — ng. For an integer n, put PT(LO)(m) = 2(m;“2) —n,
PV (m) = 2("F%) —(m+1)—n and PP (m) = 2("F%)+(m+1)+1-n. We
denote Mgg:g EZ);ﬁ(]ZZ%mil) simply by /\/lgl)’fgo. We write M, (1;1)’7520, /\/lg)’fgo
and M, (];I)ZIQJQO similarly. If we put

0

(0,0) (0,0)
OP”lO . Pno
M°q" = {E € My,

rank E|g, = rank E|g, = 2} ,

(0,0)

Py
then by Proposition 1.13 it is an open subscheme of Mg, °
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THEOREM 5.1. Let ng be an integer with ng > 4. Then

(0,0)
P,
olng _
MQ0 =
(0) p(0) (—1) p(1) (1) p(=1)
PP, PSVP PV P,
ny s ng ny i ng ny 4 ng
U Myg,™ v U Mig ™ v U Myg™
n1+n2:n0 n1+n2:n0 n1+n2:n0
n1>0,n9>0 0<ny <ng ni>ng>0

Moreover each component of the right hand side is non-empty.

(0,0)
Proof. Let E be an element of M ngo (k). We have the following

exact sequence:
0—E-—EYaE® L E®|, — 0.
Since rank (M) = rank E® = 2, we have
X(E(m)) = x(ED (m)) + x(E® (m)) — x(E®|(m))
= 4<m2+ 2) + (1 (BD) + 1 (B?) = 2) (m +1) = o (ED)

ey A+ D)+ a(BOP — (B

If we put a := ¢;(EM), then we have ¢;(E®) = —a since x(E(m))
P,SS’O)(m). If we assume a < —2, then pS(EW) < -1 < —1/2 = pS(E
which contradicts the stability of E. (Recall that we defined p¥(E)
a1(E)/ag(E).) Assume that a > 2. For the subsheaf E()(—L) C E, we
have p(EMW(~L)) = a/2 —1>0 > —1/2 = p¥(E) which also contradicts
the stability of F. Hence we have —1 < a < 1.

Casel. a = -1

In this case

~—

— (m+1) — co(EW),

me 2) +(m+1)+1—c(E®) and
) —2(m+1) — co(EMN) — ¢o(E®).



168 M.-A. INABA

pD p) N
Thus E € M;™ "2 (k), where n; = c3(EW) and ny = co(E®). The
equality x(E(m)) = P£2’0>(m) implies that n; +na = ng. Since F is stable,
X(E(m))/4 < x(EM(m))/2 for all sufficiently large integers m. Hence we
have the inequality n; < no. If E() is not p-semi-stable, there exists a
quotient coherent sheaf F' of E() of rank 1, such that x5(EM) = —1/2 >
—1 = p(F). Since F is a quotient sheaf of £ and p®(E) = —1/2 > p(F),
this contradicts the stability of E. Hence EW) is y-semi-stable. From
Schwarzenberger’s inequality, we have ny = co(E(M) > ¢ (EM)2/4 > 0.
Case 2. a=1

Assume that the homomorphism EM|;, — E®)|; is not isomorphic at
the generic point of L. If F is the kernel of the homomorphism EM) —
(2|, then F is a subsheaf of E and ¢;(F) > ¢ (EM) -1 =0 Which
contradlcts the stability of E. Hence the homomorphism E(l)] L — E@ \ L
is isomorphic at the generic point of L. So we have ¢;(E(V)) = 1 and

c1(E®) = —1. From the same argument as Case 1, F € M),
integers ny,ne with ny + no = ng and ny > ngy > 0.
Case 3. a=0

If F is a rank 1 quotient coherent sheaf of BV, p%(F) > —1/2 =
p3(E). Hence we have pS(F) > 0 = pS(EMW) and so EW is p-semi-
stable. From Schwarzenberger’s inequality, we have cy(E(M) > 0. Take
any rank 1 quotient coherent sheaf F of E?). If we put F’ the image of
the homomorphism E — F, we have p°(F) > pS(F') > p%(E) = —1/2.
Hence we have pS(F) > 0 = p5(E®) and so E? is p-semi-stable. So

(0) p(0)
we have c(E(®) > 0. Hence E € M(%IQ’P (k) for integers ni,ng with

ni > 0,m9 > 0 and n1 +ny = ng. Thus we have proved the first part of the
theorem.

Take integers ni,ng with ny +ng = ng and 0 < n; < ne. We will

(=1) (1)
show that M(P 7)‘1 n 2 £ (). There exist rank 2 stable bundles F; on H;

and E, on Hy such that x(Ei(m)) = PT(L1 1)(m), X(Ea(m)) = Pr(é)(m),
Ei|lp =20r(—-1)® O, and E’2|L = Or(1) ® Or. There is a homomorphism
f: EllL — EQ‘L which is isomorphic at the generic point of L. Let E
be the coherent sheaf of pure dimension 2 on () associated to the triple
(Er, Ea, f).
Claim 1. FE is stable.

Let F' be a coherent subsheaf of E with 0 < ag(F) < ag(E). We have
the following exact commutative diagram with F(!) — E; and F® _ E,
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injective:

0— F — FOar® —— FOI L —0

! ! !
00— FEF — El@EQ — E2|L — 0.

Assume that rank F() = 0. Then F = F®)(—L). If rank F?) = 1, then we
have ¢;(F®)(=L)) < =1 < —1/2 = u(Ey(—L)) by the stability of Fy(—L).
Hence we have p®(F) < —1 < pS(E). If rank F(?) = 2, F is contained in
Ey(—L) and

X(F(m)) _ x(Ex(=L)(m))

<
2 = 2
. m + 2 m+1 CQ(EQ)
2 )/ 2 2
- <m+2> CmA1 (B +ea(Eh) _ x(E(m))
2 2 4 4

for all sufficiently large integers m.

Assume that rank F() = 1. If rank F®) = 0, then we have p°(F) =
pd(FM) < -1 < —1/2 = pS(E;) by the stability of F;. Hence we have
pd(F) < —1/2 = pS(E). If rank F? = 1, we have p%(F)) < -1 <
—1/2 = p°(Ey) and pS(F®) < 0 < 1/2 = p°(E,) by the stability of F
and Eg. Hence we have

pS(FEW) + pS(FR) —1 1

p(F) = 5 < -1< -5 =u’(B).

If rank F® = 2, then

S (F) < pS(FW) 4 245 (Ey) — 2

2 < —2/3< —1/2=u5(E).

Assume that rank (1) = 2. If rank F® = 0, F is contained in the kernel
F’ of the homomorphism E; — E2|L. Since F; — E2|L is not zero at the
generic point of L, we have y®(F) < (2u%(Ey) — 1)/2 = —1 < pS(E). If
rank F?) = 1, we have pu%(F®) < 0 < 1/2 = p5(E,) by the stability of
EQ. Hence we have

208 (FM) + p¥(F®) — 1

p(F) = ; < -
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PV P
This completes the proof of the stability of E. Hence FE € M ). 00 2 (k) #
0. Slmllarly for integers ni,ne with nqy +n9 = ng and 0 < no < nq,

Mg, #0.
Let n1,no be integers with ni + no = ng and ny,ne > 0. We will show

that M(%I;’P’(LQ)( k) # 0. There exist rank 2 p-semi-stable sheaves E; on
Hi, E2 on Hs and a generically injective homomorphism f : Ey|f, = Eg\ L
such that x(E1(m)) = PV (m), x(E2(m)) = P2 (m) and either E; or E
is p-stable. Let E be the coherent sheaf on )y corresponding to the triple
(E1, B, f).
Claim 2. F is stable.

Let F be a coherent subsheaf of F with 0 < ao(F) < ag(E). The

following exact commutative diagram is obtained;

0— F — FOgF® —— FOI, —0
N N ~ ~l
00— FEF — F @ Ey —  E|p —0.

Assume that rank F®) = 0. Then F is contained in F5(—L) and so p°(F) <
WS(Ba(~L)) = —1 < —1/2 = yS(E).

Assume that rank F) = 1. If rank F®) = 0, then F = F() and F(V) ¢
ker(E; — Es|r). Thus pS(F) = (F(1>) <pS(Ey(=L) = -1 < uS(E). If
rank F®) = 1, then p%(F1) <0 and 1S (F) < 0. Moreover p5(FM) <0
or ;1°(F®)) < 0. Hence we have

S(FWY) 4 uS(F@) _ 1

If rank £ = 2, then

< 1 S(p(2 <
p(F) = 3 < =2/3 <p”(E).
Assumg, that rank F = 2. If rank F® = 0, then F = F)
ker(E; — Es|1), and so
pS(F) = p(FW) < pS(By(-L)) = —1 < p*(B).

If rank F(®) = 1, then F() is contained in the kernel of By — (Ey/F®)|p.
Thus x°(FM) < —1/2 and
5 205 (FW) + pS(F®) — 1

2 s
F) = < —— E).
) 3 < 3<H()
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PO pO

Hence E is a stable sheaf on Q. This implies that M (17;162’0 "2 (k) # (0. This

completes the proof of the theorem. 0

© p(0)
Remark 5.2. We consider structures of the moduli spaces M(l’)”Q’O "2
P(_l) P(l) P(l) P(—l)

M(lr)LlQ()’ "2 and M(27)11Q’o "2 appeared in Theorem 5.1. Let M ﬁi be the

moduli scheme of stable sheaves on H; with Hilbert polynomial P for ¢ =
1,2.

Assume that n; > 2 and ny > 2. From Theorem 2.1, there exist an open
P p© ' ' PO
subscheme Uy of M (1)1Q’0 * and a dominant morphism o : Uy — My "' X
Py : : , =
M2 such that for a point = which corresponds to a triple (E1, Es, f),
mo(x) is the point which corresponds to (E1, E3). Let n be a general point

of a general fiber of my. Then we have

(0) (0) (0) (0)
PP P P
. ny " ny . nj nog
dim,, M(l),Qo = dlm(MH1 X My, )+3

=4ny —3+4ny —3+3=4ny— 3

Similarly for 1 < n; < ng (resp. 1 < ny < ny), there exist an open

TS Py P :

subscheme Uy C My (resp. Uy C M (2).Q0 ) and a dominant mor-
) P7(1,_1> Prg,l) Prg,l) P7(1,_1>

phism 7 : Uy — Myt x Mp? (resp. my : Uy — Myt x My? ). Ifm

is a general point of a general fiber of 7y, then

(=1) (1) (=1) (1)
Py Py . Py P
b = dim(Myt ) M)+ T

:4n1—4+4n2—4—|—7:4n0—1.

dimy,;, M(l),Qo

Similarly for a general point 72 of the general fiber of ms, we have

(1) p(=1)
. Py Py
dim,), M(2),1Qo 2 =dng-—1.
PO PO . _
Take p € Myt x My ? such that the corresponding sheaves Ep,E

2
are locally free. Then the dimension of the fiber Y(p) jumps if L is a

jumping line of F; and Es. See the definition of jumping line for [[13], 2.2].
In particular the coherent sheaf H mentioned in Remark 2.2 is not locally
free in this case.
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Next we will consider relationships with the relative moduli space of
stable sheaves on quadric surfaces. Put ¥ := P(H"(P3,0ps(2))Y). Let
Q C P? x ¥ be the universal family of quadric surfaces. We will consider
(0,0)
the relative moduli space M Fro

Q/% -
the polarization O (1) = OP%(U‘Q' Take a point { € X such that Q¢ :(?D())

is a reducible quadric surface. The following proposition means that M Q;’OE

of stable sheaves on Q /% with respect to

PO P
is smooth over ¥ at “general points” of M "\ (1.0

PROPOSITION 5.3. If ny > 2 and ny > 2, then there exists a locally

0 0
free stable sheaf E2 € M, ; )?52) such that H*(X,End(E)) = 0.

Proof. Take stable bundles E; on Hy with ¢1(F1) = 0,c2(E1) = ng
and Es on Hsy with cl(El) = O,CQ(EQ) = ng such that Ey|; = (’)?2 and
E2|L &~ (’)%2. Take an isomorphism f : Eq|; — E’2|L. Let E be the coherent
sheaf on Qg corresponding to the triple (Ey, By, f). Then E is locally free
and stable by the proof of Theorem 5.1. The exact sequence

0 — End(E) — End(Ey) ® End(Ey) — End(Fs)|, — 0
induces the following exact sequence;
0= H' (O — H*(End(E)) — H?*(End(Ey) © End(Es)).

Since Ey, By are stable bundles on P2, H2(End(E1)) = 0 and H?(End(Es))
= 0. Hence H?(End(E)) = 0. 0

THEOREM 5.4. Assume that 1 < ny < no. Take a general point p of

(1) p(1)
a general fiber of m in Remark 5.2 and let E € ]\4(1)7)11 P72 be the corre-

sponding sheaf. Put R := k[[t]]. Let to be the closed point of Spec R and
t1 the generic point of Spec R. Then there exists a morphism Spec R — %
such that Q ® k(t1) is a smooth quadric surface, Q ® k(tg) = Qo and E can
be lifted to a coherent sheaf on Qg flat over R.

p-1 p)

Proof. Take E € M;™ " which is a general point of a general fiber
of m and let (E1, E», f) be the corresponding triple. We may assume that
E and E, are locally free, Ei|; = Op @ Op(—1) and Es|;, = O @ Or(1).
For the homomorphism f : Op @ Or(—1) — O ® Or(1), det f can be
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considered as a section of Or,(2). So we may assume that f(p) is isomorphic
except at distinct two points pi1, pa of L. Then coker f,, = k(p;) for i = 1,2.
On the other hand, there is an exact sequence

End(E) — End(E)|g, ® End(E)|g, — End(E)|p, — 0.

Canonical homomorphisms End(E)|g, — End(Ey), End(E)|m, — End(Ey)
are induced and they are isomorphic on Hj \ {p1,p2}, Ha \ {p1,p2} re-
spectively. Since E; and E, are stable bundles on P2, H?(End(Ey)) =
H?(End(Ey)) = 0. Therefore we have H?(End(E)|m,) = H*(End(E)|m,) =
0. The composition g : End(E)|g, — End(E)|, — End(Es>)|r induces the
following homomorphism:

Y : End(E)|g, ® End(Ey) — End(Fs)|r;  ¥(a,b) == g(a) — b|L.
Then we obtain the following exact commutative diagram:

End(E) — End(E)|g, ® End(E)|g, — End(E)l, — 0

! ! !
Y

0— kery — End(E)|g, ®End(Ey) —— End(Es)|l, — 0.
Since End(Fy)|r = On(—1) ® OF? @ OL(1), we have H'(End(Es)|L) = 0.
Thus by the exact sequence

HY(End(Ey)|L) — H?(ker ) — H*(End(E)|p, ® End(Es)),

we have H?(ker ) = 0. From the construction, End(E) — ker 1 is isomor-
phic on Qg \ {p1, p2}. Hence we have H2(End(E)) = 0.

After a suitable projective linear transformation, we may assume that
Qo is given by the equation {zy = 0} in P? = Projk[z,y,z,w]. Take
a1 = az + Pw # 0,a2 := vz + dw # 0 with o, 3,7,6 € k such that
a1(p1) = 0 and ag(p2) = 0. Consider Q := Proj R[z,y, z,w|/(xy — tajaz).
Then 9y, = Qo and 9y, is a smooth quadric surface. From Lemma 4.1 and
Proposition 4.6, E can be lifted to a coherent sheaf E on Q flat over R.  []

CONCLUSION 5.5. Let € ¥ be the scheme theoretic generic point.
Then we have

where M, ®j)k(n) = M(2, (a, —a),ng—a?) M (2,(—a,a),ng—a?) for a >

)
0, Mo ®p(y) k(n) = M(2,(0,0),n0) and M(2, (a,b),c) is the moduli scheme
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of rank 2 stable sheaves E on Q@’k(n) k(n) = P! xP! with ¢;(F) = (a,b) and

c2(E) = c. Note that M(2, (a, —a),ng — a?) and M (2, (—a,a),ng — a?) are
(0,0)

contained in the same irreducible component of Mg"oz , which is the closure

(0,0)

of M, in Mg}% - If M(2,(a,—a),ng — a?) # 0, then dim M (2, (a, —a), no —

a?) = 4ng — 3 — 2a®. Thus we can see from the dimension calculation in

p(0.0) p(-1) p(1)

Remark 5.2 that MQ;OE is not flat over ¥ at “general points” of M; ™ = "2

Py(l_l) P7(Ll>

On the other hand, Theorem 5.4 means that “general points” in M; ™' " ™
(0,0)

are contained in the closure of M Q"O . Such a non-flat relative moduli space
n

appears because dim ¥ > 2. (Compare it with the argument in [[3], section

2].) We can see more explicit properties of degeneration of sheaves. Let us

consider a degeneration Q = Proj R[x,y, z,w]/(zy — tajaz) as in Theorem

5.4 such that ai,as are linearly independent. Let p; be the zero point of
TV Py ~
a; for i = 1,2. Take E € M;"™ =™ such that E; and E, are stable

bundles, Fi|r, = Or @ Or(—1), EQ\L >~ Op @ Op(1) and f is injective,
where (Ej, Ey, f) is the corresponding triple. The arguments of the proof
of Theorem 5.4 conclude that E can be lifted to Q if and only if det f(p;) =0
for i = 1,2. The dimension of

~ p-D pD) F7 and Eg are stable bundles,
(Bv, Ba, f) € My)'o ™ | BilL 20L& OL(-1), B2l = 0,8 Oy,
f is injective and det f(p;) = 0 for ¢ =

(1),

1,2
pl(0.0)

is 4ng — 3. So it is contained in the closure of My C M Q"O

n

Next we will consider stable sheaves on Qg with another Hilbert poly-
nomial. We fix a positive integer ng and put P,(lgl’_l)(m) = 4(m2+2) —4(m+
1) + 1 — ng. For an integer n, put Pr(fm(m) =2("F) - 2(m+1)+1—n.
Put

o nofl,fl) Py(lofl,fl)
M Qo = {E IS ]\IQ0

rank E|g, = rank E|y, = 2} .

THEOREM 5.6. Let ng be an integer with ng > 6. Then

(—1,-1)

P
Sa] —
MQO -
(=1) p(=1) (=2) p(0) (0) p(—2)
P VP PP PPy,
U Mio, ™ v U My v U Mg,
n1+n2:n0 n1+n2:n0 n1+n2:n0

n1>0,n9>0 0<ny <ng+1 n1+1>n9>0
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Moreover each component of the right hand side is non-empty.

(=1,-1)
Proof. Let E be an element of M Og’go (k). Then

xX(E(m)) = 4<m; 2) + (cl(E(l)) + ¢ (E@) — 2) (m+1) — ca(EW)
(52 4 AEDP + aBY) e (BO) - e (BR)

2

If we put a := ¢; (E(M), then ¢;(E®) = —a—2. Assume that a < —2. Then
c(E®(-L)) = —a—4 > =2 and so p°(E@(-L)) > —1 = pS(E). Since
E®)(—L) is a subsheaf of E, this contradicts the stability of E. Assume
that @ > 0. Then ¢;(EW(=L)) = a -2 > —2. So EM(—-L) is a subsheaf
of E with y%(EMW(~L)) > —1 = p¥(F) which contradicts the stability of
FE. Hence we have —2 < a < 0.
Case 1. a = —2.

If we put n; = CQ(E(I)) and ng = CQ(E(Q))7 then ni + ny = ng and

(=2) p(0)
E e M(P’)” P2 Since EM is a quotient sheaf of E, the stability of E

implies that
X(E(m)) _ x(EW(m))
<
4 2
Hence we have n; < no + 1. Since ED) is a quotient sheaf of E with
pS(EM) = —1 = uS(E), EW is p-semi-stable. Thus nq > 1.
Case 2. a = 0.

Assume that the homomorphism EM|;, — E®)|; is not isomorphic at
the generic point of L. Then the kernel F' of the homomorphism EM —
()|}, is a subsheaf of E and ¢; (F) > —1. So u® (F ) —1/2 > p¥(E) which
contradlcts the stability of E. Thus EV|, — E®)|; is generically isomor-

phic. Consider the triple (E EW E® £ (f : E@|, — E(l)\L) correspond-
~ (0) p(=2)
ing to E. Then ¢;(EM) = 0 and ¢;(E?®) = —2. Hence F € MP"1 Fra

where n1 = c(EM) and ny = ¢(E®). The proof of Case 1 1mphes that
n1+1>ng9 >0 and ny + ne = nyg.

for m > 0.

Case 3. a = —1. )
If we put n; = CQ(E(l)) and no = CQ(E(Z)), then n1 + ny = ng and
(=1) p(=1)
E € M(]?)”Q P2 Take any rank 1 coherent quotient sheaf F of E().
The stability of E implies that ¢;(F) = p®(F) > p®(E) = —1. Thus

p3(F) = ¢y (F) > 0> pS(EW). Hence EMW is stable and so n; > 0. Take
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any rank 1 coherent quotient sheaf F of E(?). Let F’ be the image of E — F.
Then p5(E) = —1 < pS(F") < p¥(F) and so 5 (F) > 0 > pS(E®). Hence
E® is stable and no > 0. This completes the proof of the first part of the
theorem.

Take integers ni,no with nqy +ng9 = ng and 0 < ny < ne + 1. We will

Py Py :
show that M(l)lQO 2 £ (). If ng # 1,2, then there exist rank 2 p-stable

bundles £y on Hy with x(E;(m)) = P, (m), Es on Ha with x(Es(m)) =
Pﬁ? (m) and an injective homomorphism f : Ei|; — E2|L. If ny =1 or 2,
then there exist a rank 2 p-semi-stable sheaf Fy on Hy with x(Eq1(m)) =
PT(LIZ)(m), a rank 2 p-stable sheaf Fy on Hy with y(FEy(m)) = P,§2>(m)
and a generically injective homomorphism f : Ey|, — Fs|r. Let E be
the coherent sheaf of pure dimension 2 on Qg corresponding to the triple
(E1, Eo, f).
Claim 1. F is stable

Take any coherent subsheaf F' of E with 0 < ao(F) < ao(F). The
following exact commutative diagram is obtained:

0— F — FOgprp® F(2)|L — 0
N N ~ ~l
00— FEF — F 8 Ey —  E|p —0.

Assume that F1) =0. Then F = F(2)~(—L). If rank F(?) = 1, then z5(F) <
13 (Ey(—L)) = —1 = p(E). If rank F(®) = 2, then for all sufficiently large
integers m,

X(£(m))
2 2

m + 2 n
:( 2>—m+n—§

m+ 2 1—-ng  x(E(m))
<< ) )—(m—i—l)—l— 40_ T

IN

Assume that rank F(Y) = 1. If rank F®) = 0, then FF = F() C ker(E; —
EQ‘L). Since Ei|f — Eg]L is generically injective, ,uS(El(—L)) = ,uS(ker(El
= Baln)). Thus pS(F) = pS(FW) < pS(By(-L) = —2 < pS(E). Tt
rank F() = 1, then p%(F®) < u%(Ey) = 0. Thus

CpSFEW) 4 pSF®) -1
5(F) = :

“
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-1-1-1
< < 1=45(B).

Assume that rank F®) = 2. If n; # 1,2, then E; is p-stable and so
p?(FM) < p¥(By) = —1. Hence

SFMYy +2u5(F@)y -2  —2-29

If ny = 1, then By = Oy, (—1)%? and so
+2
WP < 3O~ ) = (")

for all sufficiently large integers m. If ny = 2, then EYY 22 Op, (—1)%2 and
EYV/E;, = k(p) for some p € Hy. Thus x(FM(m)) < x(Om, (m — 1)) for
m > 0. Moreover n; = 1 implies no > 5 and n; = 2 does ny > 4. Hence
forny = 1,2,

X(E(m)) _ X(FW(m)) + 2x(Ea(m)) — 2x(Es|1(m))
3 = 3
("3 — (m A1) +2("FP) — 2(m + 1) —ng

m 4+ 2 n
:< ) )—(m+1)—§2

< <m+g> ma 1y Lo X(Em)

IN

2

for all sufficiently large integers m.

Assume that rank F() = 2. If rank F, = 0, then F = F(I) ¢ ker(E; —
Es|1). Since Ei(—L) — ker(E; — Fs|r) is isomorphic in codimension 1,
( ) < p?(By(~L)) = =2 < p®(E). If rank Iy = 1, then pS(F) <
w (Ey) = O Hence

2u5(Ey) +pS(Fy) -1 _ 4
3 - 3
Hence F is a stable sheaf on Q.

p¥(F) <

(=2) p(0)
We have proved Claim 1 and so we have M(Pl)) % Py £ (. Similarly for
(0) p(=2)
ni,ng € Z with 0 < ng <nq + 1, wehaveM(Pr)mP 20,
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Let n1,n9 be integers with nqy > 0, no > 0 and ny + ny = ng. We

(=1) p(=1)
will prove that M(P 7)‘1 P # (). There are rank 2 stable bundles E; on

H1 with X(El( )) = 2(m;—2) — (m + 1) — N, EQ on HQ with X(Eg(m)) =
2(m2+2) — (m 4 1) — ny, and an injective homomorphism f : Fy|;, — Es|.
Let E be the coherent sheaf on Qg corresponding to the triple (E, Es, f).
Claim 2. FE is stable.
Let F be a coherent subsheaf of E with 0 < ao(F) < ag(FE). Assume
that rank F(Y) = 0. Then F = F<2>(—L) C Ey(—L). Thus pS(F) <
pS(Ey(—L)) = —=3/2 < —1 = p(E). Assume that rank F() = 1. If
rank F® =0, then F = F) ¢ ker(E1 — Eb|r) = E1(—L). Thus p(F) <
p3(Bi(—~L)) = =3/2 < —1 = y5(E). If rank F®) > 1, then

spm HS(ED) 4 rank FO(S(FD) - 1)
(F) = -
1 + rank F'(2)
< —1 — 3rank F(?)/2
1 4 rank F'(2)

"

—1=7p%E).

Assume that rank F(Y) = 2. If rank F®) = 0, then FF = F() C ker(E; —
Eb|r) = Ei(—L) Thus p5(F) < p¥(Ey(~L)) = —=3/2 < —1 = p¥(E). If
rank F? = 1, then the commutative diagram

FO ., PO,

! K
E, — Eg

implies that p%(FM) < uS(Fy) —1/2 = —1. Hence

265 (FV) 4 S (FP)) — 1 _—2-1-1
3 - 3
pY p=D)
Thus F is a stable sheaf on QQy. Hence M(l) 0o "), b
Remark 5.7. Similar calculations to Remark 5.2 show that at a “gen-

PV P pD p-1)
eral” point p of M; ™ ?, dimp, M} ™ > =dny —4+4ny —4+3=

(—2) p(0) (—2) (0)
Py Y Py Py Y P
4no — 5. Similarly at a “general” point p of M; ™ ?, dim, M; ™ 2 =

dng —7+4ng — 3+ 7 =4ng — 3.

WS (F) = < —1=%(B).

Similar arguments to Proposition 5.3 conclude the following proposi-
tion.
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PROPOSITION 5.8. Forny > 1 and no > 1, there exists a locally free
(=1) p(=1)
stable sheaf £ € MY, "™ such that H*(X, End(E)) = 0.

Remark 5.9. Consider a degeneration Q = Proj(R[z,y,z,w]/(zy —
tajaz)) as in the proof of Theorem 5.4. We assume that ap,as are lin-
early independent. Let p; € L be the zero point of a;. Let £; be a generic
geometric point of Spec R. There is a decomposition of a moduli space of
stable sheaves on a smooth quadric surface;

My = HM(Q,(a—l,—a—l),no—aQ).

If M(2,(a—1,—a—1),n9 —a?) # 0, then dim M (2, (a — 1,—a — 1),ng —
a?) = 4ng — 5 — 2a®. From Proposition 5.8, there exists an open subscheme

(—1,-1)

U C MS/R smooth over R such that U; C M(2,(—1,—1),n9) and
(=1) p(=1)

Uy, C M, (I;’)”QO’P"Q We may assume that E is locally free for any E € Uy,

and that E|p,,E|m, are stable. There exist a scheme V over R and a
(=1,-1)
morphism of functors 6 : V — MQ”/OR such that the induced morphism
p(=1,-1)
0 V—-M Q70R is étale and that the image is U. On the other hand, let
I; .4, be the image of the homomorphism Og(— )@2 — g defined by the
sections x,a;. Then Og/I, ., 1s flat over R. Let E be a flat family of stable
bundles on Q x g V/V corresponding to . Then E® I, 4, (1) is a flat family
of stable sheaves whose fiber over Vj is contained in M (2,(—1,1),n9 — 1)

PED P
and whose fiber over V;, is contained in M " (1), Qo

Let us consider an open subscheme

F7 and E~2 are stable bundles,
~ P P(1> EI‘L = OL@OL(—l)
W= (E1, By, f) e My™ 7™ | 2 ’
( 1 2 f) E2|Lg0LG?OL(1)7
f: Eq|L — Eslr is injective
P PO L . .
of M), ™ - Then the set W= {E® I 4,(1) ® k(s)}sev,, is contained

in Wand

(az —i—ﬁw)
W, = (E17E27

Ek a;«é()
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where f : Op @ Op(—-1) = Ei|p — E2|L = O ® Or(1) is regarded as

a matrix ( Zl 22 ) with by € Ho(OL(1)),by € H(OL(2)),b3 € k and
3 4

by € H°(Op(1)). Moreover dim M (2, (—1,1),n9 — 1) = dim W’ = 4ngy — 5.
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