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GLOBAL EXISTENCE AND CONVERGENCE OF

SOLUTIONS OF THE CALABI FLOW

ON EINSTEIN 4-MANIFOLDS

SHU-CHENG CHANG1

Abstract. In this paper, firstly, we show the Bondi-mass type estimate of
solutions of Calabi flow on closed 4-manifolds. Secondly, in our applications, we
obtain the long time existence on closed 4-manifolds. In particular, we are able
to show the asymptotic convergence of a subsequence of solutions of the Calabi
flow on closed Einstein 4-manifolds.

§1. Introduction

Let (M, [g0]) be a closed smooth n-manifold with a given conformal

class [g0]. We consider the scalar curvature functional on [g0]:

E(g) =

∫
M R2 dµ

( ∫
M dµ

)1−4/n
, g ∈ [g0].

Then the Euler-Lagrange equation of E is given by

∆R − βR2 + βr = 0,

where dµ = dµg, ∆ = ∆g, R is the scalar curvature with respect to the

metric g, r =
( ∫

M R2 dµ
)
/
( ∫

M dµ
)

and β = (n − 4)/4(n − 1).

Now consider the negative gradient flow of E on a closed smooth n-

manifold M with a fixed conformal class [g0]:

∂g

∂t
= 2(∆R − βR2 + βr)g.(1.1)

For g ∈ [g0], we may write g = e2λg0, for a smooth function

λ : M × [0,∞) −→ R.
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Then equations (1.1) reduce to the following initial value problem of fourth

order parabolic equation on (M, [g0]):





∂λ

∂t
= (∆R − βR2 + βr),

g = e2λg0 ; λ(p, 0) = λ0(p),
∫

Mn

enλ0 dµ0 =

∫

Mn

dµ0,

(1.2)

where dµ0 is the volume element of g0.

In particular, β = 0 for n = 4, we will consider the following equation

on closed 4-manifolds (M4, [g0]):





∂λ

∂t
= ∆R,

g = e2λg0 ; λ(p, 0) = λ0(p),
∫

M4

e4λ0 dµ0 =

∫

M4

dµ0.

(1.3)

The parabolic equation (1.3) is so-called Calabi flow in case of Kaehler

surfaces with the fixed Kaehler class due to E. Calabi ([Ca], [Ch2], [Ch3]).

For n = 2 and 3, based on the Bondi-mass type estimate of solutions

of (1.2) and [Chru], the present author proved the long time existence and

asymptotic convergence of solutions of (1.2). We refer to [CW] and [Ch5]

for details.

In this paper, firstly, we show the Bondi-mass type estimate of solutions

of the Calabi flow (1.3) as in Corollary 2.3. Secondly, based on Corollary 2.3

and elliptic Moser iteration plus blowing-up argument as in [Ch1], we have

the C0-bound and Wk,2-norms bounds as in Theorem 3.6 and Theorem 3.7.

Then the long time existence of solutions of (1.3) was claimed. Finally, we

show the asymptotic convergence of solutions of (1.3) if the background

metric g0 is Einstein.

Let Q be the Yamabe constant on (M4, [g0]) which is conformal invari-

ant

Q(M,g0) = inf
ϕ6=0

Eg0(ϕ)
( ∫

|ϕ|4 dµ0

)1/2
,

where Eg0(ϕ) =
∫
|

0

∇ϕ|2 dµ0 + 1
6

∫
R0ϕ

2 dµ0.
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Theorem 1.1. Let (M,g0) be a closed 4-manifold and λ satisfy (1.3)

on [0, T ). Then the solution of (1.3) exists on M × [0,∞). Moreover, if g0

is an Einstein metric, there exists a subsequence of solutions
{
e2λ(t)g0

}
of

(1.3) on M × [0,∞) which converges smoothly to one of the constant scalar

curvature metric g∞.

Remark 1.1. In case of Kaehler surfaces with the fixed Kaehler class,

we have the similar results as in Theorem 1.1 with the stability condition

on the tangent bundle ([Ch2]).

One may think the problem here to be more difficult compare the second

order parabolic equations, due to a lack of the maximum principle for fourth

order parabolic equations. Then in order to estimate the C0-bound, we

will apply the elliptic Moser iteration method plus the blow-up argument

([Ch1]).

In Section 2, we will derive the so-called Bondi-mass type estimate of

equation (1.3) from the Bochner formula. In Section 3, based on [Ch1],

[CY], we obtain the C0-bound via elliptic Moser iteration and the blow-up

argument. Then the higher order Wk,2-norms estimates of the solutions for

(1.3) will follow easily from [CW] and [Chru]. Finally, we have the long-time

existence of solutions of (1.3).

In Section 4, we are able to show the asymptotic convergence of a

subsequence of solutions of (1.3) if the background metric g0 is Einstein.

Acknowledgements. I would like to express my thanks to Prof. S.-

T. Yau for constant encouragement and for the hospitality during his visit

at Harvard University.

§2. Bondi-mass type estimates of solutions of the Calabi flow

In this section, we will derive the key estimate of equation (1.3) from

the Bochner formula as in Lemma 2.2. This is so-called the Bondi-mass

type estimate as in [Ch5] and [CW].

For g = e2λg0, R0 = Rg0 , we have the following formulae for (1.3):

R = Rg = e−2λ
(
R0 − 6∆0λ − 6|

0

∇λ|2
)
.(2.1)

∆R = e−2λ
(
∆0R + 2

〈 0

∇R,
0

∇λ
〉)

, where ∆0 = ∆g0 , ∆ = ∆g.(2.2)

dµ = e4λ dµ0, where dµ0 = dµg0 , dµ = dµg.(2.3)
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∂

∂t
dµ = 4∆Rdµ ;

∂R

∂t
= −2R∆R − 6∆2R.(2.4)

∫

M4

dµ =

∫

M
e4λ dµ0 =

∫

M
e4λ0 dµ0 =

∫

M
dµ0.(2.5)

Lemma 2.1. Under the flow (1.3), we have

∫

M
R2 dµ ≤ C(R0, λ0),

for 0 ≤ T ≤ ∞.

Proof. From (2.4),

−
1

2

d

dt

∫

M
R2 dµ = −2

∫

M
R2∆R dµ + 2

∫
(R2∆R + 3R∆2R) dµ

= 6

∫

M
(∆R)2 dµ.

Thus
d

dt

∫

M
R2 dµ ≤ 0.

Compare with [CW, Theorem 2.4] and [Ch5], one can show

Lemma 2.2. (i) ([Ch4]) For g0 is Einstein, under the flow (1.3), we

have
d

dt

∫

M
e5λ dµ0 ≤ 0.

(ii) For any background metric g0, under the flow (1.3), we have

d

dt

∫

M
e5λ dµ0 ≤ C(g0, λ0).

Remark 2.1. (i) We will need (ii) for long time existence part and (i)

for convergence part of the Calabi flow.

(ii) The volume
∫
M dµ =

∫
M e4λ dµ0 will be preserved under the flow.
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Proof. In the following, the constant C may vary from line to line

which is independent of t. From (2.1) and (2.2), we have

d

dt

∫

M
eαλ dµ0 = α

∫
eαλ

(∂λ

∂t

)
dµ0 = α

∫
eαλ(∆R) dµ0

= α

∫
eαλ · e−2λ

(
∆0R + 2

〈 0

∇R,
0

∇λ
〉)

dµ0

= α

∫
e(α−2)λR

[
(α − 4)∆0λ + (α − 2)(α − 4)|

0

∇λ|2
]
dµ0

= α

∫
e(α−4)λ

[
(α − 4)R0∆0λ + (α − 2)(α − 4)R0|

0

∇λ|2

− 6(α − 4)(∆0λ)2 − 3(α − 4)(2α − 2)∆0λ|
0

∇λ|2

− 6(α − 2)(α − 4)|
0

∇λ|4
]
dµ0.

Now let f = e(4−α)λ. Then

|
0

∇λ|2 = (α − 4)−2f−2|
0

∇f |2,

∆0λ = (α − 4)−1f−2|
0

∇f |2 − (α − 4)−1f−1∆0f.

Hence

d

dt

∫
eαλ dµ0 = 2α(α − 4)

∫
e(α−4)λR0|

0

∇λ|2 dµ0

− α(α − 4)

∫
e(α−4)λ

〈 0

∇λ,
0

∇R0

〉
dµ0

− 6α(α − 4)−1

∫
f−3(∆0f)2 dµ0

− 3α(α − 4)−3(4α2 − 24α + 36)

∫
f−5|

0

∇f |4 dµ0

+ 3α(α − 4)−2(6α − 18)

∫
f−4∆0f |

0

∇f |2 dµ0.

Again let F = f r, for some r to be chosen later. Then

|
0

∇f |2 = r−2F (2−2r)/r|
0

∇F |2,

∆0f = r−1F (1−r)/r∆0F − (r − 1)r−2F (1−2r)/r|
0

∇F |2.
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Then

d

dt

∫
eαλ dµ0 = 2α(α − 4)

∫
e(α−4)λR0|

0

∇λ|2 dµ0

− α(α − 4)

∫
e(α−4)λ

〈 0

∇λ,
0

∇R0

〉
dµ0

− 6α(α − n)(α − 4)−1r−2

∫
F (−1−2r)/r(∆0F )2 dµ0

− 6α(α − 4)−3r−4
[
(r(r + 1)α2 − (8r2 + 5r − 1)α

+ 16r2 + 4r − 2
] ∫

F (−1−4r)/r|
0

∇F |4 dµ0

+ 6α(α − 4)−2r−3
[
(2r + 1)α − 8r − 1

] ∫
F (−1−3r)/r∆0F |

0

∇F |2 dµ0.

Compute

0 =

∫

M
δ
(
F− 1

r
−2

0

∇F ∆0F
)
dµ0(2.6)

=

∫
F− 1

r
−2(∆0F )2 dµ0 +

∫ 〈 0

∇(F− 1
r
−2∆0F ),

0

∇F
〉
dµ0

=

∫
F− 1

r
−2(∆0F )2 dµ0 −

( 1

r
+ 2

) ∫
F− 1

r
−3∆0F |

0

∇F |2 dµ0

+

∫
F− 1

r
−2

〈 0

∇∆0F,
0

∇F
〉
dµ0,

and

0 =

∫

M
δ
(
F− 1

r
−2

0

∇|
0

∇F |2
)
dµ0

=

∫
F− 1

r
−2∆0|

0

∇F |2 dµ0 −
( 1

r
+ 2

) ∫
F− 1

r
−3

〈 0

∇F,
0

∇|
0

∇F |2 dµ0

〉
dµ0

=

∫
F− 1

r
−2∆0|

0

∇F |2 dµ0 +
( 1

r
+ 2

) ∫
F− 1

r
−3∆0F |

0

∇F |2 dµ0

−
( 1

r
+ 2

)( 1

r
+ 3

)∫
F− 1

r
−4|

0

∇F |4 dµ0.

By the Bochner-Lichnerowicz formula

1

2
∆0|

0

∇F |2 = |
0

∇2F |2 +
〈 0

∇F,
0

∇∆0F
〉

+ Rc(
0

∇F,
0

∇F ),
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we have
∫

F− 1
r
−2

〈 0

∇F,
0

∇∆0F
〉
dµ0(2.7)

= −

∫
F− 1

r
−2|

0

∇2F |2 dµ0 −

∫
F− 1

r
−2Rc(

0

∇F,
0

∇F ) dµ0

−
1

2

( 1

r
+ 2

) ∫
F− 1

r
−3∆0F |

0

∇F |2 dµ0

+
1

2

( 1

r
+ 2

)( 1

r
+ 3

) ∫
F− 1

r
−4|

0

∇F |4 dµ0.

Combine (2.6) and (2.7), one obtains

3

2

( 1

r
+ 2

)∫
F− 1

r
−3∆0F |

0

∇F |2 dµ0

=

∫
F− 1

r
−2(∆0F )2 dµ0

+
1

2

( 1

r
+ 2

)( 1

r
+ 3

) ∫
F− 1

r
−4|

0

∇F |4 dµ0

−

∫
F− 1

r
−2|

0

∇
2F |2 dµ0 −

∫
F− 1

r
−2Rc(

0

∇F,
0

∇F ) dµ0.

Hence
∫

F− 1
r
−3∆0F |

0

∇F |2 dµ0

=
2

3

r

1 + 2r

∫
F− 1

r
−2(∆0F )2 dµ0 −

2

3

r

1 + 2r

∫
F− 1

r
−2|

0

∇2F |2 dµ0

−
2

3

r

1 + 2r

∫
F− 1

r
−2Rc(

0

∇F,
0

∇F ) dµ0

+
1

3

1 + 3r

r

∫
F− 1

r
−4|

0

∇F |4 dµ0.

Then

(2.8)

d

dt

∫
eαλ dµ0 = 2α(α − 4)

∫
e(α−4)λR0|

0

∇λ|2 dµ0

− α(α − 4)

∫
e(α−4)λ

〈 0

∇λ,
0

∇R0

〉
dµ0

− 2α(α − 4)−2r−2
[
(α − 4) − 6(2r + 1)−1

] ∫
F− 1

r
−2(∆0F )2 dµ0
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+ 2α(α − 4)−3r−4
[
(3r2 + 2r + 1)(α − 4)2 − 6

] ∫
F− 1

r
−4|

0

∇F |4 dµ0

− 4α(α − 4)−2r−2
[
α − (8r + 1)(1 + 2r)−1

] ∫
F− 1

r
−2|

0

∇2F |2 dµ0

− 4α(α − 4)−2r−2
[
α − (8r + 1)(1 + 2r)−1

] ∫
F− 1

r
−2Rc(

0

∇F,
0

∇F ) dµ0.

(i) For g0 is Einstein, i.e., Rc(g0) = (R0/4)g0:

Choose r = 1, α = 5, then

d

dt

∫
e5λ dµ0 = 10R0

∫
eλ|

0

∇λ|2 dµ0 − 40

∫
e3λRc(

0

∇F,
0

∇F ) dµ0(2.9)

+ 10

∫
e3λ(∆0F )2 dµ0 − 40

∫
e3λ|

0

∇
2F |2 dµ0

= 10

∫
e3λ(∆0F )2 dµ0 − 40

∫
e3λ|

0

∇2F |2 dµ0.

But for n = 4,

(∆0F )2 ≤ 4|
0

∇2F |2.

This implies (i) of the Lemma.

(ii) For any arbitrary g0:

First we observe, for 0 ≤ β ≤ 4; Ω+ = {p ∈ M | λ ≥ 0}, Ω− = {p ∈

M | λ < 0}

∫

M
eβλ dµ0 =

∫

Ω+

eβλ dµ0 +

∫

Ω−

eβλ dµ0 ≤

∫

M
e4λ dµ0 +

∫

M
dµ0(2.10)

≤

∫

M
dµ +

∫

M
dµ0 ≤ C.

Choose r = 1, α = 5 again, then, from (2.8) and (2.9),

d

dt

∫
e5λ dµ0 ≤ 10

∫
eλ|

0

∇λ|2R0 dµ0 − 40

∫
eλRc(

0

∇λ,
0

∇λ) dµ0

− 5

∫
eλ

〈 0

∇λ,
0

∇R0

〉
dµ0.

Compute, for e2λR = R0 − 6∆0λ − 6|
0

∇λ|2, from (2.5), (2.10)

−5

∫
eλ

〈 0

∇λ,
0

∇R0

〉
dµ0 = 5

∫
eλ|

0

∇λ|2R0 dµ0 + 5

∫
eλ(∆0λ)R0 dµ0
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=
5

6

∫
eλ(−e2λR + R0)R0 dµ0

=
5

6

∫
eλR2

0 dµ0 −
5

6

∫
e3λRR0 dµ0

≤ C

∫
eλ dµ0 + C

∫
e2λ dµ0 + C

∫
e4λR2 dµ0

≤ C.

and

10

∫

M
eλ|

0

∇λ|2R0 dµ0 − 40

∫

M
eλRc(

0

∇λ,
0

∇λ) dµ0(2.11)

≤ C

∫

M
eλ|

0

∇λ|2 dµ0

≤ C

∫

Ω+

e2λ|
0

∇λ|2 dµ0 + C

∫

Ω−

eλ/2|
0

∇λ|2 dµ0

≤ C

∫

M
e2λ|

0

∇λ|2 dµ0 + C

∫

M
eλ/2|

0

∇λ|2 dµ0.

Now

3∆0e
2λ = e2λ

(
6∆0λ + 12|

0

∇λ|2
)

= e2λ
(
− e2λR + R0 + 6|

0

∇λ|2
)

and

12∆0e
λ/2 = eλ/2

(
6∆0λ + 3|

0

∇λ|2
)

= eλ/2
(
− e2λR + R0 − 3|

0

∇λ|2
)
.

It follows

6

∫
e2λ|

0

∇λ|2 dµ0 = −

∫
e2λR0 dµ0 +

∫
e4λR dµ0(2.12)

= −

∫
e2λR0 dµ0 +

∫
R dµ ≤ C

and

3

∫
eλ/2|

0

∇λ|2 dµ0 =

∫
eλ/2R0 dµ0 −

∫
e5λ/2R dµ0(2.13)

≤ C −

∫
e−3λ/2R dµ

≤ C +

∫
e−3λ dµ +

∫
R2 dµ

≤ C +

∫
eλ dµ0 +

∫
R2 dµ ≤ C.

Then (2.11), (2.12) and (2.13) imply (ii) of the Lemma.
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Corollary 2.3. (i) For g0 is Einstein, under the flow (1.3), one

obtains ∫

M
e5λ dµ0 ≤ C1(g0, λ0),

for all 0 ≤ t ≤ T ≤ ∞.

(ii) For any background metric g0, then

∫

M
e5λ dµ0 ≤ C2(g0, λ0) + C3(g0, λ0)t,

for all 0 ≤ t < T .

Remark 2.2. From (ii) of Corollary 2.3, under the flow (1.3), we have

∫

M
e5λ dµ0 ≤ C2 + C3t.

This will be enough for the long time existence of the solution of (1.3)

which will imply the first part of assertion for Theorem 1.1. But for conver-

gence part, we will need the uniformly bound on
∫
M e5λ dµ0 under the flow

(1.3) which is held when g0 is Einstein as in (i) of Corollary 2.3.

§3. A priori estimates and long time existence

In this section, following Corollary 2.3, [Ch1] and [CY], we will have

the C0-bound via elliptic Moser iteration and the blow-up argument as in

Theorem 3.6. Then, based on [CW] and [Chru], one can get the bounds

on all Wk,2 norms as in Theorem 3.7. All these together will imply the

long-time existence of solutions of (1.3).

Define

Eη =
{
p : eλ(p) ≥ η

}
, |Eη| =

∫

Eη

dµ0.

In the following, the constant C may vary from line to line.

Lemma 3.1. Under the flow (1.3), there exists η0 > 0, l0 > 0 such

that

|Eη0 | ≥ l0 > 0,

for all 0 ≤ t < T .
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Proof. First, from the Corollary 2.3 (we refer to Remark 3.1 as below),

we may choose 0 < ε ≤ 1 such that
∫

M
e(4+ε)λ dµ0 ≤ C.(3.1)

Now
(∫

M
e4λ dµ0

)2
≤

( ∫

M
e(4−ε)λ dµ0

)(∫

M
e(4+ε)λ dµ0

)

≤ C

∫

M
e(4−ε)λ dµ0.

Since
∫
M e4λ dµ0 is fixed under the flow (1.3), say

∫
M e4λ dµ0 = V . Thus

V 2

C
≤

∫

M
e(4−ε)λ dµ0.

But, for all η > 0,
∫

M
e(4−ε)λ dµ0 =

∫

Eη

e(4−ε)λ dµ0 +

∫

Ec
η

e(4−ε)λ dµ0

≤
(∫

Eη

e4λ dµ0

)(4−ε)/4
(Eη)

ε/4 + η(4−ε)|Ec
η |.

Now for sufficiently small η0, say

η4−ε
0 V <

1

2

V 2

C
.

Then
1

2

V 2

C
≤ (V )(4−ε)/4(Eη0)

ε/4.

This implies, for l0 = V (V/2C)4/ε

|Eη0 | ≥ l0.

Remark 3.1. The delicate part of the proof in [CY] is the estimate

(3.1) which is held for ε = 1 under the flow (1.3) due to Lemma 2.2. If g0 is

Einstein, then l0 is independent of the maximum time T ≤ ∞. If g0 is not

Einstein, then the estimate is still held as long as the maximum time T is

finite.
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Lemma 3.2. Under the flow (1.3), there exists a constant C > 0 such

that ∫

M
λ2 dµ0 ≤ C,

for 0 ≤ t < T .

Proof. Choose η0, l0 as in Lemma 3.1, for D = Ec
η0

, consider the

Raleigh-Ritz characterization for λ1(D), one has

∫

D

∣∣∣ ln
eλ

η0

∣∣∣
2
dµ0 ≤

1

λ1(D)

∫

D

∣∣∣
0

∇ ln
eλ

η0

∣∣∣
2
dµ0.

From Lemma 3.1, we have

|D| = V − |Eη0 | ≤ V − l0.

Then, from Faber-Krahn inequality ([Chav])

λ1(D) ≥ C(l0) > 0.

Now

∫

eλ≤η0

∣∣∣ ln
eλ

η0

∣∣∣
2
dµ0 ≤

1

C(l0)

∫

M

∣∣∣
0

∇ ln
eλ

η0

∣∣∣
2
dµ0

=
1

C(l0)

∫

M

∆0e
λ

eλ
dµ0

=
1

C(l0)

∫

M

(
∆0λ + |

0

∇λ|2
)
dµ0

=
1

C(l0)

∫

M
(R0 − e2λR) dµ0

≤
1

C(l0)

(∫

M
R0 dµ0 +

1

2

∫

M
R2 dµ +

1

2

∫

M
dµ

)

≤ C.

On the other hand

∫

eλ≥η0

∣∣∣ ln
eλ

η0

∣∣∣
2
dµ0 ≤

∫

eλ≥η0

∣∣∣
eλ

η0

∣∣∣
2
dµ0 ≤

1

η2
0

∫

M
e2λdµ0 ≤ C.

All these imply the Lemma.



CALABI FLOW ON EINSTEIN 4-MANIFOLDS 205

Now, by using the result of Lemma 3.2, we have the local Sobolev

constant bound Cs with respect to g.

Lemma 3.3. Under the flow (1.3), there exists a constant κ1 > 0 such

that, if ∫

Bρ

R2 dµ ≤ κ1,

then, for some constant Cs

(∫

Bρ

f4 dµ
)1/2

≤ Cs

[ ∫

Bρ

|∇f |2 dµ +

∫

Bρ

f2 dµ
]

for f ∈ C∞
0 (Bρ).

Proof. For g = e2λg0 and n = 4 in our case. Now with respect to g0,

we have the local Sobolev constant A0, i.e., for ϕ ∈ C∞
0 (Bρ)

( ∫

Bρ

|ϕ|4 dµ0

)1/2
≤ A0

( ∫

Bρ

|
0

∇ϕ|2 dµ0

)
.

Take ϕ = eλf , since Eg(f) = Eg0(ϕ)

(∫
|f |4 dµ

)1/2
=

(∫
|ϕ|4e−4λ dµ

)1/2
=

(∫
|ϕ|4 dµ0

)1/2
(3.2)

≤ A0

( ∫
|

0

∇ϕ|2 dµ0

)

≤ A0

[
Eg0(ϕ) −

1

6

∫
R0ϕ

2 dµ0

]

≤ A0

[
Eg(f) −

1

6

∫
R0ϕ

2 dµ0

]

≤ A0

[ ∫
|∇f |2 dµ +

1

6

∫
(R − R0e

−2λ)f2 dµ
]
.

Let Ω = {p ∈ Bρ : R − R0e
−2λ > −K}, K > 0, estimate

∫

Bρ

(R − R0e
−2λ)f2 dµ(3.3)

=

∫

Ω
(R − R0e

−2λ)f2 dµ +

∫

Bρ−Ω
(R − R0e

−2λ)f2 dµ

≤

∫

Ω
(R − R0e

−2λ)f2 dµ.
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Now consider Ω′ = Ω ∩ {λ < 0}, then over Ω′

−6∆0(−λ) = R0 − e2λR − 6|
0

∇λ|2

≤ R0 − e2λR ≤ Ke2λ ≤ C + K(−λ).

That is, for h = −λ > 0, we have

−∆0h ≤
1

6
Kh + C,

over Ω′. But from Lemma 3.2, one has
∫

Ω′

h2 dµ0 ≤ C ;

and ∫

Ω′

Kp dµ0 ≤ C, p > 2 =
n

2
, n = 4.

Then Moser iteration as in [Ch1, Theorem 3.3] implies

−λ ≤ C,

over Ω′ and then

λ ≥ −C

on Ω.

Therefore, from (3.3),
∫

Bρ

(R − R0e
−2λ)f2 dµ ≤

∫

Ω
Rf2 dµ + C

∫

Bρ

f2 dµ.

This and (3.2) imply

( ∫

Bρ

|f |4 dµ
)1/2

≤ A0

[ ∫

Bρ

|∇f |2 dµ +

∫

Ω
Rf2 dµ + C

∫

Bρ

f2 dµ
]

≤ A0

[ ∫

Bρ

|∇f |2 dµ +
( ∫

Bρ

R2 dµ
)1/2(∫

Bρ

f4 dµ
)1/2

+ C

∫

Bρ

f2 dµ
]
.

If
∫
Bρ

R2 dµ is sufficiently small such that A0

( ∫
Bρ

R2 dµ
)1/2

≤ 1/2,

then ( ∫

Bρ

f4 dµ
)1/2

≤ Cs

[ ∫

Bρ

|∇f |2 dµ +

∫

Bρ

f2 dµ
]
,

for some constant Cs = C(A0).
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Now we are ready to have the C0-bound of solution of (1.3).

(I) The upper bound estimate:

Since

∆λ = e−2λ
(
∆0λ + 2|

0

∇λ|2
)
,

then

R = e−2λR0 − 6e−2λ
(
∆0λ + |

0

∇λ|2
)

= e−2λR0 − 6
(
∆λ − e−2λ|

0

∇λ|2
)
.

This implies

−∆eλ/2 = −eλ/2
[ 1

2
∆λ +

1

4
|∇λ|2

]

= −eλ/2
[ 1

2

( 1

6
e−2λR0 −

1

6
R

)
+ e−2λ|

0

∇λ|2 +
1

4
|∇λ|2

]

≤
1

12

[
R − e−2λR0

]
eλ/2.

That is, for g = eλ/2, b = 1
12 |R − e−2λR0|, we have

− ∆g ≤ bg,(3.4)

and from Corollary 2.3

∫
g2 dµ ≤ C ;

∫
b2 dµ ≤ C.(3.5)

Now combining Lemma 3.3, (3.4), (3.5) and Moser iteration as in [Ch1,

Theorem 3.3], it follows

Proposition 3.4. There exists a constant κ = κ(κ1;
∫

g2 dµ;
∫

b2 dµ)

such that if ∫

Bρ(x0)
R2 dµ ≤ κ,(3.6)

then, for any 0 < η < 1, there is a constant C = C(ρ, κ, η) such that

sup
B(1−η)ρ

eλ/2 ≤ C.
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Moreover, if we does not meet the condition as in (3.6). Thus, by using

the blowing up argument at the point as in [Ch1, Lemma 5.2], we are able

to estimate the supernorm of the solution of (1.3). More precisely, since∫
M R2 dµ ≤ C, for a fixed t, we have only finite point {v1, . . . , vm} such

that the L2-norm of scalar curvature over Bρ(vi) are larger than κ. Fix

v = vi, take a neighborhood N of v such that N ∩ {v1, . . . , vm} = {v}. Let

r(p) = d(p, v) and assume that B2ρ0 ⊂ N for some ρ0. Now for each small

ρ, define g̃ij = 1
ρ2 gij = e2λ̃ 0

gij . Fix p0 ∈ N , such that r(p0) = ρ < ρ0. For

n = 4, we have ∫

M
R2 dµ =

∫

M
R̃2 dµ̃.

Then

−∆̃g̃ ≤ b̃g̃ ;

∫

M
b̃2 dµ̃ ≤ C,

and ∫

B̃1/2(p0)
g̃2 dµ̃ =

∫

Bρ/2(p0)
e5λ̃ dµ0 ≤ ρ−5

∫

Bρ/2(p0)
e5λ dµ0,

where g̃ = eλ̃/2 and 1
ρ2 e2λ = e2λ̃.

Since ∫

Bρ/2(p0)
R2 dµ =

∫

B̃1/2(p0)
R̃2 dµ̃,

take ρ sufficiently small, we have
∫

Bρ/2(p0)
R2 dµ ≤ κ.

On the other hand, since we have the local Sobolev constant bound for

gij as in Lemma 3.3, it still holds for g̃ij ([Ch1, (5.2)]). Then again follows

the Moser iteration

sup g̃ = sup eλ̃/2 ≤ C‖eλ̃/2‖L2 ≤ Cρ−5/2
(∫

Bρ/2(p0)
e5λ dµ0

)1/2
(3.7)

on B̃1/2(p0).

Lemma 3.5. Under the flow (1.3), there exists a constant C such that

∫

Bρ(x)
e4λ dµ0 ≤ Cρ4.(3.8)
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We will proof the Lemma in the end of (I).

Now from (3.7) and (3.8), for x ∈ B̃1/2(p0), B̃ρ(x) ⊂ B̃1/2(p0),

∫

B̃ρ(x)
g̃2 dµ̃ ≤ Cρ−5

( ∫

Bρ/2(p0)
e5λ dµ0

) ∫

B̃ρ(x)
dµ̃

≤ Cρ−5

∫

Bρ2 (x)
e4λ̃ dµ0 ≤ Cρ−9

∫

Bρ2 (x)
e4λ dµ0 ≤ Cρ−1.

Then

sup eλ̃/2 ≤ C‖eλ̃/2‖L2 ≤ Cρ−1/2.

But

e2λ̃ = ρ−2e2λ.

It follows

e2λ ≤ C

on Bρ/2(p0) and as r(p) → 0, we get λ ≤ C on Br0(v) for small r0.

All these imply

λ ≤ C

on M .

Proof of (3.8). As before, we have

−∆0e
λ =

1

6

[
e2λR − R0

]
eλ.

In case of R < 0, it follows

−∆0e
λ ≤

1

6
R0e

λ.

Again from Moser iteration with respect to g0, one has

λ ≤ C

for R < 0.

Then, for B−
ρ = Bρ ∩ {R < 0}

∫

B−

ρ

e4λ dµ0 ≤ C

∫

Bρ

dµ0 ≤ Cρ4.
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On the other hand, for B+
ρ = Bρ ∩ {R ≥ 0}, the same argument as

in [W, Proposition 5.4], the exterior unit normal vector ν+ of ∂B+
ρ has

Dν+R ≤ 0,

d

dt

∫

B+
ρ

e4λ dµ0 = 4

∫

B+
ρ

e4λ∆R dµ0 = 4

∫

B+
ρ

∆R dµ

= 4

∫

∂B+
ρ

Dν+R dσ ≤ 0.

It follows ∫

B+
ρ

e4λ dµ0 ≤

∫

Bρ

e4λ0 dµ0 ≤ Cρ4.

This completes the proof of (3.8).

(II) The lower bound estimate:

The same method as in the previous (I), firstly, for h = e−λ, d =
1
6 |R − e−2λR0|, we have

−∆h ≤ dh,

and ∫
h2 dµ ≤ C ;

∫
d2 dµ ≤ C.

Then, again Moser iteration and the blowing up argument, the lower

bound

e−λ ≤ C

is followed easily.

Then we have the C0-bound of solution of (1.3):

Theorem 3.6. Under the flow (1.3), there exists a constant C =

C(
∫

e5λ dµ0, λ0, g0), such that

‖λ‖L∞(M) ≤ C,

for t ∈ [0, T ). Moreover, we have

‖λ(t)‖W1,4 ≤ C.

for t ∈ [0, T ).
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Proof. Since ∫

M
|R|2 dµ ≤ C,

then ∫

M
e−2λ(∆0e

λ)2 dµ0 ≤ C.

But ‖λ‖L∞
≤ C, it follows

∫

M
(∆0e

λ)2 dµ0 ≤ C.

This implies

‖eλ‖W2,2 ≤ C,

and from Sobolev imbedding theorem W2,2 ⊂ W1,4 for n = 4, we have

‖λ‖W1,4 ≤ C.

For higher order estimates, it is straightforward, we refer to [Chru]

and [CW] for details.

Theorem 3.7. ([Chru, Proposition 4.1], [CW]) The same assumptions

as in the previous lemma. There exists a constant C = C(‖λ0‖W2,2 , g0, T ),

l ≥ 2 such that

‖
0

∇
lλ(p, t)‖L2 ≤ C,

for t ∈ [0, T ).

Then the first part of main Theorem will follow easily from Theorem 3.6

and Theorem 3.7.

§4. Asymptotic convergence of solutions of the Calabi flow on

Einstein 4-manifolds

In the previous sections, we show the following bound
∫

e5λ dµ0 ≤ (C2 + C3t),

and the C0-bound

sup
p∈Mt

|λ(p, t)| ≤ C(T ), 0 ≤ t < T.(4.1)
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Then we have the long time existence of solution of (1.3). However, at

the previous steps, the C(T ) as in (4.1) may blow up as t → ∞, but if the

background metric g0 is Einstein, then

∫
e5λ dµ0 ≤ C1.

It follows we have the uniformly bound on C(T ) and ‖λ‖Wk,2
.

In this section, we will show that there exists a subsequence of solutions

of (1.3) converges to a constant scalar curvature metric ([CW]).

Theorem 4.1. Under the flow (1.3), if the background metric g0 is

Einstein. Then there exists a subsequence {tj} such that

R → R∞

as tj → ∞ with

∆R∞ = 0

and

g(tj)
C∞

−→ g∞.

Proof. Since

−
d

dt

∫

M
R2 dµ = 12

∫

M
(∆R)2 dµ,

then ∫ ∞

0

∫

M
(∆R)2 dµ dt < ∞,

and then there exists a subsequence {tj} such that

∫

M
(∆R)2 dµ|tj → 0 as tj → ∞.

Now since ‖λ‖W k,2 ≤ C for all 0 ≤ tj ≤ ∞, we have

∫

M
(∆R)2 dµ0|tj → 0 as tj → ∞.

Then elliptic estimates, interpolation inequalities yield

R
C∞

−→ R∞
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as tj → ∞ such that

∆R∞ = 0

and

g(tj)
C∞

−→ g∞.

Then the second part of main Theorem follows easily.

Remark 4.1. From the uniqueness results of Einstein metrics in con-

formal class by M. Obata’s results ([O]), g∞ is isometric to g0.
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[Chru] P. T. Chruściel, Semi-global existence and convergence of solutions of the Robin-

son-Trautman (2-dimensional Calabi) equation, Commun. Math. Phys., 137

(1991), 289–313.

[CW] S.-C. Chang and J. T. Wu, On the existence of extremal metrics for L
2-norm of

scalar curvature on closed 3-manifolds, J. of Mathematics Kyoto University, 39-3

(1999), 435–454.

[Chav] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984.

[CY] S.-Y. A. Chang and P. Yang, Compactness of isospectral conformal metrics on

3-spheres, Comment. Math. Helvetici, 64 (1989), 363–374.

[O] M. Obata, The conjecture on conformal transformations of Riemannian mani-

folds, J. Diff. Geo., 6 (1971), 247–258.



214 S.-C. CHANG

[S] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar

curvature, J. Diff. Geom., 20 (1984), 479–495.

[W] L.-F. Wu, The Ricci flow on complete R
2, Communications in Analysis and Ge-

ometry, Vol 1, No. 3 (1993), 439–472.

Department of Mathematics

National Tsing Hua University

Hsinchu

Taiwan, 30043

R.O.C.

scchang@math.nthu.edu.tw


