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ON THE MODULI OF STABLE SHEAVES ON A

REDUCIBLE PROJECTIVE SCHEME AND EXAMPLES

ON A REDUCIBLE QUADRIC SURFACE

MICHI-AKI INABA

Abstract. We study the moduli space of stable sheaves on a reducible pro-
jective scheme by use of a suitable stratification of the moduli space. Each
stratum is the moduli space of “triples”, which is the main object investigated
in this paper. As an application, we can see that the relative moduli space of
rank two stable sheaves on quadric surfaces gives a nontrivial example of the
relative moduli space which is not flat over the base space.

Introduction

Simpson has constructed the moduli scheme of stable sheaves on an

arbitrary projective scheme ([17]). This result causes us to study many

examples of moduli spaces of stable sheaves on degenerate varieties. A

typical example is the moduli space of sheaves on a nodal curve studied

by Seshadri ([16]). He showed that the moduli space has the singularity

similar to that of base curve. On the other hand, Gieseker and Li used

the moduli space of stable sheaves on a reducible surface in order to prove

the irreducibility of the moduli space of rank 2 stable bundles on a smooth

surface ([3]). This result tells us an importance of the study of the moduli

spaces of stable sheaves on reducible schemes.

In this paper we shall study the moduli space of stable sheaves on a

reducible projective scheme X = X1 ∪X2 such that X1 and X2 are purely

d-dimensional and Y := X1∩X2 is a Cartier divisor of X1 and X2. In order

to study the moduli space, we shall use a generalization of the method

of Nagaraj and Seshadri ([11]), which was used on reducible curves. We

shall show that there is a bijective correspondence between the purely d-

dimensional coherent sheaves on X and the triples (E1, Ẽ2, f) on X, where

E1 is a purely d-dimensional sheaf on X1, Ẽ2 a purely d-dimensional sheaf

on X2 and f : E1|Y → Ẽ2|Y a homomorphism. In Theorem 1.10, we will
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show that the moduli space of triples exists and that the moduli spaces

of triples give a stratification of the moduli space of stable sheaves on X.

This stratification is a valuable tool for the study of the moduli space of

stable sheaves on a reducible scheme. In fact we can investigate a more

precise structure of the moduli space of triples from the construction given

in Theorem 2.1. From this construction, one sees that the moduli space of

triples has a fibration in étale topology whose fibers are open subschemes

of projective spaces. Although the dimension of the fibers of this fibration

is constant in the case of reducible curves, the dimension of fibers may

jump in higher dimensional case (Remark 2.2). On the other hand, there

is a bijective correspondence between the purely d-dimensional coherent

sheaves on X and the “parabolic triples” defined in Definition 3.1. The

moduli space of parabolic triples is an intersection of two moduli spaces of

triples.

As an application of the study of the moduli space of triples, we can

construct a non-trivial example of the relative moduli space of stable sheaves

which is not flat over the base scheme. We shall see an example of the

decomposition of the moduli space of rank 2 stable sheaves on a reducible

quadric surface by the moduli spaces of triples (Theorem 5.1). From this,

one sees that there are components of the moduli space whose dimension is

jumping. Moreover we shall study the deformations of sheaves on reducible

surfaces and apply it to degenerations of quadric surfaces. Then we can see

that “general” points of the moduli space on a reducible quadric surface

are contained in the limits of stable sheaves on smooth quadric surfaces

(Theorem 5.4 and Conclusion 5.5). From this point of view, one recognizes

that the concept of stable sheaf introduced by [17] makes a good sense in

this case.

The author would like to thank Professors Masaki Maruyama and Akira

Ishii for valuable discussions and encouragement.

Notation and convention

Let X be a projective scheme over a noetherian scheme S, OX(1) an S-

very ample invertible sheaf and E a coherent sheaf on X. (Sch/S) denotes

the category of locally noetherian schemes over S and (Sets) the category of

sets. For an integer m, E(m) denotes E⊗OX(m). If s is a point of S, then

we denote the fiber ofX over s byXs, E⊗k(s) by E(s), dimH i(Xs, E(s)) by

hi(E(s)) and
∑

i≥0(−1)ihi(E(s)) by χ(E(s)). For a morphism g : T → S

of schemes, ET denotes the sheaf (1X × g)∗(E) on X ×S T . If F is a
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coherent sheaf on S, P(F ) means ProjS(F ) and V(F ) means SpecS(F ),

where S(F ) is the symmetric algebra of F over OS . For a polynomial H(x)

and an integer m, H[m](x) is the shift of H(x) by m.

§1. Fundamental properties of the moduli spaces of stable

sheaves on reducible projective schemes

Throughout this paper, we fix an algebraically closed field k.

Definition 1.1. Let E be a non-zero coherent sheaf on an algebraic
scheme S over k. Then E is said to be of pure dimension d if dim(SuppF ) =
d for any non-zero coherent subsheaf F of E.

In this section we will consider a projective scheme X over k with the

following properties:

(†)

X = X1 ∪X2 where Xi (i = 1, 2) are closed subschemes of X such
that OXi are of pure dimension d for i = 1, 2 and IX1 ∩ IX2 = 0,
where IXi is the ideal sheaf of OX corresponding to the closed
subscheme Xi, and Y := X1 ∩X2 is a Cartier divisor of X1 and
X2 at the same time.

Note that there is a canonical exact sequence

0 −→ OX −→ OX1 ⊕OX2 −→ OY −→ 0.

Since OX1 and OX2 are of pure dimension d, OX is also of pure dimension

d.

We will give a description of purely d-dimensional sheaves on X by data

on X1,X2. Let E be a coherent sheaf of pure dimension d on X. Put

E(1) := (E|X1)/(E|X1)tor , E(2) := (E|X2)/(E|X2)tor,

where (E|Xi)tor is the coherent subsheaf of E|Xi such that dimSupp(E|Xi)tor
< d and (E|Xi)/(E|Xi)tor is of pure dimension d. There is a canonical

injection i : E → E(1) ⊕ E(2). If we put E(0) := coker i, then we have the

following exact sequence;

0 −→ E
i
−→ E(1) ⊕ E(2) −→ E(0) −→ 0.

Lemma 1.2. E(0) is an OY -module.
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Proof. The composite IX2 ↪→ OX → OX1 is injective and the image is
just the ideal sheaf OX1(−Y ) corresponding to the Cartier divisor Y of X1.
Tensoring E to the injection IX2 ↪→ OX , we have a homomorphism

E|X1 ⊗OX1(−Y ) ∼= E ⊗ IX2 −→ E.

Since E is of pure dimension d, the above homomorphism induces the homo-
morphism E(1)⊗OX1(−Y )→ E. The composition E(1)⊗OX1(−Y )→ E →
E(1) is just the canonical homomorphism. Note that E(1) ⊗ OX1(−Y ) →
E(1) is injective since E(1) is of pure dimension d. We denote E(1) ⊗
OX1(−Y ) by E(1)(−Y ). Similarly we have a canonical injection E(2)(−Y )
↪→ E. Let (a, b) be a local section of E(1)⊕E(2) and c a local section of IY ,
where IY is the ideal sheaf of OX corresponding to the closed subscheme Y
of X. Then c can be written as c = c1 +c2, where c1 ∈ IX1 and c2 ∈ IX2 . So
c · (a, b) = (c2a, c1b). Since c2a ∈ E

(1)(−Y ) ⊂ E and c1b ∈ E
(2)(−Y ) ⊂ E,

we have c · (a, b) ∈ E. Hence IY (E(1) ⊕ E(2)) ⊂ E and so IY E
(0) = 0.

Let p be the composition:

p : E(2) ↪→ E(1) ⊕ E(2) −→ E(0).
a 7→ (0, a)

Then we can easily see that p is surjective. Now we put Ẽ(2) := ker p ⊗
OX2(Y ). Since E(0) is an OY -module, the composite

E(2)(−Y ) ↪→ E(2) p
−→ E(0)

is zero. So we have a factorization

E(2)(−Y ) ↪→ Ẽ(2)(−Y ) = ker p ↪→ E(2).

Tensoring OX2(Y ) to the injection E(2)(−Y ) ↪→ Ẽ(2)(−Y ), we have an

injection E(2) ↪→ Ẽ(2) and the composition Ẽ(2)(−Y ) ↪→ E(2) ↪→ Ẽ(2) is

just the canonical injection obtained from the injection OX2(−Y ) ↪→ OX2 .

Since the composite ker p = Ẽ(2)(−Y ) → E(2) → Ẽ(2) → Ẽ(2)|Y is zero,

there exists a homomorphism j : E(0) → Ẽ(2)|Y such that the following

diagram commutes:

0 −→ ker p −→ E(2) p
−→ E(0) −→ 0

↓ ↓ j

Ẽ(2) → Ẽ(2)|Y .
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Let us consider the composition fE : E(1)|Y → E(0) j
→ Ẽ(2)|Y and put

ϕfE
: E(1) ⊕ Ẽ(2) → Ẽ(2)|Y ; ϕfE

(a, b) := fE(a|Y )− b|Y .

We have a canonical injection E ↪→ E(1) ⊕E(2) ↪→ E(1) ⊕ Ẽ(2).

Lemma 1.3. With respect to the above injection E ↪→ E(1) ⊕ Ẽ(2), we

have E = kerϕfE
.

Proof. Since the diagram

0 −→ E −→ E(1) ⊕ E(2) −→ E(0) −→ 0
↓ ↓j

E(1) ⊕ Ẽ(2)
ϕfE−→ Ẽ(2)|Y

commutes, the composite E ↪→ E(1) ⊕ Ẽ(2)
ϕfE−→ Ẽ(2)|Y is zero. So we have

the inclusion E ⊂ kerϕfE
. Conversely let (a, b) ∈ kerϕfE

⊂ E(1) ⊕ Ẽ(2) be
a local section. There exists a local section α ∈ E such that α|X1 = a in
E(1). If we put b′ := b− α|X2(∈ Ẽ

(2)), then (0, b′) = (a, b) − i(α) ∈ kerϕfE

and so we have only to prove that (0, b′) ∈ E. Since 0 = ϕE(0, b′) = b′|Y in
Ẽ(2)|Y , b′ ∈ Ẽ(2)(−Y ) = ker p ⊂ E(2). Hence (0, b′) is in the kernel of the
homomorphism E(1) ⊕ E(2) → E(0) and so (0, b′) ∈ E.

Definition 1.4. Let E1 (resp. Ẽ2) be a coherent sheaf of pure dimen-
sion d on X1 (resp. X2). Let f : E1|Y → Ẽ2|Y be a homomorphism. Then
we call (E1, Ẽ2, f) a triple. Two triples (E1, Ẽ2, f), (E′

1, Ẽ
′
2, f

′) are said to
be isomorphic if there exist isomorphisms g1 : E1

∼
→ E′

1, g2 : Ẽ2
∼
→ Ẽ′

2 such
that the diagram

E1|Y
f
−→ Ẽ2|Y

g1|Y ↓ o g2|Y ↓ o

E′
1|Y

f ′
−→ Ẽ′

2|Y

commutes.

The following proposition is a generalization of [[11], Lemma 2.3].

Proposition 1.5. E 7→ (E(1), Ẽ(2), fE) is a bijective correspondence

between the isomorphism classes of coherent sheaves of pure dimension d
on X and the isomorphism classes of triples.
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Proof. Take a triple (E1, Ẽ2, f). Put

ϕf : E1 ⊕ Ẽ2 → Ẽ2|Y ; ϕf (a, b) := f(a|Y )− b|Y .

We will show that (E1, Ẽ2, f) 7→ kerϕf gives the inverse map. If we put
E := kerϕf , then we can construct the triple (E(1), Ẽ(2), fE). Since we
know Lemma 1.3, we have only to prove that (E(1), Ẽ(2), fE) ∼= (E1, Ẽ2, f).
From the definition of E(1), the homomorphism E → E1 factors through
E(1):

E −→ E(1) σ1→ E1.

By construction E → E1 is surjective. On the other hand, σ1 is injective
since it is injective on X1 \ Y and E(1) is of pure dimension d. Thus σ1 :
E(1) → E1 is an isomorphism. Put ψ : Ẽ2(−Y ) ↪→ Ẽ2 ↪→ E1 ⊕ Ẽ2. Then ψ
factors through E. Let ψ′ : Ẽ2(−Y ) → E be the induced homomorphism.
Then

0 −→ Ẽ2(−Y )
ψ′

−→ E −→ E1 −→ 0

becomes an exact sequence. On the other hand

0 −→ Ẽ(2)(−Y ) −→ E −→ E(1) −→ 0

is also exact. So we have an isomorphism Ẽ(2)(−Y )
∼
→ Ẽ2(−Y ) with the

following commutative diagram:

0 −→ Ẽ(2)(−Y ) −→ E −→ E(1) −→ 0
↓ o ‖ o ↓σ1

0 −→ Ẽ2(−Y ) −→ E −→ E1 −→ 0.

This isomorphism induces the isomorphism Ẽ(2) σ2→ Ẽ2 and the diagram

Ẽ(2)(−Y ) −→ E −→ Ẽ(2)

↓ o ‖ o ↓σ2

Ẽ2(−Y ) −→ E −→ Ẽ2

commutes. Since the diagrams

E −→ E(2) → Ẽ2 E −→ E(2) → Ẽ(2)

↘ ↓ ↘ ↓

E1|Y
f
−→ Ẽ2|Y E(1)|Y

fE−→ Ẽ(2)|Y
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both commute, we can see that the diagram

E(1)|Y
fE−→ Ẽ(2)|Y

o ↓σ1 o ↓σ2

E1|Y
f
−→ Ẽ2|Y .

commutes. Thus we have an isomorphism (E(1), Ẽ(2), fE) ∼= (E1, Ẽ2, f).

Now let us recall the definition of stable sheaf on X. We fix a very

ample line bundle OX(1) on X. Then the Hilbert polynomial of a coherent

sheaf E on X with respect to OX(1) can be written as

χ(E(m)) =
d
∑

i=0

ai(E)

(

m+ d− i

d− i

)

,

with ai(E) integers. We put µS(E) := a1(E)/a0(E).

Definition 1.6. Let E be a coherent sheaf of pure dimension d on X.
E is said to be stable (resp. semi-stable) if for any coherent subsheaf F of
E with 0 < a0(F ) < a0(E),

χ(F (m))/a0(F ) < χ(E(m))/a0(E)
(resp. ≤)

for all sufficiently large integers m.

Let (Sch/k) be the category of locally noetherian schemes over k. Let

H,H1,H2, H
′
1,H

′
2 be numerical polynomials of degree d such that H =

H1 +H ′
2.

Definition 1.7. We define a functor MH
X : (Sch/k)→ (Sets) by

MH
X(T ) :=











E

∣

∣

∣

∣

∣

∣

∣

E is a T -flat coherent sheaf on X × T
such that χ(E(t)(m)) = H(m) and
E(t) is a stable sheaf for all t ∈ T











/

∼

where E ∼ E′ if and only if E ∼= E′ ⊗ L for some line bundle L on T .
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We define a functor M
(1),H1,H2

X,H ′
1,H

′
2

: (Sch/k)→ (Sets) by

M
(1),H1,H2

X,H ′
1,H

′
2

(T ) :=


















(E1, Ẽ2, f)

∣

∣

∣

∣

∣

∣

∣

∣

∣

E1 is a T -flat coherent OX1×T -module,

Ẽ2 is a T -flat coherent OX2×T -module

and f : E1|Y×T → Ẽ2|Y×T is a homo-
morphism with the property (∗)



















/

∼

where (E1, Ẽ2, f) ∼ (E′
1, Ẽ

′
2, f

′) if and only if there exist a line bundle L on
T and isomorphisms g1 : E1

∼
→ E′

1⊗L, g2 : Ẽ2
∼
→ Ẽ′

2⊗L with the following
commutative diagram:

E1|Y×T
f
−→ Ẽ2|Y×T

g1|Y ×T ↓ o g2|Y ×T ↓ o

E′
1|Y×T ⊗ L

f ′
−→ Ẽ′

2|Y×T ⊗ L.

(∗) For any t ∈ T , E1(t) and Ẽ2(t) are of pure dimension d, χ(E1(t)(m))
= H1(m), χ(Ẽ2(t)(m)) = H2(m), χ(E1(t)(−Y )(m)) = H ′

1(m),
χ(Ẽ2(t)(−Y )(m)) = H ′

2(m) and kerϕf(t) is a stable sheaf on X×k(t),

where ϕf(t) : E1(t) ⊕ Ẽ2(t) → Ẽ2(t)|Y ×k(t) is the homomorphism de-
fined by ϕf(t)(a, b) := f(t)(a|Y )− b|Y .

We can similarly define a functor M
(2),H1,H2

X,H ′
1,H

′
2

:

M
(2),H1,H2

X,H ′
1,H

′
2

(T ) :=


















(Ẽ1, E2, f)

∣

∣

∣

∣

∣

∣

∣

∣

∣

E2 is a T -flat coherent OX2×T -module,

Ẽ1 is a T -flat coherent OX1×T -module

and f : E2|Y×T → Ẽ1|Y×T is a homo-
morphism with the property (∗′)



















/

∼

where ∼ is the equivalence relation defined similarly to that ofM
(1),H1,H2

X,H ′
1,H

′
2

.

(∗′) For any t ∈ T , E2(t) and Ẽ1(t) are of pure dimension d, χ(E2(t)(m))
= H2(m), χ(Ẽ1(t)(m)) = H1(m), χ(E2(t)(−Y )(m)) = H ′

2(m),
χ(Ẽ1(t)(−Y )(m)) = H ′

1(m) and kerϕf(t) is a stable sheaf on X×k(t),

where ϕf(t) : E2(t) ⊕ Ẽ1(t) → Ẽ1(t)|Y ×k(t) is the homomorphism de-
fined by ϕf(t)(a, b) := f(t)(a|Y )− b|Y .
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Let (E1, Ẽ2, f) be an element ofM
(1),H1,H2

X,H ′
1,H

′
2

(T ). If we put

ϕf : E1 ⊕ Ẽ2 −→ Ẽ2|Y×T ; ϕf (a, b) := f(a|Y×T )− b|Y×T ,

then kerϕf is an element of MH
X(T ). So we can define a morphism of

functors:

Φ :M
(1),H1,H2

X,H ′
1,H

′
2
−→MH

X ; (E1, Ẽ2, f) 7→ kerϕf .

Proposition 1.8. The morphism Φ : M
(1),H1,H2

X,H ′
1,H

′
2
→ MH

X is a mono-

morphism. Moreover for any noetherian scheme S over k and for any

morphism of functors hS →M
H
X , hS ×MH

X
M

(1),H1,H2

X,H ′
1,H

′
2

is representable by a

subscheme S0 of S.

Proof. First we will prove that Φ is a monomorphism. Take T -valued

points (E1, Ẽ2, f), (E′
1, Ẽ

′
2, f

′) of M
(1),H1,H2

X,H ′
1H

′
2

such that Φ((E1, Ẽ2, f)) =

Φ((E′
1, Ẽ

′
2, f

′)). Let ϕf : E1⊕Ẽ2 → Ẽ2|Y×T and ϕf ′ : E′
1⊕Ẽ

′
2 → Ẽ′

2|Y×T be
the homomorphisms induced by f and f ′ respectively. Put E := kerϕf and
E′ := kerϕf ′ . Then there exist a line bundle L on T and an isomorphism
σ : E

∼
→ E′ ⊗OT

L. The injection

E1(−Y ) ↪→ E1 ⊕ Ẽ2

a 7→ (a, 0)

factors through E:
E1(−Y ) ↪→ E ↪→ E1 ⊕ Ẽ2.(1)

On the other hand, the canonical commutative diagram

IX2 ⊗ E −→ E
↓ ↓

IX2 ⊗ (E1 ⊕ Ẽ2) −→ E1 ⊕ Ẽ2

(2)

induces the following commutative diagram:

IX2 ⊗ E −→ E
↓ ↗ ↓

E1(−Y ) −→ E1 ⊕ Ẽ2.

(3)

The homomorphism IX2 ⊗ E → E1(−Y ) is surjective since the canonical
homomorphism E → E1 is surjective. Hence the sequence

0 −→ E1(−Y ) −→ E −→ E ⊗OX2 −→ 0(4)
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is exact. The injection

Ẽ2(−Y ) ↪→ E1 ⊕ Ẽ2

b 7→ (0, b)

factors through E:
Ẽ2(−Y ) ↪→ E ↪→ E1 ⊕ Ẽ2.(5)

We can easily check that

0 −→ Ẽ2(−Y ) −→ E −→ E1 −→ 0(6)

is an exact sequence. Similarly to (4) and (6), there are exact sequences:

0 −→ E′
1(−Y ) −→ E′ −→ E′ ⊗OX2 −→ 0(7)

0 −→ Ẽ′
2(−Y ) −→ E′ −→ E′

1 −→ 0.(8)

From (4) and (7), there is an isomorphism σ′1 : E1(−Y )
∼
→ E′

1(−Y ) ⊗ L
such that the following diagram commutes:

IX2 ⊗ E −→ E1(−Y ) ↪→ E
1 ⊗ σ ↓ o σ′1 ↓ o σ ↓ o

IX2 ⊗ E
′ ⊗ L −→ E′

1(−Y )⊗ L ↪→ E′ ⊗ L.
(9)

Let σ1 : E1
∼
→ E′

1 ⊗ L be the isomorphism obtained by tensoring OX1(Y )
to σ′1. Then we have the following commutative diagram:

E −→ E1

σ ↓ o σ1 ↓ o
E′ ⊗ L −→ E′

1 ⊗ L.
(10)

Taking the kernels of the horizontal homomorphisms of the diagram (10)
and using (6),(8), we get an isomorphism σ′2 : Ẽ2(−Y )

∼
→ Ẽ′

2(−Y )⊗L such
that the diagram

IX1 ⊗ E −→ Ẽ2(−Y ) −→ E
1 ⊗ σ ↓ o σ′2 ↓ o σ ↓ o

IX1 ⊗ E
′ ⊗ L −→ Ẽ′

2(−Y )⊗ L −→ E′ ⊗ L

(11)

commutes. Note that there is a commutative diagram

IX1 ⊗ E −→ Ẽ2(−Y )
↓ ↙ ↓

E −→ Ẽ2.
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Let σ2 : Ẽ2
∼
−→ Ẽ′

2 ⊗ L be the isomorphism obtained by tensoring OX2(Y )
to σ′2. Then a commutative diagram

E −→ Ẽ2

σ ↓ o σ2 ↓ o

E′ ⊗ L −→ Ẽ′
2 ⊗ L

(12)

is obtained. From the definition of E and E′, the diagrams

E −→ E1 −→ E1|Y×T

↘ ↓ f

Ẽ2 −→ Ẽ2|Y×T

E′ −→ E′
1 −→ E′

1|Y×T

↘ ↓ f ′

Ẽ′
2 −→ Ẽ′

2|Y×T

(13)

both commute. Hence from (10) and (12), the following commutative dia-
gram is obtained:

E1|Y×T
f
−→ Ẽ2|Y×T

σ1|Y ×T ↓ o σ2|Y ×T ↓ o

E′
1|Y×T ⊗ L

f ′
−→ Ẽ′

2|Y×T ⊗ L.

(14)

These mean that (E1, Ẽ2, f) ∼ (E′
1, Ẽ

′
2, f

′) and so Φ is a monomorphism.
Next we prove the second assertion of the proposition. Let S be a

noetherian scheme over k and φ : hS → M
H
X a morphism of functors. φ

is given by an element E ∈ MH
X(S). From the flattening stratification

theorem, there exists a subscheme S1 of S such that for any T ∈ (Sch/k)
and any morphism f : T → S, f factors through S1 if and only if (1 ×
f)∗(E ⊗OX2) is flat over T and χ((E ⊗OX2)⊗ k(t)(m)) = H(m)−H ′

1(m)
for all t ∈ T . Let q : ES1 → ES1 ⊗OX2 be the canonical surjection. Since
ker q is the image of the homomorphism IX2 ⊗ES1 → ES1 , it is an OX1×S1-
module. If we put E(1) := ker q ⊗ OX1(Y ), then E(1) becomes an S1-flat
OX1×S1-module. The composition

g : ES1 −→ E|X1×S1

∼
→ IX2⊗E|X1×S1⊗OX1(Y ) −→ ker q⊗OX1(Y )

∼
→ E(1)

is surjective. Since the diagram

IX2 ⊗ ES1 −→ ES1

↓ ↓ g

IX2 ·ES1 = E(1)(−Y ) ↪→ E(1)
(15)

commutes, the composition E(1)(−Y ) ↪→ ES1

g
→ E(1) is just the canonical

injection induced by the inclusion OX1(−Y ) ↪→ OX1 . The image of the
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homomorphism IX2 ⊗ ker g → ES1 is contained in E(1)(−Y ) and the com-

position E(1)(−Y ) → ES1

g
→ E(1) is injective. Hence IX2ker g = 0 and so

ker g is an OX2×S1-module. Put Ẽ(2) := ker g⊗OX2(Y ). Note that E(1) and
Ẽ(2) are both flat over S1. So there exists an open and closed subscheme S0

of S1 such that a point s ∈ S1 is in S0 if and only if the following equalities
hold:

χ(E(1) ⊗ k(s)(m)) = H1(m), χ(Ẽ(2) ⊗ k(s)(m)) = H2(m)

χ(Ẽ(2) ⊗ k(s)(−Y )(m)) = H ′
2(m).

(16)

Since the composite IX1 ⊗ ES1 → ES1

g
→ E(1) is zero, the image of the

canonical homomorphism IX1⊗ES1 → ES1 is contained in Ẽ(2)(−Y ). Then
we have the following composition:

g′ : ES1 → E|X2×S1

∼
→ IX1 ⊗ ES1 ⊗OX2(Y )→ Ẽ(2).

There exists a homomorphism α : E
(1)
S1
→ Ẽ(2)|Y×S1 satisfying the following

exact commutative diagram:

0 −→ Ẽ(2)(−Y ) −→ ES1

g
−→ E(1) −→ 0

‖ ↓ g′ ↓ α

0 −→ Ẽ(2)(−Y ) −→ Ẽ(2) −→ Ẽ(2)|Y×S1 −→ 0.

(17)

Let f : E(1)|Y×S1 → Ẽ(2)|Y×S1 be the homomorphism induced by α. Put

ϕf : E(1) ⊕ Ẽ(2) −→ Ẽ(2)|Y×S1

(a, b) 7→ f(a|Y×S1)− b|Y×S1 .
(18)

Let i : ES1 → E(1) ⊕ Ẽ(2) be the homomorphism induced by the homo-
morphisms g : ES1 → E(1) and g′ : ES1 → Ẽ(2). i is injective since its
restriction to every fiber over S1 is injective ([4], IV Proposition (11.3.7)).
Moreover we can check that the sequence

0 −→ ES1

i
−→ E(1) ⊕ Ẽ(2) ϕf

−→ Ẽ(2)|Y×S1 −→ 0(19)

is exact.
The triple (E

(1)
S0
, Ẽ

(2)
S0
, fS0) defines an element ofM

(1),H1,H2

X,H ′
1,H

′
2

(S0). Then

we have a morphism φ′ : hS0 → M
(1),H1,H2

X,H ′
1,H

′
2

. From the exactness of (19),

the following diagram commutes:

hS0 ↪→ hS
φ′ ↓ ↓ φ

M
(1),H1,H2

X,H ′
1,H

′
2

↪→ MH
X .

(20)
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In particular we have a monomorphism

hS0 ↪→M
(1),H1,H2

X,H ′
1,H

′
2
×MH

X
hS ↪→ hS .(21)

Let ((E1, Ẽ2, f), ψ) be any element ofM
(1),H1,H2

X,H ′
1,H

′
2

(T )×MH
X

(T )S(T ). Put

ϕf : E1 ⊕ Ẽ2 −→ Ẽ2|Y×T ; ϕf (a, b) := f(a|Y×T )− b|Y×T .(22)

Then we have ET ∼= kerϕf ⊗ L for some line bundle L on T . Replacing
(E1, Ẽ2, f) by (E1, Ẽ2, f)⊗ L, we may assume that ET ∼= kerϕf .

From (4),(6), there are exact sequences:

0 −→ E1(−Y ) −→ ET −→ E|X2×T −→ 0(23)

0 −→ Ẽ2(−Y ) −→ ET −→ E1 −→ 0.(24)

Since E1(−Y )(t) → E(t) is injective for all t ∈ T , E|X2×T is flat over T
([4], IV Proposition 11.3.7) and χ(E|X2×T (t)(m)) = H(m)−H ′

1(m) for all
t ∈ T . Hence the morphism ψ : T → S factors through S0. This proves

that hS0 −→M
(1),H1,H2

X,H ′
1,H

′
2
×MH

X
hS is an isomorphism.

Let us recall the following well-known result. The proof is in [17] or [9].

Theorem 1.9. (Simpson) There exists a coarse moduli scheme MH
X

of MH
X .

As a corollary of Proposition 1.8, we have the following result.

Theorem 1.10. There exists a coarse moduli scheme M
(1),H1,H2

X,H ′
1,H

′
2

of

M
(1),H1,H2

X,H ′
1,H

′
2

. Moreover M
(1),H1,H2

X,H ′
1,H

′
2

is a subscheme of MH
X .

Proof. From the arguments in [17] or [9], we can see that the moduli
scheme MH

X for MH
X is obtained as a quotient of an open subscheme R of

a Quot-scheme by an action of PGL(V ) for some vector space V over k.
Moreover R is a principal PGL(V )-bundle overMH

X . Note that the notion of
e-stable sheaf is now needless because the boundedness of semistable sheaves
has been proven ([7]). From Proposition 1.8, there exists a subscheme R′

of R such that hR′ ∼= hR ×MH
X
M

(1),H1,H2

X,H ′
1,H

′
2

. From the construction, R′ ↪→ R

is PGL(V )-equivariant and R′ descends to a subscheme M
(1),H1,H2

X,H ′
1,H

′
2

of MH
X .

Since R′ →M
(1),H1,H2

X,H ′
1,H

′
2

is a principle PGL(V )-bundle, we can easily see that

M
(1),H1,H2

X,H ′
1,H

′
2

is a coarse moduli scheme of M
(1),H1,H2

X,H ′
1,H

′
2

.
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The following Proposition means that M
(1),H1,H2

X,H ′
1,H

′
2

and MH
X have the

same scheme structure at “general points” of M
(1),H1,H2

X,H ′
1,H

′
2

.

Proposition 1.11. Let R be a noetherian local ring and s be the closed

point of SpecR. Let E be an R-valued point of MH
X . Assume that the

triple (F1, F̃2, f) corresponding to E(s) is contained in M
(1),H1,H2

X,H ′
1,H

′
2

(k(s))

and that f : F1|Y×k(s) → F̃2|Y×k(s) is surjective. Then E is contained in

M
(1),H1,H2

X,H ′
1,H

′
2

(R).

Proof. The canonical homomorphism E(s) → F̃2 is surjective since
f is surjective. Hence F̃2(−Y ) ⊂ E(s) is the image of the canonical ho-
momorphism IX1 ⊗ E(s) → E(s). On the other hand there is an exact
sequence;

0 −→ F̃2(−Y ) −→ E(s) −→ F1 −→ 0.

So we have an isomorphism E(s) ⊗ OX1

∼
→ F1. Hence the canonical ho-

momorphism IX2 ⊗ E(s)
∼
→ F1(−Y ) → E(s) is injective. Since E is flat

over S, IX2 ⊗ E → E is injective and E ⊗ OX2 is flat over S ([4], IV
Proposition (11.3.7)). From the proof of Proposition 1.8, E is contained in

M
(1),H1,H2

X,H ′
1,H

′
2

(R).

Remark 1.12. Take a member E ∈ MH
X (k). Let (E(1), Ẽ(2), fE) ∈

M
(1),H1,H2

X,H ′
1,H

′
2

(k) and (Ẽ(1), E(2), gE) ∈ M
(2),G1,G2

X,G′
1,G

′
2

(k) be the corresponding

triples. Then we can check that fE : E(1)|Y → Ẽ(2)|Y is surjective if and
only if gE : E(2)|Y → Ẽ(1)|Y is injective. If a point p = [E] ∈MH

X (k) satis-
fies this equivalence condition, then we can see from the proof of Proposition

1.11 that M
(2),G1,G2

X,G′
1,G

′
2

and MH
X have the same scheme structure at p.

The following proposition means that we can fix the rank of the sheaf

restricted to X1 or X2 in considering the moduli space of stable sheaves on

X.

Proposition 1.13. Let S be a connected locally noetherian scheme

and E be an element of MH
X(S). Then a0(E|X1×S(s)) and a0(E|X1×S(s))

are constant on S, where a0(E|Xi×S(s)) is the integer defined before Defi-
nition 1.6.
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Proof. Take any point s of S. Let t1, . . . , td ∈ H
0(X,OX (1)) be general

members such that Z1∩· · ·∩Zd∩Y = ∅ and E|(Z1∩···∩Zi−1)×S(s)⊗OX(−1)
ti→

E|(Z1∩···∩Zi−1)×S(s) are injective for i = 1, . . . , d, where Zi := Z(ti) is the
zero scheme of ti. Then each E|(Z1∩···∩Zi)×S is flat over a neighborhood of
s. In particular E|(Z1∩···∩Zd)×S is finite and flat over a neighborhood of s.
Put W1 := (Z1 ∩ · · · ∩ Zd ∩ X1) × S and W2 := (Z1 ∩ · · · ∩ Zd ∩ X2) ×
S. Then E|W1 and E|W2 are both flat over a neighborhood of s. Hence
a0(E|X1×S(t)) = χ(E|W1(t)) and a0(E|X2×S(t)) = χ(E|W2(t)) are constant
on a neighborhood of s.

§2. Direct construction of the moduli space of triples

In this section we will give another construction of the moduli space

M
(1),H1,H2

X,H ′
1,H

′
2

of triples. There exists an integer m0 such that for any integer

m ≥ m0 and for any geometric point (E1, Ẽ2, f) ∈ M
(1),H1,H2

X,H ′
1,H

′
2

(k),

(i) H0(E1(m)) ⊗ OX1 → E1(m) and H0(Ẽ2(m)) ⊗ OX2 → Ẽ2(m) are

surjective, and

(ii) H i(E1(m)) = 0, H i(Ẽ2(m)) = 0 and H i(Ẽ2(−Y )(m)) = 0 for i > 0.

Let V1 (resp. V2) be a vector space over k of dimension H1(m0) (resp.

H2(m0)). Let us consider the open subschemes

Q1 :=










[V1 ⊗OX1 → E1] ∈ Quot
H1(x+m0)
V1⊗OX1

/X1/k

∣

∣

∣

∣

∣

∣

∣

V1 → H0(E1) is bijective,
E1 is of pure dimension d
and H i(E1) = 0 for all i > 0











,

Q2 :=










[V2 ⊗OX2 → Ẽ2] ∈ Quot
H2(x+m0)
V2⊗OX2

/X2/k

∣

∣

∣

∣

∣

∣

∣

V2 → H0(Ẽ2) is bijective,

Ẽ2 is of pure dimension d

and H i(Ẽ2) = 0 for all i > 0











of Quot
H1(x+m0)
V1⊗OX1

/X1/k
and Quot

H2(x+m0)
V2⊗OX2

/X2/k
respectively. Let V1⊗OX1×Q1×Q2

→ E1 and V2 ⊗OX2×Q1×Q2 → Ẽ2 be the pull back of the universal quotient

sheaves. Then E1|Y×Q1×Q2 and Ẽ2|Y×Q1×Q2 are flat over Q1 × Q2. From
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the result of base change theorem ([1], (1.1)), there exists a coherent sheaf

H on Q1 ×Q2 such that

Hom(H⊗OT ,M)
∼
−→ (πT )∗(Hom(E1 ⊗OY×T , Ẽ2 ⊗OY×T ⊗M))

for any morphism T → Q1×Q2 and any quasi-coherent sheafM on T , where

πT : Y × T → T is the projection. Let us consider V(H) = Spec(S(H)).

From the property of H, the canonical homomorphism H⊗OV(H) → OV(H)

corresponds to a homomorphism:

f̃ : E1 ⊗OY×V(H) −→ Ẽ2 ⊗OY×V(H).

Then we can define the following homomorphism;

ϕf̃ : (E1)V(H) ⊕ (Ẽ2)V(H) −→ Ẽ2 ⊗OY×V(H);

(a, b) 7→ f̃ (a|Y×V(H))− b|Y×V(H).

If we put E ′ := kerϕf̃ ⊗OX(−m0), then E ′ is flat over V(H). We put

P :=











s ∈ V(H)

∣

∣

∣

∣

∣

∣

∣

E ′(s) is a stable sheaf on X × k(s)
χ(E1(s)(−Y )(m)) = H ′

1(m+m0) and

χ(Ẽ2(s)(−Y )(m)) = H ′
2(m+m0)











.

If we put E := E ′|X×P , then it induces a morphism

Π′ : hP −→M
(1),H1,H2

X,H ′
1,H

′
2
.

Let Π : P →M
(1),H1,H2

X,H ′
1,H

′
2

be the morphism induced by the composition

hP
Π′

→M
(1),H1,H2

X,H ′
1,H

′
2
→ h

M
(1),H1,H2
X,H′

1
,H′

2

.

Put G := (GL(V1) ×GL(V2))/Gm, where Gm ↪→ GL(V1) ×GL(V2) is the

diagonal embedding.

Theorem 2.1. Π : P −→M
(1),H1,H2

X,H ′
1,H

′
2

is a principal G-bundle.

Proof. Let S be a locally noetherian scheme over k and take elements
g ∈ G and x ∈ V(H)(S). g is given by a line bundle L on S and two
isomorphisms gi : Vi ⊗ OS

∼
→ Vi ⊗ OS ⊗ L (i = 1, 2). x is determined by
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quotients p1 : V1 ⊗ OX1×S → E1, p2 : V2 ⊗ OX2×S → Ẽ2, and a homo-
morphism f : E1|Y×S → Ẽ2|Y×S. Let g · x be the S-valued point of V(H)
determined by the following data:

V1 ⊗OX1×S
g1
−→ V1 ⊗OX1×S ⊗ L

p1
−→ E1 ⊗ L,

V2 ⊗OX2×S
g2
−→ V2 ⊗OX1×S ⊗ L

p2
−→ Ẽ2 ⊗ L and

E1 ⊗ L|Y×S
f⊗1
−→ Ẽ2 ⊗ L|Y×S.

Then we can define the action:

σ : G×V(H)→ V(H); (g, x) 7→ g · x.

σ induces the action of G on P and the morphism Π′ : hP → M
(1),H1,H2

X,H ′
1,H

′
2

is G-equivariant. So we obtain a morphism of functors ψ : hP /hG →

M
(1),H1,H2

X,H ′
1,H

′
2

, where hP /hG is the functor defined by

(hP /hG) (S) := P (S)/G(S)

for any locally noetherian scheme S over k. Let x and x′ be S-valued
points of P such that Π′(x) = Π′(x′). Let p1 : V1 ⊗ OX1×S → E1 and
p2 : V2 ⊗ OX2×S → Ẽ2 be the quotient sheaves determined by x and p′1 :
V1 ⊗ OX1×S → E′

1 and p′2 : V2 ⊗ OX2×S → Ẽ′
2 be the quotient sheaves

determined by x′. Let f : E1|Y×S → Ẽ2|Y×S and f ′ : E′
1|Y×S → Ẽ′

2|Y×S

be the homomorphisms determined by x and x′ respectively. Then there
exists a line bundle L on S such that E1

∼= E′
1 ⊗ L, Ẽ2

∼= Ẽ′
2 ⊗ L and the

following diagram commutes;

E1|Y×S
f
−→ Ẽ2|Y×S

o ↓ o ↓

E′
1 ⊗ L|Y×S

f ′
−→ Ẽ′

2 ⊗ L|Y×S .

So we have an isomorphism g1 : V1⊗OS
∼
→ π∗(E1)

∼
→ π∗(E

′
1⊗L)

∼
→ V1⊗L,

where π : X1 × S → S is the projection. The isomorphism Ẽ2
∼= Ẽ′

2 ⊗ L
induces the isomorphism g2 : V2 ⊗ OS

∼
→ V2 ⊗ L. Then [(g1, g2)] · x

′ = x
and so ψ is a monomorphism. It is easy to see that ψ(R) is surjective for
any local ring R. Hence the sheaves associated to the presheaves hP /hG ,

M
(1),H1,H2

X,H ′
1,H

′
2

with respect to Zariski topology are isomorphic. From this fact

one sees that the morphism Π′ : P → M
(1),H1,H2

X,H ′
1,H

′
2

is formally smooth and

thus the morphism Π : P →M
(1),H1,H2

X,H ′
1,H

′
2

is smooth.



166-08 : 2002/6/10(22:34)

152 M.-A. INABA

Let us consider the morphism

ϕ : G× P −→ P ×
M

(1),H1,H2
X,H′

1
,H′

2

P.

We must prove that ϕ is an isomorphism. Note that P ×
M

(1),H1,H2
X,H′

1
,H′

2

P ∼=

P ×
M

(1),H1,H2
X,H′

1
,H′

2

P . First we will prove that ϕ(R) is injective for any artinian

local ring R over k. Let (g, x), (g′ , x′) be two elements of G(R)×P (R) such
that (g · x, x) = (g′ · x′, x′). Then x = x′ and g−1g′x = x. Let (E1, Ẽ2, f)
be the triple determined by x and E be the associated coherent sheaf on
X × R. Then we have HomX×R(E,E) ∼= R. If we write (g1, g2) := g−1g′,
then there are isomorphisms h1 : E1

∼
→ E1, h2 : Ẽ2

∼
→ Ẽ2 such that the

diagrams

V1 ⊗OX1

p1−→ E1 V2 ⊗OX2

p2−→ Ẽ2

g1 ↓ o h1 ↓ o g2 ↓ o h2 ↓ o

V1 ⊗OX1

p1−→ E1 V2 ⊗OX2

p2−→ Ẽ2

commute, where p1 and p2 are quotients determined by x, and the diagram

E1|Y×R
f
−→ Ẽ2|Y×R

h1 ↓ h2 ↓

E1|Y×R
f
−→ Ẽ2|Y×R

commutes. (h1, h2) induces the automorphism E
∼
→ E. Since Hom(E,E) =

R, this isomorphism is a multiplication by an element c of R. So h1 = c · 1
and h2 = c · 1. Since V1⊗R ∼= H0(E1) and V2⊗R ∼= H0(Ẽ2), g1 = c · 1 and
g2 = c · 1. Hence g−1g′ = 1 in G(R) and (g, x) = (g′, x′).

Hence ϕ(R) is injective for all artinian local rings R over k and so ϕ is
a monomorphism. Since ψ is a monomorphism, ϕ(S) is surjective for any
S ∈ (Sch/k). Hence ϕ is an isomorphism.

Remark 2.2. If X1,X2 are non-singular curves, then H is a locally free
sheaf. However, H is not necessarily locally free in higher dimensional case.
(See Remark 5.2 for this example.)

Remark 2.3. By [[9], Proposition 4.10], there exists an integer l0 such
that for any l ≥ l0, for any E ∈ MH

X(k) and for any coherent subsheaf F of E
with 0 < a0(F ) < a0(E), the inequality h0(F (l))/a0(F ) < h0(E(l))/a0(E)
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holds. We assume farther that m0 ≥ l0. Then we can also prove that the
quotient P/G exists by using geometric invariant theory. Namely one can
show that all points of P are stable points with respect to the action of G
and some polarization.

Remark 2.4. Assume that H1 6= 0 andH2 6= 0. Consider the projective
bundle P(H) over Q1 × Q2. Let f̄ : E1 ⊗ OY×P(H) −→ Ẽ2 ⊗ OY×P(H) ⊗
OP(H)(1) be the homomorphism corresponding to the canonical surjection

H⊗OP(H) → OP(H)(1). Let ϕf̄ : (E1)P(H)⊕Ẽ2⊗OP(H)(1)→ Ẽ2⊗OP(H)(1)⊗
OY×V(H) be the induced homomorphism. Put

P̄ :=











x ∈ P(H)

∣

∣

∣

∣

∣

∣

∣

kerϕf̄ (x)⊗OX(−m0) is stable,

χ(E1(s)(−Y )(m)) = H ′
1(m+m0) and

χ(Ẽ2(s)(−Y )(m)) = H ′
2(m+m0)











.

Then P̄ is an open subscheme of P(H). By the same arguments as Theorem

2.1, we can see that P̄ → M
(1),H1,H2

X,H ′
1,H

′
2

is a principal PGL(V1) × PGL(V2)-

bundle.

§3. Parabolic triples

Let X be a projective scheme over k satisfying the condition (†) of

section 1.

Definition 3.1. A parabolic triple is a triple ((E1)∗, (E2)∗, σ), where
(Ei)∗ is a filtration Ei(−Y ) ⊂ E′

i ⊂ Ei of coherent sheaves on Xi of pure
dimension d for i = 1, 2 and σ an isomorphism σ : E1/E

′
1

∼
→ E2/E

′
2 on Y .

Definition 3.2. Two parabolic triples ((E1)∗, (E2)∗, σ) and ((F1)∗,
(F2)∗, τ) are said to be isomorphic if there exist isomorphisms θi : Ei

∼
→ Fi

for i = 1, 2 such that θi(E
′
i) = F ′

i for i = 1, 2 and the diagram

E1/E
′
1

σ
−→ E2/E

′
2

θ̄1↓ θ̄2↓

F1/F
′
1

τ
−→ F2/F

′
2

commutes, where θ̄i : Ei/E
′
i

∼
→ Fi/F

′
i is the isomorphism induced by θi.

Proposition 3.3. There exists a bijective correspondence between the

isomorphism classes of coherent sheaves of pure dimension d on X and the

isomorphism classes of parabolic triples.
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Proof. Let E be a coherent sheaf of pure dimension d on X. As in the
argument in section 1, there is an exact sequence

0 −→ E −→ E(1) ⊕ E(2) −→ E(0) −→ 0.

Let E
(i)
∗ be the filtration E(i)(−Y ) ⊂ Ẽ(i)(−Y ) ⊂ E(i) for i = 1, 2. Let

σ be the canonical isomorphism E(1)/Ẽ(1)(−Y )
∼
→ E(0) ∼

→ E(2)/Ẽ(2)(−Y ).

Then we obtain a parabolic triple (E
(1)
∗ , E

(2)
∗ , σ) for E. It is easy to see that

E 7→ (E
(1)
∗ , E

(2)
∗ , σ) is a bijective correspondence.

A flat family of parabolic triples on XT /T is a triple ((E1)∗, (E2)∗, σ)

such that for each i, (Ei)∗ is a filtration Ei(−Y ) ⊂ E′
i ⊂ Ei of coherent

sheaves on XT such that Ei and Ei/E
′
i are flat over T , Ei(t) is of pure

dimension d for any t ∈ T and σ : E1/E
′
1

∼
→ E2/E

′
2 is an isomorphism. For a

flat family ((E1)∗, (E2)∗, σ) of parabolic triples, we define a homomorphism

ϕσ : E1 ⊕ E2 −→ E2/E
′
2

by ϕσ(a, b) = σ(ā) − b̄ where ā is the image of a by E1 → E1/E
′
1. Let

(Hi)∗ be sequences of numerical polynomials H̃i(m),Hi(m), H̃ ′
i(m),H ′

i(m)

for i = 1, 2 such that H(m) = H1(m) +H ′
2(m) = H ′

1(m) +H2(m).

Definition 3.4. We define a functor

par-M
(H1)∗,(H2)∗
X : (Sch/k) −→ (Sets)

by

par-M
(H1)∗,(H2)∗
X (T ) :=


















((E1)∗, (E2)∗, σ) ; a flat family of parabolic
triples on XT /T such that for any t ∈ T ,
((E1)∗, (E2)∗, σ)⊗ k(t) satisfies the

following condition (a)



















/

∼

where ∼ is the equivalence relation defined by (b).

(a) χ(E′
i(t)(Y )(m)) = H̃i(m), χ(Ei(t)(m)) = Hi(m), χ(E′

i(t)(m)) =

H̃ ′
i(m) and χ(Ei(t)(−Y )(m)) = H ′

i(m) for i = 1, 2 and kerϕσ(t) is

a stable sheaf on X × k(t).
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(b) ((E1)∗, (E2)∗, σ) ∼ ((F1)∗, (F2)∗, τ) if there are a line bundle L on T

and isomorphisms θi : Ei
∼
→ Fi ⊗ L with θi(E

′
i) = F ′

i ⊗ L for i = 1, 2

such that the diagram

E1/E
′
1

θ̄1−→ F1/F
′
1 ⊗ L

σ↓ τ↓

E2/E
′
2

θ̄2−→ F2/F
′
2 ⊗ L

commutes, where θ̄i : Ei/E
′
i

∼
→ Fi/F

′
i ⊗L is the isomorphism induced

by θi.

We can define a morphism of functors

Ψ : par-M
(H1)∗,(H2)∗
X −→MH

X

by Ψ((E1)∗, (E2)∗, σ) := kerϕσ.

Proposition 3.5. Ψ : par-M
(H1)∗,(H2)∗
X →MH

X is a monomorphism.

Moreover par-M
(H1)∗,(H2)∗
X = M

(1),H1,H̃2

X,H ′
1,H̃

′
2

∩ M
(2),H̃1,H2

X,H̃′
1,H

′
2

as subfunctors of

MH
X .

Proof. Let ((E1)∗, (E2)∗, σ) and ((F1)∗, (F2)∗, τ) be two T -valued

points of par-M
(H1)∗,(H2)∗
X such that Ψ((E1)∗, (E2)∗, σ)=Ψ((F1)∗, (F2)∗, τ).

If we put E := kerϕσ and F := kerϕτ , then there exists a line bundle L
on T such that E ∼= F ⊗ L. From the similar arguments to the proof of
Proposition 1.8, the homomorphism

E1(−Y ) ↪→ E1 ⊕ E2

a 7→ (a, 0)

factors through E and the induced sequence

0 −→ E1(−Y ) −→ E −→ E ⊗OX2 −→ 0

is exact. Similarly the exact sequence

0 −→ F1(−Y ) −→ F −→ F ⊗OX2 −→ 0

is obtained. Thus there exists an isomorphism E1(−Y )
∼
→ F1(−Y )⊗L such

that the diagram

IX2 ⊗ E −→ E1(−Y ) ↪→ E
↓ o ↓ o ↓ o

IX2 ⊗ F ⊗ L −→ F1(−Y )⊗ L ↪→ F ⊗ L
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commutes. Then for the induced isomorphism E1
∼
→ F1 ⊗ L, the diagram

E −→ E1

↓ o ↓ o
F ⊗ L −→ F1 ⊗ L

commutes. Similarly we obtain an isomorphism E2
∼
→ F2⊗L such that the

diagram
E −→ E2

↓ o ↓ o
F ⊗ L −→ F2 ⊗ L

commutes. Thus we obtain an isomorphism E2/E
′
2

∼
→ F2/F

′
2 ⊗ L and the

exact commutative diagram:

0 −→ E −→ E1 ⊕ E2 −→ E2/E
′
2 −→ 0

↓ o ↓ o ↓ o
0 −→ F ⊗ L −→ F1 ⊗ L⊕ F2 ⊗ L −→ (F2/F

′
2)⊗ L −→ 0.

This implies that ((E1)∗, (E2)∗, σ) ∼ ((F1)∗, (F2)∗, τ) and so Ψ is a mono-
morphism.

Take ((E1)∗, (E2)∗, σ) ∈ par-M
(H1)∗,(H2)∗
X (T ) and put E := kerϕσ . By

definition, the canonical homomorphism E1(−Y )(t)→ E(t) is injective for
all t ∈ T . So the exact sequence

0 −→ E1(−Y ) −→ E −→ E ⊗OX2 −→ 0

concludes that E⊗OX2 is flat over T ([4], IV Proposition (11.3.7)). Similarly
E⊗OX1 is also flat over T . Hence the proof of Proposition 1.8 implies that

E ∈ M
(1),H1,H̃2

X,H ′
1,H̃

′
2

(T ) ∩M
(2),H̃1,H2

X,H̃′
1,H

′
2

(T ).

Conversely take E ∈ M
(1),H1,H̃2

X,H ′
1,H̃

′
2

(T ) ∩M
(2),H̃1,H2

X,H̃′
1,H

′
2

(T ). Let (E1, Ẽ2, f1)

and (Ẽ1, E2, f2) be the corresponding triples. Then we have the following
two exact sequences:

0 −→ E −→ E1 ⊕ Ẽ2 −→ Ẽ2|Y×T −→ 0

0 −→ E −→ Ẽ1 ⊕ E2 −→ Ẽ1|Y×T −→ 0.

Consider the composition Ẽ1(−Y ) ↪→ E → E1. Since Ẽ1(−Y )(t) → E1(t)
is injective for all t ∈ T , Ẽ1(−Y ) → E1 is injective and E1/Ẽ1(−Y ) is
flat over T ([4], IV Proposition (11.3.7)). Moreover we have a factorization
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E1(−Y ) ↪→ Ẽ1(−Y ) ↪→ E1. Similarly we have a factorization E2(−Y ) ↪→
Ẽ2(−Y ) ↪→ E2. Since E(t)→ E1(t)⊕E2(t) is injective for any t ∈ T , E →
E1 ⊕ E2 is injective and the cokernel E0 is flat over T ([4], IV Proposition
(11.3.7)). The exact sequence

0 −→ Ẽ1(−Y ) −→ E −→ E2 −→ 0

implies that E1/Ẽ1(−Y ) ∼= E0. Similarly E2/Ẽ2(−Y ) ∼= E0. Hence E is

contained in par-M
(H1)∗,(H2)∗
X (T ).

Theorem 3.6. A coarse moduli scheme par-M
(H1)∗,(H2)∗
X of par-

M
(H1)∗,(H2)∗
X exists. Moreover par-M

(H1)∗,(H2)∗
X is a subscheme of MH

X and

is the scheme theoretic intersection M
(1),H1,H̃2

X,H ′
1,H̃

′
2

∩M
(2),H̃1,H2

X,H̃′
1,H

′
2

.

Proof. The proof is similar to Theorem 1.10.

We will give another construction of the moduli space of parabolic

triples. There exists an integer m0 such that for any integer m ≥ m0 and

for any ((E1)∗, (E2)∗, σ) ∈ par-M
(H1)∗,(H2)∗
X (k),

(i) Ei(m), (Ei/E
′
i)(m) are globally generated for i = 1, 2,

(ii) Hj(Ei(m)) = 0,Hj((Ei/E
′
i)(m)) = 0 for i = 1, 2 and for any j > 0.

For i = 1, 2, put Vi := k⊕Hi(m0) and

Qi :=











[Vi ⊗OXi → Ei] ∈ Quot
Hi[m0]
Vi⊗OXi

/Xi/k

∣

∣

∣

∣

∣

∣

∣

Ei is of pure dimension d,
Vi → H0(Ei) is bijective
and Hj(Ei) = 0 for j > 0











.

Let Vi⊗OXi×Qi → Ei be the universal quotient sheaf. Let R′
i be the Quot-

scheme Quot
Hi[m0]−H̃′

i[m0]

Ei/Xi×Qi/Qi
and (Ei)R′

i
→ Gi be the universal quotient sheaf.

From [[19], Corollary 2.3] there exists a subscheme Ri of R′
i such that for

any T ∈ (Sch/k),

Ri(T ) :=

{

T → R′
i

∣

∣

∣

∣

∣

Ei(−Y )T ↪→ (Ei)T → (Gi)T is zero and
Hj(Gi(t)) = 0 for j > 0 and for any t ∈ T

}

.

Then (Gi)Ri is an OY×Ri-module. Put Ẽi := ker g ⊗ OXi(Y ), where g :

(Ei)Ri → (Gi)Ri is the canonical surjection. There exists a coherent sheaf

H on R1 ×R2 such that

HomT (HT ,M) ∼= HomXT
((G1)T ,G2 ⊗M)
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for any T → R1 × R2 and any quasi-coherent sheaf M on T ([1], (1.1)).

Let σ : (G1)V(H) → (G2)V(H) be the homomorphism corresponding to the

canonical homomorphism H⊗OV(H) → OV(H). Put

ϕσ : (E1)V(H) ⊕ (E2)V(H) −→ (G2)V(H); (a, b) 7→ σ(ā)− b̄.

Set

P :=











s ∈ V(H)

∣

∣

∣

∣

∣

∣

∣

σ(s) is isomorphic, kerϕσ(s)⊗OX(−m0) is stable,

χ(Ẽi(s)(n)) = H̃i(n+m0) and
χ(Ei(−Y )(s)(n)) = H ′

i(n+m0) for i = 1, 2











.

Then kerϕσ ⊗OX(−m0)|X×P induces a morphism

π : P −→ par-M
(H1)∗,(H2)∗
X .

Put G := (GL(V1)×GL(V2))/Gm.

Theorem 3.7. π : P → par-M
(H1)∗,(H2)∗
X is a principal G-bundle.

Proof. The same arguments as proof of Theorem 2.1 shows that π is
a smooth morphism. Moreover the surjectivity of π is obvious.

Let us consider the morphism

ψ : G× P −→ P ×
par-M

(H1)∗,(H2)∗
X

P.

We have only to prove that ψ is an isomorphism. Note that there is a
canonical isomorphism P ×

par-M
(H1)∗,(H2)∗
X

P ∼= P ×
par-M

(H1)∗,(H2)∗
X

P . In

order to prove that ψ is a monomorphism, it is sufficient to show that
ψ(R) is injective for all artinian local rings R over k. Take p ∈ P (R) and
[(g1, g2)] ∈ G(R) such that [(g1, g2)] · p = p. Let

V1 ⊗OX1×kR −→ E1 −→ G1

o ↓σ
V2 ⊗OX2×kR −→ E2 −→ G2

be the diagram corresponding to p. Since (g1, g2) · p = p, there are isomor-
phisms θi : Ei

∼
→ Ei, θ̄i : Gi

∼
→ Gi for i = 1, 2 such that the diagrams

Vi ⊗OX1×kR
gi−→ Vi ⊗OXi×kR

↓ ↓

Ei
θi−→ Ei

↓ ↓

Gi
θ̄i−→ Gi.
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commute for i = 1, 2 and the diagram

G1
σ
−→ G2

θ̄1↓ θ̄2↓

G1
σ
−→ G2

commutes. θ1 and θ2 induce an automorphism of kerϕσ . However, this
automorphism is a scalar multiplication by c ∈ R, since End(kerϕσ) = R.
Hence θ1 = c and θ2 = c, and so [(g1, g2)] = 1 in G(R), which proves that
ϕ(R) is injective.

Take (p, q) ∈ (P ×
par−M

(H1)∗,(H2)∗
X

P )(S), where S ∈ (Sch/k). Let

V1 ⊗OX1×kS −→ E1 −→ G1

o ↓σ
V2 ⊗OX2×kS −→ E2 −→ G2

be the diagram corresponding to p and

V1 ⊗OX1×kS −→ Ē1 −→ Ḡ1

o ↓τ
V2 ⊗OX2×kS −→ Ē2 −→ Ḡ2

be the diagram corresponding to q. From the choice of p, q, there exist a
line bundle L on S and an isomorphism θ : kerϕσ

∼
→ kerϕτ ⊗ L. θ induces

isomorphisms h1 : E1
∼
→ Ē1 ⊗ L, h̄1 : G1

∼
→ Ḡ1 ⊗ L, h2 : E2

∼
→ Ē2 ⊗ L and

h̄2 : G2
∼
→ Ḡ2 ⊗ L such that the diagram

E1 −→ G1
σ
−→ G2 ←− E2

h1↓ h̄1↓ h̄2↓ h2↓

Ē1 ⊗L −→ Ḡ1 ⊗ L
τ
−→ Ḡ2 ⊗ L ←− Ē2 ⊗ L

commutes. The isomorphisms h1, h2 induce isomorphisms g1 : V1 ⊗OS
∼
→

V1 ⊗OS ⊗ L and g2 : V2 ⊗OS
∼
→ V2 ⊗OS ⊗ L such that the diagrams

V1 ⊗OX1×S −→ E1

g1⊗1↓ h1↓

V1 ⊗OX1×S ⊗ L −→ Ē1 ⊗ L

and
V2 ⊗OX2×S −→ E2

g2↓ h2↓

V2 ⊗OX2×S ⊗ L −→ Ē2 ⊗ L

both commute. Then [(g1, g2)] · q = p, which proves that ψ(S) is surjective.
Hence ψ is an isomorphism.
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§4. Local deformations of sheaves on reducible surfaces

Lemma 4.1. Let (A,m) be an artinian local ring with residue field k =
A/m and I an ideal of A such that Im = 0. Let X be a projective scheme

flat over A and E a coherent sheaf on X ×A A/I flat over A/I. Assume

that there exist finite points p1, . . . , pn of X×A k such that E⊗A k is locally

free over X ×A k \ {p1, . . . , pn}. Moreover assume that each stalk Epi can

be lifted to an OX,pi-module M̃i flat over A. Then there exists an element

ω(E) ∈ H2(X × k, End(E ⊗ k)) ⊗ I whose vanishing is equivalent to the

liftability of E to an A-flat coherent sheaf Ẽ on X such that Ẽpi
∼= Mi for

each i.

Proof. There exists a finite covering {Ui}
r
i=1 of X by affine open sets

such that E|(Ui∩Uj)⊗A/I is locally free for each i, j with Ui 6= Uj and each

E|Ui can be lifted to a coherent OUi-module Ẽi which is flat over Ui. Let
ηi be the element of Ext1Ui

(E|Ui , I ⊗A E|Ui) corresponding to the extension

0 −→ I ⊗A E|Ui −→ Ẽi −→ E|Ui −→ 0.

Since Ẽi|Ui∩Uj and Ẽj|Ui∩Uj are locally free sheaves for Ui 6= Uj, there exists
an isomorphism of extensions:

0 −→ I ⊗A E|Ui∩Uj −→ Ẽi|Ui∩Uj −→ E|Ui∩Uj −→ 0
‖ o ↓ ‖

0 −→ I ⊗A E|Ui∩Uj −→ Ẽj |Ui∩Uj −→ E|Ui∩Uj −→ 0.

Hence we have ηi|Ui∩Uj = ηj|Ui∩Uj and so {ηi}
r
i=1 determines an element

η of H0(X,Ext1X(I ⊗A E,E)). From the spectral sequence Ep,q2 =
Hp(X,ExtqX(I⊗AE,E))⇒ Ep+q = Extp+qX (I⊗AE,E), the following exact
sequence is obtained:

0 −→ H1(X,HomX(I ⊗A E,E)) −→ Ext1X(I ⊗A E,E)

−→ H0(X,Ext1X(I ⊗A E,E)) −→ H2(X,HomX(I ⊗A E,E)).

Let ω be the image of η by H0(X,Ext1X(I⊗AE,E))→ H2(X,HomX(I⊗A
E,E)) = H2(X ×A k, EndX(E ⊗A k) ⊗k I). Then ω = 0 if and only if
η comes from an element of Ext1X(I ⊗A E,E), that is an extension 0 →
I ⊗A E → Ẽ → E → 0 such that

0 −→ I ⊗A E|Ui∩Uj −→ Ẽi|Ui∩Uj −→ E|Ui∩Uj −→ 0
‖ o ↓ ‖

0 −→ I ⊗A E|Ui∩Uj −→ Ẽ|Ui∩Uj −→ E|Ui∩Uj −→ 0
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for each i. Hence ω is the desired obstruction.

Let R be a discrete valuation ring and k = R/mR be the residue field.

(We assume that k = k̄.) Let t0 be the closed point of SpecR and η be the

generic point of SpecR. Let X̃ be a projective scheme flat over R such that

X̃η is a smooth surface and X := X̃t0 = X1 ∪ X2, where X1 and X2 are

smooth surfaces and Y := X1 ∩X2 is a smooth curve. We will investigate

which sheaves on X can be lifted to sheaves on X̃.

Proposition 4.2. Let E be a coherent sheaf of pure dimension 2 on

X such that rankE|X1 6= rankE|X2 . Then E can not be lifted to a coherent

sheaf on X̃ flat over R.

Proof. Take a very ample line bundle OX̃(1). Since X̃ is flat over R,

we may assume that H0(X̃,OX̃ (1)) is a projective module over R and that

H0(X̃,OX̃(1)) ⊗ k(t0) ∼= H0(X,OX (1)), where OX(1) := OX̃(1)|X . Put
ri := rankE|Xi for i = 1, 2. Assume that E is lifted to a coherent sheaf
Ẽ on X̃ flat over R. Take general sections s1, s2 ∈ H0(X̃,OX̃(1)). Let

Z(si) ⊂ X̃ be the zero scheme of si. Then we may assume that Ẽ|Z(s1)∩Z(s2)

is flat over R, Ẽ|Z(s1)∩Z(s2)∩X̃η
is a locally free sheaf of rank r := rank Ẽ|X̃η

and E|Z(s1)∩Z(s2)∩Xi
are locally free sheaves of rank ri on Z(s1) ∩ Z(s2) ∩

Xi for i = 1, 2. Then Ẽ|Z(s1)∩Z(s2) is a locally free sheaf on Z(s1) ∩

Z(s2) and its rank is r1 = rank Ẽ|Z(s1)∩Z(s2)∩X1
= rank Ẽ|Z(s1)∩Z(s2)∩X̃η

=

rank Ẽ|Z(s1)∩Z(s2)∩X2
= r2, which is a contradiction.

Let E be a coherent sheaf of pure dimension 2 on X and (E(1), Ẽ(2), f)

be the corresponding triple. Assume that E(1) and Ẽ(2) are of rank r,

locally free along Y and f : E(1)|Y → Ẽ(2)|Y is injective. Let {p1, . . . , pn}

be the set of points of Y where f is not an isomorphism. Assume that

coker fpi
∼= k(pi) for each i. Let Mi be the stalk of E at pi.

Let CR be the category of artinian local rings A over R with A/mA = k.

We define a functor

DE : CR −→ (Sets)

by

DE(A) :=

{

Ẽ

∣

∣

∣

∣

∣

Ẽ is a coherent sheaf on X̃A flat over A

such that Ẽ ⊗A A/mA
∼= E ⊗k A/mA

}

.
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We also define a functor

DMi : CR −→ (Sets)

by

DMi(A) :=

{

M̃

∣

∣

∣

∣

∣

M̃ is an OX̃A
-module flat over A

such that M̃ ⊗A A/mA
∼= Mi ⊗k A/mA

}

.

Then we can define a morphism of functors

Φ1 : DE −→ DM1 × · · · ×DMn

by Φ1(Ẽ) := (Ẽp1 , . . . , Ẽpn). If H2(X,End(E,E)) = 0, then from Lemma

4.1, Φ1 is formally smooth. So we will study DMi . Put M := Mi and

p := pi. There is an exact sequence

0 −→M −→ O⊕r
X1,p
⊕O⊕r

X2,p

ϕfp
−→ O⊕r

Y,p −→ 0.

Let f̃ : O⊕r
X1,p

→ O⊕r
X1,p

be a lift of fp : O⊕r
Y,p → O

⊕r
Y,p. Then the following

exact commutative diagram is obtained:

0 0
↓ ↓

0 −→ M −→ O⊕r
X1,p
⊕O⊕r

X2,p

ϕfp
−→ O⊕r

Y,p −→ 0

↓ f̃ ⊕ 1 ↓ ‖
0 −→ O⊕r

X,p −→ O⊕r
X1,p
⊕O⊕r

X2,p
−→ O⊕r

Y,p −→ 0

↓ ↓

coker f̃ = coker f̃
↓ ↓
0 0.

We consider M as a submodule of O⊕r
X,p with respect to this diagram. We

define a functor

DM⊂O⊕r
X,p

: CR −→ (Sets)

by

DM⊂O⊕r
X,p

(A) :=

{

M̃ ⊂ O⊕r
X̃A,p

∣

∣

∣

∣

∣

M̃ ⊗A A/m→ O
⊕r
X,p ⊗A/m is just the

inclusion M ⊗k A/m ↪→ O⊕r
X,p ⊗k A/m

}

.

Let IXi be the ideal of OX corresponding to the subscheme Xi ⊂ X for

i = 1, 2. Then IX1
∼= OX2(−Y ) and so IX1,p is a principal ideal. So we can

write IX1,p = (f1) and IX2,p = (f2).
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Lemma 4.3. ExtiOX,p
(M,OX,p) = 0 for i ≥ 1.

Proof. We have the following free resolution of OX1,p:

· · · −→ OX,p
f1
−→ OX,p

f2
−→ OX,p

f1
−→ OX,p −→ OX1,p −→ 0.

Taking the dual of this complex, we have the following exact sequence:

O∨
X,p

f1
−→ O∨

X,p
f2
−→ O∨

X,p
f1
−→ · · · .

Thus ExtiOX,p
(OX1,p,OX,p) = 0 for i ≥ 1. Similarly ExtiOX,p

(OX2,p,OX,p) =
0 for i ≥ 1. There is an isomorphism IY,p ∼= IX1,p ⊕ IX2,p and an exact
sequence

Exti−1
OX,p

(IY,p,OX,p) −→ ExtiOX,p
(OY,p,OX,p) −→ ExtiOX,p

(OX,p,OX,p).

Thus ExtiOX,p
(OY,p,OX,p) = 0 for i ≥ 2. From the exact sequence

0 −→M −→ O⊕r
X1,p
⊕O⊕r

X2,p

ϕfp
−→ O⊕r

Y,p −→ 0,

the following exact sequence is obtained:

ExtiOX,p
(O⊕r

X1,p
⊕O⊕r

X2,p
,OX,p)−→ExtiOX,p

(M,OX,p)−→Exti+1
OX,p

(O⊕r
Y,p,OX,p).

Hence we have ExtiOX,p
(M,OX,p) = 0 for i ≥ 1.

We will use the following lemma.

Lemma 4.4. Let A→ B be a local homomorphism of noetherian local

rings and k = A/m be the residue field. Let M be a B-module of finite type

which is flat over A and satisfies Ext1B⊗Ak
(M ⊗A k,B ⊗A k) = 0. Then

HomB(M,B) is flat over A and HomB(M,B) ⊗A k = HomB⊗Ak(M ⊗A
k,B ⊗A k).

Proof. See [12], Appendix.

We define a morphism of functors

Φ2 : DM⊂O⊕r
X,p
−→ DM

by putting Φ2(M̃ ⊂ O
⊕r
X̃A,p

) := M̃ .
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Take any A ∈ CR and an ideal I ⊂ A such that Im = 0. If M̃ ∈ DE(A)

and an injection M̃ ⊗A A/I ⊂ O
⊕r
X̃A/I ,p

is given, then from Lemma 4.3 and

Lemma 4.4, Hom(M̃ ,O⊕r
X̃A,p

)→ Hom(M̃ ⊗A A/I,O
⊕r
X̃A/I,p

) is surjective. So

the injection M̃⊗AA/I ⊂ O
⊕r
X̃A/I ,p

can be lifted to an injection M̃ ⊂ O⊕r
X̃A,p

.

Hence Φ2 is formally smooth.

Let N be the cokernel of the injection M ↪→ O⊕r
X,p. We define a functor

DN : CR −→ (Sets)

by

DN (A) :=

{

Ñ

∣

∣

∣

∣

∣

Ñ is an OX̃A,p
-module flat over A

such that Ñ ⊗A A/m ∼= N ⊗k A/m

}

.

Then we obtain the following morphism of functors;

Φ3 : DM⊂O⊕r
X,p
−→ DN ; [M̃ ⊂ O⊕r

X̃A,p
] 7→ O⊕r

X̃A,p
/M̃ .

It is obvious that Φ3 is formally smooth.

By the assumption on f : E(1)|Y → Ẽ(2)|Y , N is generated by one

element. So there is an exact sequence

0 −→ IN −→ OX,p −→ N −→ 0.

We define a functor DIN⊂OX,p
in the same way as DM⊂O⊕r

X,p
and a morphism

of functors Φ4 : DIN⊂OX,p
→ DN in the same way as Φ3.

Now let f̃1 ∈ OX̃,p and f̃2 ∈ OX̃,p be lifts of f1 and f2 respectively.

Then there exists an element g ∈ OX̃,p such that f̃1f̃2 = tg where t ∈ R is

a local parameter.

Proposition 4.5. Let A ∈ CR and M̃ be an element of DM (A). If g
is a unit in OX̃,p, then tA = 0.

Proof. Since Φ2,Φ4 are formally smooth, M̃ induces an A-valued point
[Ĩ ⊂ OX̃A,p

] of DIN⊂OX,p
. IN is generated by f1 and another element

h ∈ OX,p. Then the induced homomorphism OY,p
h̄
→ OY,p is injective.
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From the exact commutative diagram

0 0 0
↓ ↓ ↓

0 −→ OX1,p
f2
−→ OX1,p −→ OY,p −→ 0

h ↓ h ↓ h̄ ↓

0 −→ OX1,p
f2
−→ OX1,p −→ OY,p −→ 0

↓ ↓ ↓

N
f2−→ N −→ N/f2N −→ 0

↓ ↓ ↓
0 0 0,

one sees that N
f2→ N is injective. Ñ := OX̃A,p

/Ĩ is flat over A by defini-

tion. Thus Ñ
f2→ Ñ is injective and Ñ/f̃2Ñ is flat over A ([4] IV Propo-

sition (11.3.7)). On the other hand, since g ∈ O×
X̃

, t = −g−1f̃1f̃2. Thus

t(Ñ/f̃2Ñ) = 0. Since Ñ/f̃2Ñ is faithfully flat over A, we have tA = 0.

From Proposition 4.5, we can see that M can never be lifted to a sheaf

on X̃ if g is a unit in OX̃,p.
The following proposition is useful for the lifting problem of sheaves on

a degenerate quadric surface in the next section (Theorem 5.4).

Proposition 4.6. Assume that the image ḡ ∈ OY,p of g is a regular

parameter. Then M can be lifted to an OX̃R,p
-module flat over R.

Proof. There is an exact sequence

0 −→ OX1,p
h
−→ OX1,p −→ N −→ 0

for some h ∈ OX1,p. h can be written as h = ug+ f2ϕ where u ∈ O×
X1,p

and

ϕ ∈ OX1,p. Let ũ and ϕ̃ be lifts of u and ϕ to OX̃,p respectively. Let Ĩ be the

ideal of OX̃,p generated by ũg+ f̃2ϕ̃, f̃1 + tũ−1ϕ̃. Since there is an equality

(f̃1 + tũ−1ϕ̃)f̃2 − tũ
−1(ũg + f̃2ϕ̃) = 0, we can define a homomorphism

OX̃,p/(f̃2, ũg + f̃2ϕ̃)
f̃1+tũ−1ϕ̃
−→ OX̃,p/(ũg + f̃2ϕ̃).

Since OX,p
ũg+f2ϕ̃
−→ OX,p is injective, OX̃,p

ũg+f̃2ϕ̃
−→ OX̃,p is injective and

OX̃,p/(ũg+ f̃2ϕ̃) is flat over R ([4], IV Proposition (11.3.7)). Let us consider
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the diagram

0 0 0
↓ ↓ ↓

0 −→ OX2,p
f1−→ OX2,p −→ OY,p −→ 0

ũg+f̃2ϕ̃ ↓ ũg+f̃2ϕ̃ ↓ ug ↓

0 −→ OX2,p
f1
−→ OX2,p −→ OY,p −→ 0

↓ ↓

OX2,p/(ũg + f̃2ϕ̃)
f1
−→ OX2,p/(ũg + f̃2ϕ̃)

↓ ↓
0 0.

Then the injectivity of OY,p
ug
→ OY,p implies that OX2,p/(ũg + f̃2ϕ̃)

f1
→

OX2,p/(ũg + f̃2ϕ̃) is injective, and so OX2,p/(ũg + f̃2ϕ̃)
f1→ OX,p/(ũg +

f̃2ϕ̃) is injective. Hence the homomorphism OX̃,p/(f̃2, ũg + f̃2ϕ̃)
f̃1+tũ−1ϕ̃
−→

OX̃,p/(ũg + f̃2ϕ̃) is injective and OX̃,p/(f̃1 + tũ−1ϕ̃, ũg + f̃2ϕ̃) = OX̃,p/Ĩ is

flat over R ([4], IV Proposition (11.3.7)). Hence [Ĩ ⊂ OX̃,p] is an element of

DIN⊂OX,p
(R). Since Φ3(R) is surjective, there exists an element [M̃ ⊂ O⊕r

X̃,p
]

of DM⊂O⊕r
X,p

(R) such that O⊕r
X̃,p

/M̃ ∼= OX̃,p/Ĩ . M̃ is the desired lift of M .

§5. Moduli space of rank 2 stable sheaves on a reducible quadric

surface

LetH1,H2 be two distinct planes in P3 and put Q0 := H1∪H2. We con-

sider the reduced structure on Q0. We put L := H1∩H2. Then Q0 satisfies

the hypothesis (†) in section 1. We consider the polarization with respect

to OQ0(1) := OP3(1)|Q0 . Fix a positive integer n0 and put P
(0,0)
n0 (m) :=

4
(m+2

2

)

− 2(m + 1) − n0. For an integer n, put P
(0)
n (m) := 2

(m+2
2

)

− n,

P
(−1)
n (m) := 2

(m+2
2

)

−(m+1)−n and P
(1)
n (m) := 2

(m+2
2

)

+(m+1)+1−n. We

denoteM
(1),P1(m),P2(m)
Q0,P1(m−1),P2(m−1) simply byMP1,P2

(1),Q0
. We write MP1,P2

(1),Q0
,MP1,P2

(2),Q0

and MP1,P2

(2),Q0
similarly. If we put

M◦P
(0,0)
n0
Q0

:=

{

E ∈M
P

(0,0)
n0

Q0

∣

∣

∣

∣

rankE|H1 = rankE|H2 = 2

}

,

then by Proposition 1.13 it is an open subscheme of M
P

(0,0)
n0

Q0
.
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Theorem 5.1. Let n0 be an integer with n0 ≥ 4. Then

M◦P
(0,0)
n0
Q0

=

⋃

n1+n2=n0
n1≥0,n2≥0

M
P

(0)
n1
,P

(0)
n2

(1),Q0
∪

⋃

n1+n2=n0
0<n1<n2

M
P

(−1)
n1

,P
(1)
n2

(1),Q0
∪

⋃

n1+n2=n0
n1>n2>0

M
P

(1)
n1
,P

(−1)
n2

(2),Q0
.

Moreover each component of the right hand side is non-empty.

Proof. Let E be an element of M◦P
(0,0)
n0
Q0

(k). We have the following
exact sequence:

0 −→ E −→ E(1) ⊕ Ẽ(2) −→ Ẽ(2)|L −→ 0.

Since rankE(1) = rank Ẽ(2) = 2, we have

χ(E(m)) = χ(E(1)(m)) + χ(Ẽ(2)(m))− χ(Ẽ(2)|L(m))

= 4

(

m+ 2

2

)

+
(

c1(E
(1)) + c1(Ẽ

(2))− 2
)

(m+ 1)− c2(E
(1))

−c2(Ẽ
(2)) +

c1(E
(1))2 + c1(E

(1)) + c1(Ẽ
(2))2 − c1(Ẽ

(2))

2
.

If we put a := c1(E
(1)), then we have c1(Ẽ

(2)) = −a since χ(E(m)) =

P
(0,0)
n0 (m). If we assume a ≤ −2, then µS(E(1)) ≤ −1 < −1/2 = µS(E)

which contradicts the stability of E. (Recall that we defined µS(E) =
a1(E)/a0(E).) Assume that a ≥ 2. For the subsheaf E(1)(−L) ⊂ E, we
have µS(E(1)(−L)) = a/2− 1 ≥ 0 > −1/2 = µS(E) which also contradicts
the stability of E. Hence we have −1 ≤ a ≤ 1.
Case 1. a = −1

In this case

χ(E(1)(m)) = 2

(

m+ 2

2

)

− (m+ 1)− c2(E
(1)),

χ(Ẽ(2)(m)) = 2

(

m+ 2

2

)

+ (m+ 1) + 1− c2(Ẽ
(2)) and

χ(E(m)) = 4

(

m+ 2

2

)

− 2(m+ 1)− c2(E
(1))− c2(Ẽ

(2)).
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Thus E ∈ M
P

(−1)
n1

,P
(1)
n2

1 (k), where n1 = c2(E
(1)) and n2 = c2(Ẽ

(2)). The

equality χ(E(m)) = P
(0,0)
n0 (m) implies that n1 +n2 = n0. Since E is stable,

χ(E(m))/4 < χ(E(1)(m))/2 for all sufficiently large integers m. Hence we
have the inequality n1 < n2. If E(1) is not µ-semi-stable, there exists a
quotient coherent sheaf F of E(1) of rank 1, such that µS(E(1)) = −1/2 >
−1 = µS(F ). Since F is a quotient sheaf of E and µS(E) = −1/2 > µS(F ),
this contradicts the stability of E. Hence E(1) is µ-semi-stable. From
Schwarzenberger’s inequality, we have n1 = c2(E

(1)) ≥ c1(E
(1))2/4 > 0.

Case 2. a = 1

Assume that the homomorphism E(1)|L → Ẽ(2)|L is not isomorphic at
the generic point of L. If F is the kernel of the homomorphism E(1) →
Ẽ(2)|L, then F is a subsheaf of E and c1(F ) ≥ c1(E

(1)) − 1 = 0 which
contradicts the stability of E. Hence the homomorphism E(1)|L → Ẽ(2)|L
is isomorphic at the generic point of L. So we have c1(Ẽ

(1)) = 1 and

c1(E
(2)) = −1. From the same argument as Case 1, E ∈M

P
(1)
n1

,P
(−1)
n2

(2),Q0
(k) for

integers n1, n2 with n1 + n2 = n0 and n1 > n2 > 0.
Case 3. a = 0

If F is a rank 1 quotient coherent sheaf of E(1), µS(F ) ≥ −1/2 =
µS(E). Hence we have µS(F ) ≥ 0 = µS(E(1)) and so E(1) is µ-semi-
stable. From Schwarzenberger’s inequality, we have c2(E

(1)) ≥ 0. Take
any rank 1 quotient coherent sheaf F of Ẽ(2). If we put F ′ the image of
the homomorphism E → F , we have µS(F ) ≥ µS(F ′) > µS(E) = −1/2.
Hence we have µS(F ) ≥ 0 = µS(Ẽ(2)) and so Ẽ(2) is µ-semi-stable. So

we have c2(Ẽ
(2)) ≥ 0. Hence E ∈ M

P
(0)
n1
,P

(0)
n2

(1),Q0
(k) for integers n1, n2 with

n1 ≥ 0, n2 ≥ 0 and n1 +n2 = n0. Thus we have proved the first part of the
theorem.

Take integers n1, n2 with n1 + n2 = n0 and 0 < n1 < n2. We will

show that M
P

(−1)
n1

,P
(1)
n2

(1),Q0
6= ∅. There exist rank 2 stable bundles E1 on H1

and Ẽ2 on H2 such that χ(E1(m)) = P
(−1)
n1 (m), χ(Ẽ2(m)) = P

(1)
n2 (m),

E1|L ∼= OL(−1) ⊕OL and Ẽ2|L ∼= OL(1)⊕OL. There is a homomorphism
f : E1|L → Ẽ2|L which is isomorphic at the generic point of L. Let E
be the coherent sheaf of pure dimension 2 on Q0 associated to the triple
(E1, Ẽ2, f).
Claim 1. E is stable.

Let F be a coherent subsheaf of E with 0 < a0(F ) < a0(E). We have
the following exact commutative diagram with F (1) → E1 and F̃ (2) → Ẽ2
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injective:

0 −→ F −→ F (1) ⊕ F̃ (2) −→ F̃ (2)|L −→ 0
↓ ↓ ↓

0 −→ E −→ E1 ⊕ Ẽ2 −→ Ẽ2|L −→ 0.

Assume that rankF (1) = 0. Then F ∼= F̃ (2)(−L). If rank F̃ (2) = 1, then we
have c1(F̃

(2)(−L)) ≤ −1 < −1/2 = µ(Ẽ2(−L)) by the stability of Ẽ2(−L).
Hence we have µS(F ) ≤ −1 < µS(E). If rank F̃ (2) = 2, F is contained in
Ẽ2(−L) and

χ(F (m))

2
≤
χ(Ẽ2(−L)(m))

2

=

(

m+ 2

2

)

−
m+ 1

2
−
c2(Ẽ2)

2

<

(

m+ 2

2

)

−
m+ 1

2
−
c2(E1) + c2(Ẽ2)

4
=
χ(E(m))

4

for all sufficiently large integers m.
Assume that rankF (1) = 1. If rank F̃ (2) = 0, then we have µS(F ) =

µS(F (1)) ≤ −1 < −1/2 = µS(E1) by the stability of E1. Hence we have
µS(F ) < −1/2 = µS(E). If rank F̃ (2) = 1, we have µS(F (1)) ≤ −1 <
−1/2 = µS(E1) and µS(F̃ (2)) ≤ 0 < 1/2 = µS(Ẽ2) by the stability of E1

and Ẽ2. Hence we have

µS(F ) =
µS(F (1)) + µS(F̃ (2))− 1

2
≤ −1 < −

1

2
= µS(E).

If rank F̃ (2) = 2, then

µS(F ) ≤
µS(F (1)) + 2µS(Ẽ2)− 2

3
≤ −2/3 < −1/2 = µS(E).

Assume that rankF (1) = 2. If rank F̃ (2) = 0, F is contained in the kernel
F ′ of the homomorphism E1 → Ẽ2|L. Since E1 → Ẽ2|L is not zero at the
generic point of L, we have µS(F ) ≤ (2µS(E1) − 1)/2 = −1 < µS(E). If
rank F̃ (2) = 1, we have µS(F̃ (2)) ≤ 0 < 1/2 = µS(Ẽ2) by the stability of
Ẽ2. Hence we have

µS(F ) =
2µS(F (1)) + µS(F̃ (2))− 1

3
≤ −

2

3
< µS(E).
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This completes the proof of the stability of E. Hence E ∈M
P

(−1)
n1

,P
(1)
n2

(1),Q0
(k) 6=

∅. Similarly for integers n1, n2 with n1 + n2 = n0 and 0 < n2 < n1,

M
P

(1)
n1
,P

(−1)
n2

(2),Q0
6= ∅.

Let n1, n2 be integers with n1 + n2 = n0 and n1, n2 ≥ 0. We will show

that M
P

(0)
n1
,P

(0)
n2

(1),Q0
(k) 6= ∅. There exist rank 2 µ-semi-stable sheaves E1 on

H1, Ẽ2 on H2 and a generically injective homomorphism f : E1|L
∼
→ Ẽ2|L

such that χ(E1(m)) = P
(0)
n1 (m), χ(Ẽ2(m)) = P

(0)
n2 (m) and either E1 or Ẽ2

is µ-stable. Let E be the coherent sheaf on Q0 corresponding to the triple
(E1, Ẽ2, f).
Claim 2. E is stable.

Let F be a coherent subsheaf of E with 0 < a0(F ) < a0(E). The
following exact commutative diagram is obtained;

0 −→ F −→ F (1) ⊕ F̃ (2) −→ F̃ (2)|L −→ 0
∩ ∩ ↓

0 −→ E −→ E1 ⊕ Ẽ2 −→ Ẽ2|L −→ 0.

Assume that rankF (1) = 0. Then F is contained in Ẽ2(−L) and so µS(F ) ≤
µS(Ẽ2(−L)) = −1 < −1/2 = µS(E).

Assume that rankF (1) = 1. If rank F̃ (2) = 0, then F = F (1) and F (1) ⊂
ker(E1 → Ẽ2|L). Thus µS(F ) = µS(F (1)) ≤ µS(E1(−L)) = −1 < µS(E). If
rank F̃ (2) = 1, then µS(F (1)) ≤ 0 and µS(F̃ (2)) ≤ 0. Moreover µS(F (1)) < 0
or µS(F̃ (2)) < 0. Hence we have

µS(F ) =
µS(F (1)) + µS(F̃ (2))− 1

2
≤ −1 < µS(E).

If rank F̃ (2) = 2, then

µS(F ) =
µS(F (1)) + 2µS(F̃ (2))− 2

3
≤ −2/3 < µS(E).

Assume that rankF (1) = 2. If rank F̃ (2) = 0, then F = F (1) ⊂
ker(E1 → Ẽ2|L), and so

µS(F ) = µS(F (1)) ≤ µS(E1(−L)) = −1 < µS(E).

If rank F̃ (2) = 1, then F (1) is contained in the kernel of E1 → (Ẽ2/F̃
(2))|L.

Thus µS(F (1)) ≤ −1/2 and

µS(F ) =
2µS(F (1)) + µS(F̃ (2))− 1

3
≤ −

2

3
< µS(E).
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Hence E is a stable sheaf on Q0. This implies that M
P

(0)
n1

,P
(0)
n2

(1),Q0
(k) 6= ∅. This

completes the proof of the theorem.

Remark 5.2. We consider structures of the moduli spaces M
P

(0)
n1
,P

(0)
n2

(1),Q0
,

M
P

(−1)
n1

,P
(1)
n2

(1),Q0
and M

P
(1)
n1
,P

(−1)
n2

(2),Q0
appeared in Theorem 5.1. Let MP

Hi
be the

moduli scheme of stable sheaves on Hi with Hilbert polynomial P for i =
1, 2.

Assume that n1 ≥ 2 and n2 ≥ 2. From Theorem 2.1, there exist an open

subscheme U0 of M
P

(0)
n1
,P

(0)
n2

(1),Q0
and a dominant morphism π0 : U0 → M

P
(0)
n1

H1
×

M
P

(0)
n2

H2
such that for a point x which corresponds to a triple (E1, Ẽ2, f),

π0(x) is the point which corresponds to (E1, Ẽ2). Let η be a general point
of a general fiber of π0. Then we have

dimηM
P

(0)
n1
,P

(0)
n2

(1),Q0
= dim(M

P
(0)
n1

H1
×M

P
(0)
n2

H2
) + 3

= 4n1 − 3 + 4n2 − 3 + 3 = 4n0 − 3

Similarly for 1 ≤ n1 < n2 (resp. 1 ≤ n2 < n1), there exist an open

subscheme U1 ⊂M
P

(−1)
n1

,P
(1)
n2

(1),Q0
(resp. U2 ⊂M

P
(1)
n1
,P

(−1)
n2

(2),Q0
) and a dominant mor-

phism π1 : U1 → M
P

(−1)
n1

H1
×M

P
(1)
n2

H2
(resp. π2 : U2 → M

P
(1)
n1

H1
×M

P
(−1)
n2

H2
). If η1

is a general point of a general fiber of π1, then

dimη1 M
P

(−1)
n1

,P
(1)
n2

(1),Q0
= dim(M

P
(−1)
n1

H1
×M

P
(1)
n2

H2
) + 7

= 4n1 − 4 + 4n2 − 4 + 7 = 4n0 − 1.

Similarly for a general point η2 of the general fiber of π2, we have

dimη2 M
P

(1)
n1
,P

(−1)
n2

(2),Q0
= 4n0 − 1.

Take p ∈ M
P

(0)
n1

H1
×M

P
(0)
n2

H2
such that the corresponding sheaves E1,Ẽ2

are locally free. Then the dimension of the fiber π−1
0 (p) jumps if L is a

jumping line of E1 and Ẽ2. See the definition of jumping line for [[13], 2.2].
In particular the coherent sheaf H mentioned in Remark 2.2 is not locally
free in this case.
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Next we will consider relationships with the relative moduli space of

stable sheaves on quadric surfaces. Put Σ := P(H0(P3,OP3(2))∨). Let

Q̃ ⊂ P3 × Σ be the universal family of quadric surfaces. We will consider

the relative moduli space M
P

(0,0)
n0

Q̃/Σ
of stable sheaves on Q̃/Σ with respect to

the polarization OQ̃(1) = O
P3

Σ
(1)|Q̃. Take a point ξ ∈ Σ such that Q̃ξ = Q0

is a reducible quadric surface. The following proposition means that M
P

(0,0)
n0

Q̃/Σ

is smooth over Σ at “general points” of M
P

(0)
n1
,P

(0)
n2

(1),Q0
.

Proposition 5.3. If n1 ≥ 2 and n2 ≥ 2, then there exists a locally

free stable sheaf E ∈M
P

(0)
n1
,P

(0)
n2

(1),Q0
such that H2(X,End(E)) = 0.

Proof. Take stable bundles E1 on H1 with c1(E1) = 0, c2(E1) = n1

and Ẽ2 on H2 with c1(Ẽ1) = 0, c2(Ẽ2) = n2 such that E1|L ∼= O
⊕2
L and

Ẽ2|L ∼= O
⊕2
L . Take an isomorphism f : E1|L

∼
→ Ẽ2|L. Let E be the coherent

sheaf on Q0 corresponding to the triple (E1, Ẽ2, f). Then E is locally free
and stable by the proof of Theorem 5.1. The exact sequence

0 −→ End(E) −→ End(E1)⊕ End(Ẽ2) −→ End(Ẽ2)|L −→ 0

induces the following exact sequence;

0 = H1(O⊕4
L ) −→ H2(End(E)) −→ H2(End(E1)⊕ End(Ẽ2)).

Since E1, Ẽ2 are stable bundles on P2, H2(End(E1)) = 0 and H2(End(Ẽ2))
= 0. Hence H2(End(E)) = 0.

Theorem 5.4. Assume that 1 ≤ n1 < n2. Take a general point p of

a general fiber of π1 in Remark 5.2 and let E ∈ M
P

(−1)
n1

,P
(1)
n2

(1),Q0
be the corre-

sponding sheaf. Put R := k[[t]]. Let t0 be the closed point of SpecR and

t1 the generic point of SpecR. Then there exists a morphism SpecR → Σ
such that Q̃⊗ k(t1) is a smooth quadric surface, Q̃⊗ k(t0) = Q0 and E can

be lifted to a coherent sheaf on Q̃R flat over R.

Proof. Take E ∈M
P

(−1)
n1

,P
(1)
n2

1 which is a general point of a general fiber
of π1 and let (E1, Ẽ2, f) be the corresponding triple. We may assume that
E1 and Ẽ2 are locally free, E1|L ∼= OL ⊕OL(−1) and Ẽ2|L ∼= OL ⊕OL(1).
For the homomorphism f : OL ⊕ OL(−1) → OL ⊕ OL(1), det f can be
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considered as a section of OL(2). So we may assume that f(p) is isomorphic
except at distinct two points p1, p2 of L. Then coker fpi

∼= k(pi) for i = 1, 2.
On the other hand, there is an exact sequence

End(E) −→ End(E)|H1 ⊕ End(E)|H2 −→ End(E)|L −→ 0.

Canonical homomorphisms End(E)|H1 → End(E1), End(E)|H2 → End(Ẽ2)
are induced and they are isomorphic on H1 \ {p1, p2}, H2 \ {p1, p2} re-
spectively. Since E1 and Ẽ2 are stable bundles on P2, H2(End(E1)) =
H2(End(Ẽ2)) = 0. Therefore we have H2(End(E)|H1) = H2(End(E)|H2) =
0. The composition g : End(E)|H1 → End(E)|L → End(Ẽ2)|L induces the
following homomorphism:

ψ : End(E)|H1 ⊕ End(Ẽ2) −→ End(Ẽ2)|L; ψ(a, b) := g(a) − b|L.

Then we obtain the following exact commutative diagram:

End(E) −→ End(E)|H1 ⊕ End(E)|H2 −→ End(E)|L −→ 0
↓ ↓ ↓

0 −→ kerψ −→ End(E)|H1 ⊕ End(Ẽ2)
ψ
−→ End(Ẽ2)|L −→ 0.

Since End(Ẽ2)|L ∼= OL(−1) ⊕ O⊕2
L ⊕ OL(1), we have H1(End(Ẽ2)|L) = 0.

Thus by the exact sequence

H1(End(Ẽ2)|L) −→ H2(kerψ) −→ H2(End(E)|H1 ⊕ End(Ẽ2)),

we have H2(kerψ) = 0. From the construction, End(E)→ kerψ is isomor-
phic on Q0 \ {p1, p2}. Hence we have H2(End(E)) = 0.

After a suitable projective linear transformation, we may assume that
Q0 is given by the equation {xy = 0} in P3 = Proj k[x, y, z, w]. Take
a1 := αz + βw 6= 0, a2 := γz + δw 6= 0 with α, β, γ, δ ∈ k such that
a1(p1) = 0 and a2(p2) = 0. Consider Q := ProjR[x, y, z, w]/(xy − ta1a2).
Then Qt0 = Q0 and Qt1 is a smooth quadric surface. From Lemma 4.1 and
Proposition 4.6, E can be lifted to a coherent sheaf Ẽ on Q flat over R.

Conclusion 5.5. Let η ∈ Σ be the scheme theoretic generic point.
Then we have

M
P

(0,0)
n0

Q̃η
=
∐

a≥0

Ma,

where Ma⊗k(η)k(η) = M(2, (a,−a), n0−a
2)
⊔

M(2, (−a, a), n0−a
2) for a >

0, M0 ⊗k(η) k(η) = M(2, (0, 0), n0) and M(2, (a, b), c) is the moduli scheme
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of rank 2 stable sheaves E on Q̃⊗k(η)k(η) ∼= P1×P1 with c1(E) = (a, b) and
c2(E) = c. Note that M(2, (a,−a), n0 − a

2) and M(2, (−a, a), n0 − a
2) are

contained in the same irreducible component of M
P

(0,0)
n0

Q̃/Σ
, which is the closure

of Ma in M
P

(0,0)
n0

Q̃/Σ
. If M(2, (a,−a), n0−a

2) 6= ∅, then dimM(2, (a,−a), n0−

a2) = 4n0 − 3 − 2a2. Thus we can see from the dimension calculation in

Remark 5.2 thatM
P

(0,0)
n0

Q̃/Σ
is not flat over Σ at “general points” ofM

P
(−1)
n1

,P
(1)
n2

1 .

On the other hand, Theorem 5.4 means that “general points” in M
P

(−1)
n1

,P
(1)
n2

1

are contained in the closure ofM
P

(0,0)
n0

Q̃η
. Such a non-flat relative moduli space

appears because dimΣ ≥ 2. (Compare it with the argument in [[3], section
2].) We can see more explicit properties of degeneration of sheaves. Let us
consider a degeneration Q = ProjR[x, y, z, w]/(xy − ta1a2) as in Theorem
5.4 such that a1, a2 are linearly independent. Let pi be the zero point of

ai for i = 1, 2. Take E ∈ M
P

(−1)
n1

,P
(1)
n2

1 such that E1 and Ẽ2 are stable
bundles, E1|L ∼= OL ⊕ OL(−1), Ẽ2|L ∼= OL ⊕ OL(1) and f is injective,
where (E1, Ẽ2, f) is the corresponding triple. The arguments of the proof
of Theorem 5.4 conclude that E can be lifted toQ if and only if det f(pi) = 0
for i = 1, 2. The dimension of










(E1, Ẽ2, f) ∈M
P

(−1)
n1

,P
(1)
n2

(1),Q0

∣

∣

∣

∣

∣

∣

∣

E1 and Ẽ2 are stable bundles,

E1|L ∼= OL ⊕OL(−1), Ẽ2|L ∼= OL ⊕OL(1),
f is injective and det f(pi) = 0 for i = 1, 2











is 4n0 − 3. So it is contained in the closure of M0 ⊂M
P

(0,0)
n0

Q̃η
.

Next we will consider stable sheaves on Q0 with another Hilbert poly-

nomial. We fix a positive integer n0 and put P
(−1,−1)
n0 (m) := 4

(m+2
2

)

−4(m+

1) + 1− n0. For an integer n, put P
(−2)
n (m) := 2

(m+2
2

)

− 2(m+ 1) + 1− n.

Put

M◦P
(−1,−1)
n0
Q0

:=

{

E ∈M
P

(−1,−1)
n0

Q0

∣

∣

∣ rankE|H1 = rankE|H2 = 2

}

.

Theorem 5.6. Let n0 be an integer with n0 ≥ 6. Then

M◦P
(−1,−1)
n0
Q0

=

⋃

n1+n2=n0
n1>0,n2>0

M
P

(−1)
n1

,P
(−1)
n2

(1),Q0
∪

⋃

n1+n2=n0
0<n1<n2+1

M
P

(−2)
n1

,P
(0)
n2

(1),Q0
∪

⋃

n1+n2=n0
n1+1>n2>0

M
P

(0)
n1
,P

(−2)
n2

(2),Q0
.
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Moreover each component of the right hand side is non-empty.

Proof. Let E be an element of M◦P
(−1,−1)
n0
Q0

(k). Then

χ(E(m)) = 4

(

m+ 2

2

)

+
(

c1(E
(1)) + c1(Ẽ

(2))− 2
)

(m+ 1)− c2(E
(1))

−c2(Ẽ
(2)) +

c1(E
(1))2 + c1(E

(1)) + c1(Ẽ
(2))2 − c1(Ẽ

(2))

2
.

If we put a := c1(E
(1)), then c1(Ẽ

(2)) = −a−2. Assume that a < −2. Then
c1(Ẽ

(2)(−L)) = −a − 4 > −2 and so µS(Ẽ(2)(−L)) > −1 = µS(E). Since
Ẽ(2)(−L) is a subsheaf of E, this contradicts the stability of E. Assume
that a > 0. Then c1(E

(1)(−L)) = a − 2 > −2. So E(1)(−L) is a subsheaf
of E with µS(E(1)(−L)) > −1 = µS(E) which contradicts the stability of
E. Hence we have −2 ≤ a ≤ 0.
Case 1. a = −2.

If we put n1 = c2(Ẽ
(1)) and n2 = c2(E

(2)), then n1 + n2 = n0 and

E ∈ M
P

(−2)
n1

,P
(0)
n2

(1),Q0
. Since E(1) is a quotient sheaf of E, the stability of E

implies that
χ(E(m))

4
<
χ(E(1)(m))

2
for m� 0.

Hence we have n1 < n2 + 1. Since E(1) is a quotient sheaf of E with
µS(E(1)) = −1 = µS(E), E(1) is µ-semi-stable. Thus n1 ≥ 1.
Case 2. a = 0.

Assume that the homomorphism E(1)|L → Ẽ(2)|L is not isomorphic at
the generic point of L. Then the kernel F of the homomorphism E(1) →
Ẽ(2)|L is a subsheaf of E and c1(F ) ≥ −1. So µS(F ) ≥ −1/2 > µS(E) which
contradicts the stability of E. Thus E(1)|L → Ẽ(2)|L is generically isomor-
phic. Consider the triple (Ẽ(1), E(2), f) (f : E(2)|L → Ẽ(1)|L) correspond-

ing to E. Then c1(Ẽ
(1)) = 0 and c1(E

(2)) = −2. Hence E ∈ M
P

(0)
n1
,P

(−2)
n2

2

where n1 = c2(Ẽ
(1)) and n2 = c2(E

(2)). The proof of Case 1 implies that
n1 + 1 > n2 > 0 and n1 + n2 = n0.
Case 3. a = −1.

If we put n1 = c2(E
(1)) and n2 = c2(Ẽ

(2)), then n1 + n2 = n0 and

E ∈ M
P

(−1)
n1

,P
(−1)
n2

(1),Q0
. Take any rank 1 coherent quotient sheaf F of E(1).

The stability of E implies that c1(F ) = µS(F ) > µS(E) = −1. Thus
µS(F ) = c1(F ) ≥ 0 > µS(E(1)). Hence E(1) is stable and so n1 > 0. Take
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any rank 1 coherent quotient sheaf F of Ẽ(2). Let F ′ be the image of E → F .
Then µS(E) = −1 < µS(F ′) ≤ µS(F ) and so µS(F ) ≥ 0 > µS(Ẽ(2)). Hence
Ẽ(2) is stable and n2 > 0. This completes the proof of the first part of the
theorem.

Take integers n1, n2 with n1 + n2 = n0 and 0 < n1 < n2 + 1. We will

show that M
P

(−2)
n1

,P
(0)
n2

(1),Q0
6= ∅. If n1 6= 1, 2, then there exist rank 2 µ-stable

bundles E1 on H1 with χ(E1(m)) = P
(−2)
n1 (m), Ẽ2 on H2 with χ(Ẽ2(m)) =

P
(0)
n2 (m) and an injective homomorphism f : E1|L → Ẽ2|L. If n1 = 1 or 2,

then there exist a rank 2 µ-semi-stable sheaf E1 on H1 with χ(E1(m)) =

P
(−2)
n1 (m), a rank 2 µ-stable sheaf Ẽ2 on H2 with χ(Ẽ2(m)) = P

(0)
n2 (m)

and a generically injective homomorphism f : E1|L → Ẽ2|L. Let E be
the coherent sheaf of pure dimension 2 on Q0 corresponding to the triple
(E1, Ẽ2, f).
Claim 1. E is stable

Take any coherent subsheaf F of E with 0 < a0(F ) < a0(E). The
following exact commutative diagram is obtained:

0 −→ F −→ F (1) ⊕ F̃ (2) −→ F̃ (2)|L −→ 0
∩ ∩ ↓

0 −→ E −→ E1 ⊕ Ẽ2 −→ Ẽ2|L −→ 0.

Assume that F (1) = 0. Then F = F̃ (2)(−L). If rank F̃ (2) = 1, then µS(F ) <
µS(Ẽ2(−L)) = −1 = µS(E). If rank F̃ (2) = 2, then for all sufficiently large
integers m,

χ(F (m))

2
≤
χ(Ẽ2(−L)(m))

2

=

(

m+ 2

2

)

− (m+ 1)−
n2

2

<

(

m+ 2

2

)

− (m+ 1) +
1− n0

4
=
χ(E(m))

4
.

Assume that rankF (1) = 1. If rank F̃ (2) = 0, then F = F (1) ⊂ ker(E1 →
Ẽ2|L). Since E1|L → Ẽ2|L is generically injective, µS(E1(−L)) = µS(ker(E1

→ Ẽ2|L)). Thus µS(F ) = µS(F (1)) ≤ µS(E1(−L)) = −2 < µS(E). If
rank F̃ (2) = 1, then µS(F̃ (2)) < µS(Ẽ2) = 0. Thus

µS(F ) =
µS(F (1)) + µS(F̃ (2))− 1

2
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≤
−1− 1− 1

2
< −1 = µS(E).

Assume that rank F̃ (2) = 2. If n1 6= 1, 2, then E1 is µ-stable and so
µS(F (1)) < µS(E1) = −1. Hence

µS(F ) =
µS(F (1)) + 2µS(F̃ (2))− 2

3
≤
−2− 2

3
< −1 = µS(E).

If n1 = 1, then E1
∼= OH1(−1)⊕2 and so

χ(F (1)(m)) ≤ χ(OH1(m− 1)) =

(

m+ 2

2

)

− (m+ 1)

for all sufficiently large integers m. If n1 = 2, then E∨∨
1
∼= OH1(−1)⊕2 and

E∨∨
1 /E1

∼= k(p) for some p ∈ H1. Thus χ(F (1)(m)) ≤ χ(OH1(m − 1)) for
m � 0. Moreover n1 = 1 implies n2 ≥ 5 and n1 = 2 does n2 ≥ 4. Hence
for n1 = 1, 2,

χ(F (m))

3
≤
χ(F (1)(m)) + 2χ(Ẽ2(m)) − 2χ(Ẽ2|L(m))

3

≤

(m+2
2

)

− (m+ 1) + 2
(m+2

2

)

− 2(m+ 1)− n2

3

=

(

m+ 2

2

)

− (m+ 1)−
n2

3

<

(

m+ 2

2

)

− (m+ 1) +
1− n1 − n2

4
=
χ(E(m))

4

for all sufficiently large integers m.
Assume that rankF (1) = 2. If rank F̃2 = 0, then F = F (1) ⊂ ker(E1 →

Ẽ2|L). Since E1(−L) → ker(E1 → Ẽ2|L) is isomorphic in codimension 1,
µS(F ) ≤ µS(E1(−L)) = −2 < µS(E). If rank F̃2 = 1, then µS(F̃2) <
µS(Ẽ2) = 0. Hence

µS(F ) ≤
2µS(E1) + µS(F̃2)− 1

3
≤ −

4

3
< −1 = µS(E).

Hence E is a stable sheaf on Q0.

We have proved Claim 1 and so we have M
P

(−2)
n1

,P
(0)
n2

(1),Q0
6= ∅. Similarly for

n1, n2 ∈ Z with 0 < n2 < n1 + 1, we have M
P

(0)
n1
,P

(−2)
n2

(2),Q0
6= ∅.
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Let n1, n2 be integers with n1 > 0, n2 > 0 and n1 + n2 = n0. We

will prove that M
P

(−1)
n1

,P
(−1)
n2

(1),Q0
6= ∅. There are rank 2 stable bundles E1 on

H1 with χ(E1(m)) = 2
(m+2

2

)

− (m + 1) − n1, Ẽ2 on H2 with χ(Ẽ2(m)) =

2
(m+2

2

)

− (m + 1) − n2, and an injective homomorphism f : E1|L → Ẽ2|L.

Let E be the coherent sheaf on Q0 corresponding to the triple (E1, Ẽ2, f).
Claim 2. E is stable.

Let F be a coherent subsheaf of E with 0 < a0(F ) < a0(E). Assume
that rankF (1) = 0. Then F = F̃ (2)(−L) ⊂ Ẽ2(−L). Thus µS(F ) ≤
µS(Ẽ2(−L)) = −3/2 < −1 = µS(E). Assume that rankF (1) = 1. If
rank F̃ (2) = 0, then F = F (1) ⊂ ker(E1 → Ẽ2|L) = E1(−L). Thus µS(F ) ≤
µS(E1(−L)) = −3/2 < −1 = µS(E). If rank F̃ (2) ≥ 1, then

µS(F ) =
µS(F (1)) + rank F̃ (2)(µS(F̃ (2))− 1)

1 + rank F̃ (2)

≤
−1− 3 rank F̃ (2)/2

1 + rank F̃ (2)
< −1 = µS(E).

Assume that rankF (1) = 2. If rank F̃ (2) = 0, then F = F (1) ⊂ ker(E1 →
Ẽ2|L) = E1(−L) Thus µS(F ) ≤ µS(E1(−L)) = −3/2 < −1 = µS(E). If
rank F̃ (2) = 1, then the commutative diagram

F (1) −→ F̃ (2)|L
↓ ↓

E1 −→ Ẽ2|L

implies that µS(F (1)) ≤ µS(E1)− 1/2 = −1. Hence

µS(F ) =
2µS(F (1)) + µS(F̃ (2))− 1

3
≤
−2− 1− 1

3
< −1 = µS(E).

Thus E is a stable sheaf on Q0. Hence M
P

(−1)
n1

,P
(−1)
n2

(1),Q0
6= ∅.

Remark 5.7. Similar calculations to Remark 5.2 show that at a “gen-

eral” point p of M
P

(−1)
n1

,P
(−1)
n2

1 , dimpM
P

(−1)
n1

,P
(−1)
n2

1 = 4n1 − 4 + 4n2 − 4 + 3 =

4n0− 5. Similarly at a “general” point p of M
P

(−2)
n1

,P
(0)
n2

1 , dimpM
P

(−2)
n1

,P
(0)
n2

1 =
4n1 − 7 + 4n2 − 3 + 7 = 4n0 − 3.

Similar arguments to Proposition 5.3 conclude the following proposi-

tion.
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Proposition 5.8. For n1 ≥ 1 and n2 ≥ 1, there exists a locally free

stable sheaf E ∈M
P

(−1)
n1

,P
(−1)
n2

(1),Q0
such that H2(X,End(E)) = 0.

Remark 5.9. Consider a degeneration Q = Proj(R[x, y, z, w]/(xy −
ta1a2)) as in the proof of Theorem 5.4. We assume that a1, a2 are lin-
early independent. Let pi ∈ L be the zero point of ai. Let t̄1 be a generic
geometric point of SpecR. There is a decomposition of a moduli space of
stable sheaves on a smooth quadric surface;

M
P

(−1,−1)
n0

Qt̄1
=
∐

a∈Z

M(2, (a − 1,−a − 1), n0 − a
2).

If M(2, (a − 1,−a − 1), n0 − a
2) 6= ∅, then dimM(2, (a − 1,−a − 1), n0 −

a2) = 4n0− 5− 2a2. From Proposition 5.8, there exists an open subscheme

U ⊂ M
P

(−1,−1)
n0

Q/R smooth over R such that Uη̄ ⊂ M(2, (−1,−1), n0) and

Ut0 ⊂M
P

(−1)
n1

,P
(−1)
n2

(1),Q0
. We may assume that E is locally free for any E ∈ Ut0

and that E|H1 , E|H2 are stable. There exist a scheme V over R and a

morphism of functors θ : V →M
P

(−1,−1)
n0

Q/R such that the induced morphism

θ′ : V →M
P

(−1,−1)
n0

Q/R is étale and that the image is U . On the other hand, let

Ĩx,a1 be the image of the homomorphism OQ(−1)⊕2 → OQ defined by the
sections x, a1. Then OQ/Ĩx,a1 is flat over R. Let Ẽ be a flat family of stable
bundles on Q×R V/V corresponding to θ. Then Ẽ⊗ Ĩx,a1(1) is a flat family
of stable sheaves whose fiber over Vη̄ is contained in M(2, (−1, 1), n0 − 1)

and whose fiber over Vt0 is contained in M
P

(−1)
n1

,P
(1)
n2

(1),Q0
.

Let us consider an open subscheme

W :=



















(E1, Ẽ2, f) ∈M
P

(−1)
n1

,P
(1)
n2

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

E1 and Ẽ2 are stable bundles,
E1|L ∼= OL ⊕OL(−1),

Ẽ2|L ∼= OL ⊕OL(1),

f : E1|L → Ẽ2|L is injective



















of M
P

(−1)
n1

,P
(1)
n2

(1),Q0
. Then the set W ′ := {Ẽ ⊗ Ĩx,a1(1) ⊗ k(s)}s∈Vt0

is contained
in W and

W ′ =











(E1, Ẽ2, f) ∈W

∣

∣

∣

∣

∣

∣

∣

f =

(

a1 (αz + βw)a1

0 γa1

)

α, β, γ ∈ k, α 6= 0











,
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where f : OL ⊕ OL(−1) = E1|L → Ẽ2|L = OL ⊕ OL(1) is regarded as

a matrix

(

b1 b2
b3 b4

)

with b1 ∈ H0(OL(1)), b2 ∈ H0(OL(2)), b3 ∈ k and

b4 ∈ H
0(OL(1)). Moreover dimM(2, (−1, 1), n0 − 1) = dimW ′ = 4n0 − 5.
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