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L
p-CURVATURE AND THE CAUCHY-RIEMANN

EQUATION NEAR AN ISOLATED SINGULAR POINT

ADAM HARRIS and YOSHIHIRO TONEGAWA

Abstract. Let X be a complex n-dimensional reduced analytic space with
isolated singular point x0, and with a strongly plurisubharmonic function ρ :
X → [0,∞) such that ρ(x0) = 0. A smooth Kähler form on X \ {x0} is then
defined by i∂∂̄ρ. The associated metric is assumed to have Ln

loc-curvature, to
admit the Sobolev inequality and to have suitable volume growth near x0. Let
E → X \ {x0} be a Hermitian-holomorphic vector bundle, and ξ a smooth
(0, 1)-form with coefficients in E. The main result of this article states that if ξ

and the curvature of E are both Ln
loc, then the equation ∂̄u = ξ has a smooth

solution on a punctured neighbourhood of x0. Applications of this theorem to
problems of holomorphic extension, and in particular a result of Kohn-Rossi
type for sections over a CR-hypersurface, are discussed in the final section.

§1. Introduction

During the 1960s the theory of L2-cohomology for complex manifolds

underwent a programme aimed at establishing the Hodge decomposition

for manifolds with boundary. In the work of Kohn [11], Hörmander [10],

Andreotti-Vesentini [1] and others, abstract methods from the study of un-

bounded linear operators on Hilbert space were again fundamental, and

from this point of view it was necessary to work with a complete Rie-

mannian or Kähler metric on the manifold. Reduced complex spaces with

singularities were initially on the periphery of this development, although a

theorem of Grauert [8] had shown that explicit construction of a complete

Kähler metric on V \ {0} is certainly possible when V ⊂ C
N is an analytic

subvariety with isolated singularity at the origin. For the case of isolated sin-

gularities the approximation theorem of Artin had moreover demonstrated

the existence of a projective algebraic variety for which the germ at a sin-

gular point is isomorphic to that of (V, 0). It was from the perspective of

intersection theory that the study of L2-cohomology on punctured varieties

consequently received a new impetus, when Goresky and MacPherson [7]
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conjectured that these groups and the intersection cohomology of the va-

riety are canonically isomorphic with respect to some complete metric on

the punctured variety. The general proof of this conjecture and the associ-

ated problem of defining Hodge structures on the intersection cohomology

of Kähler varieties has subsequently been taken up in the work of Ohsawa

[14], [15] and Saper [16].

The present article is concerned with the solvability of the equation

∂̄u = ξ when ξ is a (0, 1)-form taking values in a Hermitian-holomorphic

vector bundle E. Let X be a reduced complex n-dimensional analytic space

with isolated singularity x0 ∈ X, and let ρ : X → [0,∞) be a strongly

plurisubharmonic exhaustion function such that ρ(x) = 0 if and only if

x = x0. Here a Kähler metric g on X \{x0} will be provided by the positive

real form ω = i∂∂̄ρ, and for c > 0 , ω will be assumed to satisfy the following

three conditions on X0,c = {x ∈ X | 0 < ρ(x) < c}:

(i)

∫

X0,c

|Rg|n <∞ ,

where Rg denotes the canonical curvature form associated with g. It will

further be assumed that the Sobolev inequality holds with respect to this

metric, i.e.,

(ii)

(

∫

X0,c

|f | 2n
n−1ωn

)
n−1

n

≤ const(n)

∫

X0,c

|∇f |2ωn

for smooth compactly supported functions f . In addition,

(iii) let δ(x0, x) denote the Riemannian metric distance function on X0,c,

and let Bδ(x0, r) be the associated ball of radius r. For some sufficiently

small 0 < c′ < c it will be assumed that there exists a constant Ω > 0 such

that
∫

Bδ(x0,r)
ωn ≤ Ωr2n, for all 0 < r ≤ c′.

Throughout our discussionX0,c will be understood to be connected, i.e.,

the local affine embedding of X is irreducible. Analogous assumptions were

introduced by Bando, Kasue and Nakajima [3] in their proof of a remov-

able singularities theorem for Einstein orbifold metrics. Part of the analysis

used in their argument (cf. [3], lemmata 5.8, 5.9) was further applied by

Bando in his proof of removable singularities for Hermitian-holomorphic
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vector bundles E, initially defined over the punctured ball in C
2 [2]. In this

case the metric on the base manifold was simply the Euclidean metric on

C
2, for which the conditions (i)–(iii) are satisfied automatically such that

the punctured ball B(0,
√
c)∗ = X0,c. It remained then to make the single

condition that the Hermitian metric on E has L2-curvature in order to ob-

tain a locally free extension of E across the origin. Embedded in the proof

is Bando’s solution of the Cauchy-Riemann equation for (0, 1)-forms on the

punctured ball in C
2. His method requires a combination of the ∂̄-Neumann

and Dirichlet conditions for solution of the Laplace-Beltrami equation on

an annular region, before taking the uniform limit of this solution as the

radius of the inner (Dirichlet) boundary goes to zero. Standard methods

for extracting curvature terms from the complex Hodge Laplacian of E are

fundamental in obtaining the “basic estimate” necessary for existence and

regularity of solutions. As a means of solving the Cauchy-Riemann equa-

tion via Laplace’s equation, Bando’s method is analogous to the theory of

Kohn and Hörmander for manifolds with strictly pseudoconvex boundary

[11]. On a punctured domain, however, additional techniques from [3], as

mentioned above, are required. Moreover, by contrast with the methods of

Andreotti-Vesentini, or the main results of Ohsawa and Saper, the property

of metric completeness on X0,c is not used.

In obtaining a previous removable singularities theorem for Hermitian-

holomorphic vector bundles, defined initially on the complement of an an-

alytic subset A of an n-dimensional complex manifold [9], the authors of

the present article verified a straightforward extension of Bando’s method

to the solution of the Cauchy-Riemann equation on a punctured ball in

C
d, where d ≥ 2 corresponds to the complex codimension of A. The main

result of the following sections is a similarly straightforward extension of

this method to the punctured neighbourhood of an isolated singular point.

It should be remarked, however, that since the base metric is not smoothly

defined at a singularity, we pass to a situation in some respects resembling

that of [3]. For affine-analytic or projective varieties V the most natural

examples of a strongly plurisubharmonic function ρ are provided by the

restriction of |z|2 or log(1+ |z|2) from the ambient C
N . In the first instance

ω then corresponds simply to the standard Kähler form on Euclidean space

restricted to V , while in the second ω corresponds to a local restriction of

the Kähler form associated with the Fubini-Study metric on CPN+1. For

any V ⊂ C
N the restriction of the Euclidean metric is area-minimizing

(cf. [6]), and the intrinsic Riemannian distance δ(0, x) ≥ |x| implies that
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Bδ(0, r) is contained in {x ∈ V | |x| < r}, hence conditions (ii) and (iii)

above are satisfied at once. The curvature Rg of the restricted metric cor-

responds to β ∧ β∗, where β denotes the second fundamental form of the

embedded variety. It is an easy computation to show that
∫

V ∩B(0,r) |β|4 <∞
when, for example, V : zk = f(x, y) is an analytic surface in C

3 such that

2 ≤ k < Ordf (0). Hence in this case |Rg| belongs to L2(V ∩ B(0, r)). On

the other hand surfaces defined by an equation of the form zk = xy, which

constitute a special class of orbifold singularities (cf., e.g., [5]), do not sat-

isfy condition (i) with respect to the restricted ambient metric. For any

singular space X of this type, corresponding to the quotient of C
n by a

finite subgroup of SU(n), the most natural choice of ρ is that induced by

|z|2 on the Euclidean covering space, since the associated orbifold metric is

flat.

In Sections two and three of the present article, we make the necessary

modifications of Bando’s method in order to treat the case of a reduced

singular space X. For ρ satisfying conditions (i) – (iii) with both ξ and the

curvature of the Hermitian metric of E belonging to Lnloc(X), it is shown

that the equation ∂̄u = ξ admits a smooth solution on X0,c. Applications

of this result to problems of holomorphic extension are discussed in section

four. In particular, an extension theorem of Kohn-Rossi type [11], [12] for ∂̄b-

closed sections of E defined initially on the CR-hypersurface corresponding

to {ρ = c} is obtained.

The authors would like to express their gratitude to Professors S. Bando

and K. Miyajima for their helpful discussions with us at different stages of

this research, and to the anonymous referee for comments and corrections to

the first version of this manuscript. Special thanks are due also to Professor

T. Ohsawa for the insights and suggestions he has kindly shared with us (in

particular those discussed at the end of this article). The author (Harris)

moreover gratefully acknowledges the kindness and hospitality of Professor

Y. Maeda during a research fellowship at Keio University, supported by the

Japan Society for the Promotion of Science.

§2. Weitzenböck formulae and the Neumann/Dirichlet condition

Let X be an n-dimensional reduced complex analytic space with iso-

lated singularity x0 ∈ X, equipped with a strongly plurisubharmonic ex-

haustion function ρ : X → [0,∞) such that ρ(x) = 0 if and only if x = x0.

A smooth Kähler metric g on X \ {x0} will then be assumed to correspond
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to the positive, real closed form ω = i∂∂̄ρ. Consider a holomorphic vector

bundle E → X \ {x0} equipped with a Hermitian metric h, and for ε ≥ 0

define Xε,c = {x ∈ X | ε < ρ(x) < c}. Given ξ ∈ C∞(X0,r,Ω
0,1
X (E)) such

that ∂̄ξ = 0, our aim will be to solve the Cauchy-Riemann equation for ξ

by way of the Laplace equation when

∫

X0,c

|ξ |nωn <∞ .

The essential tool for obtaining the required estimate for existence and reg-

ularity of solutions will be the Weitzenböck identity, together with certain

related formulae for the Laplace-Beltrami operator. Though the derivations

of these formulae are a rather standard application of integration by parts,

we will present them in outline here, both for the reader’s convenience and

for use in the next section. We begin with ϕ ∈ C∞(Xε,c,Ω
0,1
X (E)) satisfying

the ∂̄-Neumann/Dirichlet conditions (*), i.e.,

σ(∂̄∗E , dρ)ϕ |{ρ=c}= σ(∂̄∗E , dρ)∂̄ϕ |{ρ=c}= 0 ,

and ϕ |{ρ=ε}= 0, where σ denotes the principal symbol (cf. [11]). If gik̄
and hαβ̄ represent g and h in local holomorphic frames of TXε,c and E

respectively, then the volume form corresponds to

ωn = n!
( i

2

)n
det(g)d(z) ∧ d(z̄) ,

and for any smooth section ψ we have

(ϕ, ∂̄Eψ) =

∫

Xε,c

ϕαī g
kīhαβ̄

∂ψβ

∂ z̄k
det(g) .

Integrating by parts, and noting that the conditions (*) eliminate the

boundary integral, it follows that

∂̄∗Eϕ = −∂ϕ
α
ī

∂zk
gkī + ϕαāg

bā
(

gkī
∂gb̄i
∂zk

)

− ϕεī g
kī
(∂hεγ̄
∂zk

hαγ̄
)

− ϕαī g
kī ∂ log det(g)

∂zk

and hence

(∂̄E ∂̄
∗
Eϕ)l̄ = −2

∂2ϕα
ī

∂z̄l∂zk
− ϕαāg

bāRkbkl̄ + ϕεī g
kīFαεkl̄ + ϕαī g

kīRbbkl̄ ,
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where R and F denote the curvature forms of TXε,c and E respectively.

Here and in the following explicit use is made of the Kähler condition, and

the fundamental fact that at any point of X0,c holomorphic normal frames

may be chosen for TX and E.

Conversely

‖∂̄Eϕ‖2 =

∫

Xε,c

∂ϕα
ī

∂z̄k
(gµk̄gνī − gνk̄gµ̄i)hαβ̄

∂ϕβν̄
∂z̄µ

det(g)

from which we obtain

(∂̄∗E ∂̄Eϕ)l̄ = −2
∂2ϕl̄
∂zi∂z̄i

+ 2
∂2ϕα

ī

∂zi∂z̄l

and hence

(�′′ϕ)l̄ = −1

2
4ϕl̄ − ϕαāg

bāRkbkl̄ + ϕαī g
kīRbbkl̄ + ϕεī g

kīFαεkl̄ .

Given ξ = �
′′ϕ, we may rewrite this last expression in the simplified form

4ϕ = 2Fh · ϕ− 2 trk Rg · ϕ+ 2 trbRg · ϕ− 2ξ .(1)

Now let ∇0,1 : Ω0,1
X (E) → Ω0,1

X ⊗Ω0,1
X (E) denote the connection correspond-

ing to the complex conjugate of the Chern connection on Ω1,0
X , hence in

local coordinates

(∇0,1ϕ)k̄ī =
∂ϕα

ī

∂z̄k
+ gjī

∂gjā

∂z̄k
ϕαā .

Integrating by parts once again, and noting that with respect to holomor-

phic normal coordinates the first derivatives of g and g−1 may be neglected

in the adjoint of ∇0,1, we have

‖∇0,1ϕ‖2 =

∫

∂Xε,c

〈∇0,1ϕ, σ(∇0,1, dρ)ϕ〉(2)

−
∫

Xε,c

(

∂2ϕα
ī

∂zµ∂z̄k
+

∂

∂zµ
(gjī

∂gjā

∂z̄k
)ϕαā

)

gµk̄gνīhαβ̄ϕ
β
ν̄ det(g).

Now
∫

∂Xε,c

〈∇0,1ϕ, σ(∇0,1, dρ)ϕ〉

=

∫

∂Xε,c

(

∂ϕα
ī

∂z̄k
+ gjī

∂gjā

∂z̄k
ϕαā

)

gµk̄gνīhαβ̄
∂ρ

∂z̄µ
ϕβν̄

=

∫

∂Xε,c

(

∂ϕα
k̄

∂z̄i
+ gjī

∂gjā

∂z̄k
ϕαā

)

gµk̄gνīhαβ̄
∂ρ

∂z̄µ
ϕβν̄ ,
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due to the fact that

0 =< σ(∂̄∗E , dρ)∂̄ϕ, ϕ >|{ρ=ε}∪{ρ=c}=
(

∂ϕα
ī

∂z̄k
−
∂ϕα

k̄

∂z̄i

)

∂ρ

∂zµ
gµk̄gνīhαβ̄ϕ

β
ν̄ .

Hence, recalling that ω = i∂∂̄ρ, it follows that
∫

∂Xε,c

〈∇0,1ϕ, σ(∇0,1, dρ)ϕ〉

= −
∫

∂Xε,c

ϕαk̄ g
µk̄gνīhαβ̄(

∂2ρ

∂zi∂z̄µ
ϕβν̄ +

∂ρ

∂z̄µ

∂ϕβν̄
∂zi

)

= −
∫

∂Xε,c

ϕαk̄ δkig
νīhαβ̄ϕ

β
ν̄ ,

noting also that ∂ρ
∂zµ

ϕα
k̄
gµk̄ = σ(∂̄∗E , dρ)ϕ, which vanishes on the boundary

due to (*). For the second term of (2), we have

∫

Xε,c

(

∂2ϕα
ī

∂zµ∂z̄k
+

∂

∂zµ
(gjī

∂gjā

∂z̄k
)ϕαā

)

gµk̄gνīhαβ̄ϕ
β
ν̄ det(g)

=

∫

Xε,c

(

2
∂2ϕα

ī

∂zk∂z̄k
+ ϕαāg

µk̄Raikµ̄

)

gνīhαβ̄ϕ
β
ν̄ det(g) ,

so that

(�′′ϕ,ϕ) = ‖∂̄Eϕ‖2 + ‖∂̄∗Eϕ‖2(3)

= ‖∇0,1ϕ‖2 + (tr◦Rg · ϕ,ϕ) + (Fh · ϕ,ϕ) +

∫

{ρ=c}
|ϕ|2,

where tr◦Rg ·ϕ = trbRg ·ϕ−trk Rg ·ϕ+ϕαāg
µk̄Raikµ̄. Finally let the connection

∇1,0 : Ω0,1
X (E) → Ω1,0

X ⊗ Ω0,1
X (E) be induced by the Chern connection ∂E ,

and suppose 0 ≤ η ≤ 1 is a smooth function with compact support in

{ρ < 2δ < c}, which is identically equal to one on {ρ < δ} for some δ > ε.

From the Bochner-Kodaira-Nakano identity, we see that

‖∇1,0(ηϕ)‖2 = ‖∂E(ηϕ)‖2 = (�′(ηϕ), ηϕ)

= (�′′(ηϕ), ηϕ) + i([Λ, Fh](ηϕ), ηϕ) ,

where Λ denotes the adjoint of ω ∧ ·. Thus from (3) we have

‖∇1,0(ηϕ)‖2 = ‖∇0,1(ηϕ)‖2 + η2(tr◦Rg · ϕ,ϕ) + η2(Fh · ϕ,ϕ)

+i(Λ(Fh ∧ (ηϕ)), ηϕ) .
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Now, for arbitrary ψ ∈ C∞(Xε,c,Ω
0,1
X (E)),

〈Fh ∧ ϕ,ω ∧ ψ〉 = F aαcd̄ϕ
α
ī g

cµ̄(gνd̄gλī − gνīgλd̄)hαβ̄
i

2
gµν̄ψ

β
λ̄

= − i

2
gcd̄(F aαcd̄ϕ

α
ī − F aαc̄iϕ

α
d̄ )gλīhαβ̄ψ

β
λ̄
.

Hence

iΛ(Fh ∧ ηϕ) = ηgcd̄(F aαcd̄ϕ
α
ī − F aαc̄iϕ

α
d̄ )

implies

(ηgkīFαεkl̄ϕ
ε
ī , ηϕ) + i(Λ(Fh ∧ ηϕ), ηϕ) = (η2gcd̄F aαcd̄ϕ

α, ϕ) ,

i.e.,

‖∇1,0(ηϕ)‖2 = ‖∇0,1(ηϕ)‖2 + η2(tr◦Rg · ϕ,ϕ) + η2(trFh · ϕ,ϕ) .(4)

In the following section these identities will be used to obtain the necessary

estimates for solving both the Laplace and Cauchy-Riemann equations on

X0,c via the method of Bando.

§3. Existence and regularity of solutions

As in [9], the following is simply an expanded version of Bando’s argu-

ment [2], here taking account of additional curvature terms from the Kähler

metric. From this point it will be assumed that

(i)

∫

X0,c

|Rg|n <∞ and

∫

X0,c

|Fh|n <∞ ,

and that moreover the Sobolev inequality holds with respect to ω, i.e.,

(ii)
(

∫

X0,c

|ψ| 2n
n−1ωn

)
n−1

n ≤ const(n)

∫

X0,c

|∇ψ|2ωn

for any compactly supported, smooth E-valued (0, 1)-form ψ, where ∇ =

∇1,0 +∇0,1. For the last part of the proof it will also be necessary to assume

that there exists a constant Ω > 0 such that

(iii)

∫

B(x0,r)∗
ωn ≤ Ωr2n for all 0 < r ≤ c′ < c,

where B(x0, r)
∗ ⊆ X0,c denotes the (punctured) geodesic ball of radius r of

a metric distance function δ(x0, x) on X0,c. We note that existence of the

Lipschitz 1-function δ(x0, x) follows from the Hopf-Rinow theorem (cf. also

[3]).
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Theorem 1. For any ξ ∈ Ln ∩ C∞(X0,c,Ω
0,1
X (E)) such that ∂̄ξ = 0,

there exists u ∈ L2 ∩ C∞(X0,c, E) such that ∂̄u = ξ, and ‖u‖L2 ≤ ‖ξ‖L2 .

Proof. Consider hK = he−Kρ for K fixed independently of ε in the

following, noting that FhK
= Fh +K∂∂̄ρ.

Lemma 1. (cf. [2, Lemma 2]) There exist K > 0, c0 > 0 and δ > 0

independent of ε > 0 such that, for all smooth (0, 1)-forms ϕ satisfying the

Dirichlet-∂̄-Neumann condition, we have

(�′′ϕ,ϕ) = ||∂̄ϕ||2 + ||∂̄∗ϕ||2

≥ c0

(

||ϕ||2 +

∫

ρ=c
|ϕ|2 + ||∇0,1ϕ||2 +

∫

ε<ρ<δ
|∇ϕ|2

)

.

Proof. We split the term
∫

|∇0,1ϕ|2 = 1
2

∫

|∇0,1ϕ|2×2 and subsequently

omit 1
2

∫

|∇0,1ϕ|2 +
∫

ρ=c |ϕ|2 from equation (3) . Thus,

(�′′ϕ,ϕ) ≥ 1

2

∫

|∇0,1ϕ|2 + (FhK
· ϕ,ϕ) + (tr◦Rg · ϕ,ϕ).

Let 0 ≤ η ≤ 1 be a smooth function with compact support in {ρ < 2δ}
which is equal to 1 on {ρ ≤ δ}. The radius δ > ε will be fixed in the

following independently of ε. Now
∫

|∇0,1(ηϕ)|2 ≤ 2

∫

(

|∂̄η|2|ϕ|2 + |∇0,1ϕ|2|η|2
)

≤ 2

∫

(

|∂̄η|2|ϕ|2 + |∇0,1ϕ|2
)

,

hence

(�′′ϕ,ϕ) ≥ 1

4

∫

(|∇0,1(ϕη)|2 − 2|∂̄η|2|ϕ|2) + (FhK
ϕ,ϕ) + (tr◦Rg · ϕ,ϕ).

From (4) it follows that
∫

|∇0,1(ηϕ)|2 =

∫

|∇1,0(ηϕ)|2 − (η2 trFhK
ϕ,ϕ) − (η2 tr◦Rg · ϕ,ϕ).

Thus from

1

4

∫

|∇0,1(ηϕ)|2 ≥ 1

2n

∫

|∇0,1(ηϕ)|2

≥ 1

4n

∫

|∇0,1(ηϕ)|2 + |∇1,0(ηϕ)|2

− 1

4n
((η2 trFhK

ϕ,ϕ) + (η2 tr◦Rgϕ,ϕ)),
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we have

(�′′ϕ,ϕ) ≥ 1

4n

∫

|∇(ηϕ)|2 − 1

2

∫

|∂̄η|2|ϕ|2 − 1

4n
((η2 trFhK

ϕ,ϕ)

+(η2 tr◦Rg · ϕ,ϕ)) + (FhK
ϕ,ϕ) + (tr◦Rg · ϕ,ϕ).

Next, using the fact that FhK
= Fh +KIn∂∂̄ρ and trFhK

= trFh + nKIn
at the origin of any holomorphic normal coordinate system, where the trace

is taken over the form-indices, it follows that

(�′′ϕ,ϕ) ≥ 1

4n

∫

|∇(ηϕ)|2 +

∫
(

3

4
K − 1

2
|∂̄η|2

)

|ϕ|2

− 1

4n
(η2 trFhϕ,ϕ) + (Fh · ϕ,ϕ) +

4n− 1

4n
(tr◦Rg · ϕ,ϕ).

Since ηϕ has compact support, the Sobolev inequality applies to ηϕ and

|(η2 trFhϕ,ϕ)| ≤ c(n)

(
∫

|ηϕ| 2n
n−1

)
n−1

n
(
∫

supp η
|Fh|n

)
1

n

≤ c(n)

∫

|∇(ηϕ)|2
(
∫

supp η
|Fh|n

)
1

n

.

Moreover, writing (Fh ·ϕ,ϕ) = ((1− η2)Fh ·ϕ,ϕ)+ (η2Fhϕ,ϕ) and (tr◦Rg ·
ϕ,ϕ) = ((1− η2) tr◦Rg ·ϕ,ϕ) + (η2 tr◦Rg ·ϕ,ϕ) we may apply the Sobolev

inequality to the second term of each expression similarly. Thus

− 1

4n
(η2 trFhϕ,ϕ) + (Fh · ϕ,ϕ) +

4n− 1

4n
(tr◦Rg · ϕ,ϕ)

≥ −
∫

|∇(ηϕ)|2
(

2c(n)(

∫

supp η
|Fh|n)

1

n + c′(n)(

∫

supp η
|Rg|n)

1

n

)

+ ((1 − η2)Fh · ϕ,ϕ) +
4n− 1

4n
((1 − η2) tr◦Rg · ϕ,ϕ).

We choose δ so that 2c(n)(
∫

supp η |Fh|n)1/n+c′(n)(
∫

supp η |Rg|n)
1

n ≤ 1
8n , thus

(�′′ϕ,ϕ) ≥
1

8n

∫

|∇(ηϕ)|2 +

∫
(

3

4
K − 1

2
|∂̄η|2 − max

{ρ≥δ}
(|Fh| + |Rg|)

)

|ϕ|2.

Choose K large so that the second term is larger than
∫

|ϕ|2, and recalling

that we omitted 1
2

∫

|∇0,1ϕ|2 +
∫

|z|=1 |ϕ|2, we obtain the desired estimate

with c0 = 1
8n .
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Lemma 1 shows that the kernel of �
′′ is trivial, hence there exists a

unique L2(Xε,c)-solution to the equation �
′′ϕε = ξ with ||ϕε|| ≤ ||ξ|| due

to the standard existence theorem for self-adjoint operators. Regularity of

solutions follows from the basic estimate of the above lemma applied near

ρ = c and ρ = ε respectively (cf. [11, theorem 2.1.7]). Now take the uniform

limit of these solutions as ε→ 0. It is important to note that
∫

X0,c
|ϕ| 2n

n−1 <

∞ due to the estimate of Lemma 1 and the Sobolev inequality. Our aim is

now to show that ∂̄∗∂̄ϕ ≡ 0 on X0,c, then we may set u = ∂̄∗ϕ and obtain

the desired solution for the Cauchy-Riemann equation. First we need

Lemma 2. (cf. [3, lemmata 5.8, 5.9]) Suppose that smooth nonnegative

functions f ∈ Ln(X0,c) and u ∈ L sn
n−1 (X0,c) satisfy the equation ∆u ≥ −fu

on X0,c for some s > 1. Then, u ∈ Lp(X0,c) for all p > 1. Also, one may

replace the condition u ∈ L
sn

n−1 (X0,c) by
∫

Bδ(x0,r)
us ≤ o(r2) for some s > 1.

(Since an outline of the proof of this result is also discussed in [9], it

will be omitted here.) Now

4|ϕ|2 = 2(|d|ϕ||2 + |ϕ|4|ϕ|) = 2(Re〈4ϕ,ϕ〉 + |∇ϕ|2) ,

and hence it is a simple consequence of the Cauchy-Schwarz inequality that

4|ϕ| ≥ Re〈4ϕ,ϕ〉
|ϕ| .

Inserting the expression for 4ϕ from equation (1) and applying once again

the Cauchy-Schwarz inequality to 〈4ϕ,ϕ〉 we obtain

4|ϕ| ≥ −2(|Fh| + n|Rg|)|ϕ| − 2|ξ|

on X0,c. Using the lemma above with u = |ϕ|+ 1, f = 2(|Fh|+ n|Rg|+ |ξ|)
and s = 2, we conclude that |ϕ| ∈ Lp(X0,c) for all p > 1. Next, with

η ∈ C1
o (X0,c), we write

∫

supp η
|∇(ηϕ)|2 =

∫
(

5|dη ⊗ ϕ|2 +
5

4
η2|∇ϕ|2 − |2dη ⊗ ϕ− 1

2
η∇ϕ|2

)

≤ 5

∫

|dη|2|ϕ|2 +
5

4

∫

| < η2ϕ,4ϕ > |

≤ 5

∫

|dη|2|ϕ|2 + c(n)

∫

(|Fh| + n|Rg| + |ξ|)η2|ϕ|2
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≤
(
∫

|dη|2n
)

1

n

·
(
∫

supp η
|ϕ| 2n

n−1

)
n−1

n

+ c(n)

(
∫

supp η
(|F | + n|Rg| + |ξ|)n

)
1

n
(
∫

|ηϕ| 2n
n−1

)
n−1

n

.

For c′ > 2r > 2r′ > 0, choose η such that

(a) η(x) = η(δ(x0, x)),

(b) η = 0 for δ(x0, x) > 2r and δ(x0, x) < r′, and η = 1 on r >

δ(x0, x) > 2r′,

(c) |dη| ≤ 2/r on 2r > δ(x0, x) > r and |dη| ≤ 2/r′ on 2r′ > δ(x0, x) >

r′.

We may let r′ → 0 since
∫

Bδ(x0,2r′)
|dη|2n ≤ const(n). Since |ϕ| ∈

Lp(X0,c) for any p > 1, the Hölder inequality together with the basic volume

assumption (iii) above implies
∫

supp η |ϕ|
2n

n−1 ≤ o(r2n−ε) for any ε > 0. Thus,

the above inequality shows that
∫

Bδ(x0,r)
|∇ϕ|2 ≤ o(r2(n−1)−ε) for any ε > 0.

For n ≥ 3, we see ∂̄∗∂̄ϕ = 0 as follows. Let ζ be a smooth function with ζ = 1

on δ(x0, x) > 2r, ζ = 0 on δ(x0, x) < r. Since 0 = ∂̄ξ = ∂̄�
′′ϕ = ∂̄∂̄∗∂̄ϕ,

∫

X0,c

|ζ∂̄∗∂̄ϕ|2 = (∂̄∗∂̄ϕ, ζ2∂̄∗∂̄ϕ) = (∂̄ϕ, ∂̄(ζ2∂̄∗∂̄ϕ))

= 2(∂̄ϕ, ζ∂̄ζ ∧ ∂̄∗∂̄ϕ) ≤ 4

∫

|∂̄ϕ|2|dζ|2 +
1

2

∫

|ζ∂̄∗∂̄ϕ|2.

Since |dζ| ≤ 2o(r−1) and
∫

|∇ϕ|2 ≤ o(r3) for n ≥ 3, by letting r → 0 we may

conclude the proof. For n = 2, the equation ∆|∂̄ϕ| ≥ −c(n)(|Fh|+ |Rg|)|∂̄ϕ|
and

∫

Bδ(x0,r)
|∇ϕ|1.5 ≤ o(r2) implies |∂̄ϕ| ∈ Lp(X0,c) for all p > 1 by Lemma

2, thus we may proceed in a manner similar to the case n ≥ 3 to obtain

∂̄∗∂̄ϕ = 0. This completes the proof of the theorem.

§4. Applications to holomorphic extension

Let s be a holomorphic section of E in a small coordinate neighbour-

hood U around x1 ∈ X0,c, and consider ϑ a cut-off function with compact

support in U , which is identically equal to one near x1. ϑs may then be re-

garded as a smooth section of E on X0,c, with ξ = ∂̄(ϑs) corresponding to a

∂̄-closed (0, 1)-form which vanishes identically near x1. Now ψ = 2nϑ log |z|
is a compactly supported function on U which is plurisubharmonic near

z(x1) = 0, and extends smoothly to X0,c \ {x1}. It follows that i∂∂̄ψ is
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locally bounded below, and hence that Kρ+ ψ is plurisubharmonic for K

sufficiently large. Now repeat the solution of the ∂̄-Neumann problem for

∂̄u = ξ with respect to hK = he−(Kρ+ψ), noting that the potentially diffi-

cult term −η2 tr(∂∂̄ψ) will vanish if we define supp η∩U = ∅. Moreover, the

fact that ξ ≡ 0 near x1 implies that ‖ξ‖Ln < ∞, while the basic estimate

above implies that ‖u‖L2 ≤ ‖ξ‖L2 (cf. [11]). Hence u(x1) = 0 and ϑs− u is

a holomorphic section of E on X0,c which agrees with s at x1. An argument

identical to the one given by Bando in lemmata 7 and 8 of [2] may then be

used to embed E |X0,c ↪→ C
N for sufficiently large N , and thus to obtain a

reflexive sheaf extension F → X via Hartogs’ theorem. In summary,

Corollary 1. Let Xn be a reduced complex space with normal iso-

lated singularity at x0 ∈ X, and ρ : X → [0,∞) a smooth, strongly plurisub-

harmonic exhaustion function centred at x0 which satisfies the conditions

(i)–(iii) above. If E → X \ {x0} is a Hermitian-holomorphic vector bundle

with Lnloc-curvature, then there exists a reflexive sheaf F → X such that

F |X\{x0}
∼= O(E).

A further consequence of the solubility of the ∂̄-Neumann problem on

X0,c is the solvability of the equation ∂̄u = Fh, which implies existence of a

holomorphic connection on E → X0,c (cf. [9]). The extension argument of

[4], Theorem 2.2 will then automatically imply the following

Corollary 2. Let Xn be a reduced analytic space with isolated sin-

gularity x0 ∈ X and strongly plurisubharmonic function ρ : X → [0,∞)

satisfying conditions (i)–(iii). Consider π : Y → X to be a surjective holo-

morphic map from a complex manifold Y such that π−1(x0) has codimension

greater than one. If E → X\{x0} is a Hermitian-holomorphic vector bundle

with Lnloc-curvature, then there exists a unique holomorphic vector bundle

V → Y such that V |Y \π−1(x0)
∼= π∗E.

A natural instance of this result occurs when π corresponds to a quo-

tient of C
n under the action of a finite group G ⊂ SU(n), i.e., X has an orb-

ifold singularity at x0. Another potential class of examples corresponds to

isolated singularities with “small resolution”. Explicit examples of such sin-

gularities, with X a hypersurface in C
4 and π−1(x0) ∼= CP1 were presented

in [13]. At present an example which admits a strongly plurisubharmonic

function ρ of the required type is not known to the authors, however.
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Our final application concerns the problem of holomorphic extension

from the strictly pseudoconvex CR-hypersurface Sc ⊂ X corresponding to

ρ = c. Let σ : Sc → E be a section of E → X \ {x0}, such that σ is closed

with respect to the tangential Cauchy-Riemann operator on E |Sc , i.e.,

∂̄bσ = 0 (cf. [11]). Let s : X0,c → E be a smooth extension of σ, with support

in an arbitrarily small neighbourhood of Sc. From the standard theory of

the tangential Cauchy-Riemann complex for Sc, we note that ∂̄bσ = 0 if and

only if the (n, n−1)-form ξ = ∂̄∗ ? s̄ satisfies the ∂̄-Neumann conditions (*),

where ? denotes the Hodge operator on forms ([11], Proposition 5.2.2). The

essential idea of the extension technique of Kohn and Rossi [12] is to obtain

a solution to the equation ∂̄∗u = ξ such that u again satisfies the conditions

(*), and this is done in a manner entirely analogous to the theory of the

equation ∂̄u = ξ for a (0, 1)-form ξ. Moreover, u satisfies (a)∂̄(s− ?ū) = 0

and (b) ? ū |Sc= 0, hence s − ?ū is a holomorphic extension of σ. For the

case of X0,c corresponding to the punctured neighbourhood of an isolated

singularity our adaptation of Bando’s method is applied to this end. The

argument here also is essentially a dualised version of the method of the

previous sections, and goes through with only minor alterations which will

be outlined below.

For (n, n − 1)-forms ϕ = ϕīdz ∧ dz̄[i] the inner product in any local

frame will be made up of cofactors of the matrix ḡ−1 where g represents

the metric on TX as usual. Hence we may write

〈dz ∧ dz̄[i], dz ∧ dz̄[j]〉 = det(g)−2gi,j̄ .

If it is assumed that ϕ satisfies the ∂̄-Neumann/Dirichlet conditions (*),

then via integration by parts we obtain

(�′′ϕ)̄i = −1

4
4ϕī − ϕāR

i
akk̄ + ϕīR

b
bkk̄ + ϕνFανkk̄ + (−1)i+k+1ϕνk̄F

α
νik̄ .

Similarly

∇0,1ϕ = Σi,k

(

∂ϕα
ī

∂z̄k
+ gjī

∂gjā
∂z̄k

ϕαā − ∂ log det(g)

∂z̄k
ϕαī

)

dz ∧ dz̄[i] ⊗ dz̄k ,

and hence

‖∇0,1ϕ‖2 = −
(1

4
4ϕ− ϕāR

i
akk̄

− ϕīR
b
bkk̄, ϕ

)

−
∫

{ρ=c}
|ϕ|2 .
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From here we proceed to solve the Laplace equation for ξ as before. The

remainder of the argument is almost identical, apart from the obvious re-

quirement that it is the term ∂̄∂̄∗ϕ which must be shown to vanish in this

context. Note that
∫

|ζ∂̄∂̄∗ϕ|2 = (∂̄∂̄∗ϕ, ζ2ξ) − (∂̄∂̄∗ϕ, ζ2∂̄∗∂̄ϕ)

= (∂̄∗ϕ, ∂̄∗(ζ2ξ)) − (∂̄(ζ2∂̄∂̄∗ϕ), ∂̄ϕ) ,

since the Neumann conditions imply that σ(∂̄∗, dρ)ζ2ξ and σ(∂̄∗, dρ)∂̄ϕ

must vanish on Sc. Moreover, if it is assumed that

supp(s) ∩ supp(1 − ζ) = ∅ ,

then ∂̄∗(ζ2ξ) = 0 implies
∫

|ζ∂̄∂̄∗ϕ|2 = −2(ζ∂̄ζ ∧ ∂̄∂̄∗ϕ, ∂̄ϕ) ≤ 4

∫

|dζ|2|∇ϕ|2 +
1

4

∫

|ζ∂̄∂̄∗ϕ|2 .

The argument may then be completed as before, with u = ∂̄ϕ. In conclusion

Corollary 3. Let Xn be a reduced analytic space with isolated sin-

gularity x0, and let ρ : X → [0,∞) be a strongly plurisubharmonic func-

tion satisfying the conditions (i)–(iii). If E → X \ {x0} is a Hermitian-

holomorphic vector bundle with Lnloc-curvature, and σ a ∂̄b-closed section of

E |Sc, then there exists a unique holomorphic extension of σ as a section of

E on X0,c, and hence as a section of the reflexive sheaf F on Xc.

Remark. The uniqueness follows from an idea suggested to us by Oh-

sawa. Let s and s′ be two such holomorphic extensions of σ, so that s− s′

corresponds to a holomorphic section on X0,c which vanishes on Sc. In an

open neighbourhood of any point x ∈ X which also lies on Sc, s−s′ may be

viewed as a vector-valued holomorphic function, such that the restriction

of s − s′ to any holomorphic curve which cuts Sc transversely at x may

be Schwarz-reflected to a local holomorphic extension on both sides of the

boundary. It follows that s − s′ must vanish identically along the curve,

since by assumption it vanishes on the subset of real codimension one cor-

responding to the intersection of the curve with Sc. Hence s−s′ must vanish

identically on X0,c.

Ohsawa has also pointed out to us that the problem of holomorphic

extension may be approached directly through the solution of the Cauchy-

Riemann equation, rather than through the dual problem. With respect to
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a modified metric of the form ĝ = g−∂∂̄ log(c−ρ), which effectively pushes

Sc to infinity, one may expect to find a solution of the equation ∂̄u = ∂̄s, for

a smooth compactly supported extension s via the method of [15]. Provided

the curvature of E is sufficiently regular (eg., Lnloc), u should be in L2 with

respect to ĝ, and will consequently vanish on Sc.
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