CLASSIFICATION OF EXTREMAL ELLIPTIC K3 SURFACES AND FUNDAMENTAL GROUPS OF OPEN $K 3$ SURFACES

ICHIRO SHIMADA AND DE-QI ZHANG

Abstract

We present a complete list of extremal elliptic $K 3$ surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an $A D E$-configuration of smooth rational curves on a $K 3$ surface to be trivial (Proposition 4.1 and Theorem 4.3).

§1. Introduction

A complex elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ with a section O is said to be extremal if the Picard number $\rho(X)$ of X is 20 and the MordellWeil group $M W_{f}$ of f is finite. The purpose of this paper is to present the complete list of all extremal elliptic $K 3$ surfaces. As an application, we show that, if an $A D E$-configuration of smooth rational curves on a $K 3$ surface satisfies a certain condition, then the topological fundamental group of the complement is trivial. (See Theorem 4.3 for the precise statement.)

Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic $K 3$ surface with a section O. We denote by R_{f} the set of all points $v \in \mathbb{P}^{1}$ such that $f^{-1}(v)$ is reducible. For a point $v \in R_{f}$, let $f^{-1}(v)^{\#}$ be the union of irreducible components of $f^{-1}(v)$ that are disjoint from the zero section O. It is known that the cohomology classes of irreducible components of $f^{-1}(v)^{\#}$ form a negative definite root lattice $S_{f, v}$ of type A_{l}, D_{m} or E_{n} in $H^{2}(X ; \mathbb{Z})$. Let $\tau\left(S_{f, v}\right)$ be the type of this lattice. We define Σ_{f} to be the formal sum of these types;

$$
\Sigma_{f}:=\sum_{v \in R_{f}} \tau\left(S_{f, v}\right)
$$

The Néron-Severi lattice $N S_{X}$ of X is defined to be $H^{1,1}(X) \cap H^{2}(X ; \mathbb{Z})$, and the transcendental lattice T_{X} of X is defined to be the orthogonal

[^0]complement of $N S_{X}$ in $H^{2}(X ; \mathbb{Z})$. We call the triple $\left(\Sigma_{f}, M W_{f}, T_{X}\right)$ the data of the elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$. When $f: X \rightarrow \mathbb{P}^{1}$ is extremal, the transcendental lattice T_{X} is a positive definite even lattice of rank 2.

Theorem 1.1. There exists an extremal elliptic K3 surface $f: X \rightarrow$ \mathbb{P}^{1} with data $\left(\Sigma_{f}, M W_{f}, T_{X}\right)$ if and only if $\left(\Sigma_{f}, M W_{f}, T_{X}\right)$ appears in Table 2 given at the end of this paper.

In Table 2, the transcendental lattice T_{X} is expressed by the coefficients of its Gram matrix

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

See Subsection 2.1 on how to recover the $K 3$ surface X from T_{X}.
The classification of semi-stable extremal elliptic $K 3$ surfaces has been done by Miranda and Persson [7] and complemented by Artal-Bartolo, Tokunaga and Zhang [1]. We can check that the semi-stable part of our list (No. 1-112) coincides with theirs. Nishiyama [12] classified all elliptic fibrations (not necessarily extremal) on certain $K 3$ surfaces. On the other hand, Ye [19] has independently classified all extremal elliptic $K 3$ surfaces with no semi-stable singular fibers by different methods from ours.

Acknowledgements. The authors would like to thank Professors Shigeyuki Kondō, Ken-ichi Nishiyama and Keiji Oguiso for helpful discussions.

§2. Preliminaries

2.1. Transcendental lattice of singular $K 3$ surfaces

Let \mathcal{Q} be the set of symmetric matrices

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

of integer coefficients such that a and c are even and that the corresponding quadratic forms are positive definite. The group $G L_{2}(\mathbb{Z})$ acts on \mathcal{Q} from right by

$$
Q \longmapsto{ }^{t} g \cdot Q \cdot g
$$

where $g \in G L_{2}(\mathbb{Z})$. Let Q_{1} and Q_{2} be two matrices in \mathcal{Q}, and let L_{1} and L_{2} be the positive definite even lattices of rank 2 whose Gram matrices are
Q_{1} and Q_{2}, respectively. Then L_{1} and L_{2} are isomorphic as lattices if and only if Q_{1} and Q_{2} are in the same orbit under the action of $G L_{2}(\mathbb{Z})$. On the other hand, each orbit in \mathcal{Q} under the action of $S L_{2}(\mathbb{Z})$ contains a unique matrix with coefficients satisfying

$$
-a<2 b \leq a \leq c, \quad \text { with } b \geq 0 \text { if } a=c
$$

(See, for example, Conway and Sloane [3, p. 358].) Hence each orbit in \mathcal{Q} under the action of $G L_{2}(\mathbb{Z})$ contains a unique matrix with coefficients satisfying

$$
\begin{equation*}
0 \leq 2 b \leq a \leq c \tag{2.1}
\end{equation*}
$$

In Table 2, the transcendental lattice is represented by the Gram matrix satisfying the condition (2.1).

Let X be a $K 3$ surface with $\rho(X)=20$; that is, X is a singular $K 3$ surface in the terminology of Shioda and Inose [16]. The transcendental lattice T_{X} can be naturally oriented by means of a holomorphic two form on X (cf. [16, p. 128]). Let \mathcal{S} denote the set of isomorphism classes of singular $K 3$ surfaces. Using the natural orientation on the transcendental lattice, we can lift the map $\mathcal{S} \rightarrow \mathcal{Q} / G L_{2}(\mathbb{Z})$ given by $X \mapsto T_{X}$ to the map $\mathcal{S} \rightarrow \mathcal{Q} / S L_{2}(\mathbb{Z})$.

Proposition 2.1. (Shioda and Inose [16]) This map $\mathcal{S} \rightarrow \mathcal{Q} / S L_{2}(\mathbb{Z})$ is bijective.

Moreover, Shioda and Inose [16] gave us a method to construct explicitly the singular $K 3$ surface corresponding to a given element of $\mathcal{Q} / S L_{2}(\mathbb{Z})$ by means of Kummer surfaces. The injectivity of the map $\mathcal{S} \rightarrow \mathcal{Q} / S L_{2}(\mathbb{Z})$ had been proved by Piateskii-Shapiro and Shafarevich [14].

Suppose that an orbit $[Q] \in \mathcal{Q} / G L_{2}(\mathbb{Z})$ is represented by a matrix Q satisfying (2.1). Let $\rho: \mathcal{Q} / S L_{2}(\mathbb{Z}) \rightarrow \mathcal{Q} / G L_{2}(\mathbb{Z})$ be the natural projection. Then we have

$$
\left|\rho^{-1}([Q])\right|= \begin{cases}2, & \text { if } 0<2 b<a<c \\ 1, & \text { otherwise }\end{cases}
$$

Therefore, if a data in Table 2 satisfies $a=c$ or $b=0$ or $2 b=a$ (resp. $0<$ $2 b<a<c$), then the number of the isomorphism classes of $K 3$ surfaces that possess a structure of the extremal elliptic $K 3$ surfaces with the given data is one (resp. two).

2.2. Roots of a negative definite even lattice

Let M be a negative definite even lattice. A vector of M is said to be a root of M if its norm is -2 . We denote by $\operatorname{root}(M)$ the number of roots of M, and by $M_{\text {root }}$ the sublattice of M generated by the roots of M. Suppose that a Gram matrix $\left(a_{i j}\right)$ of M is given. Then $\operatorname{root}(M)$ can be calculated by the following method. Let

$$
g_{r}(x)=-\sum_{i, j=1}^{r} a_{i j} x_{i} x_{j}
$$

be the positive definite quadratic form associated with the opposite lattice M^{-}of M, where r is the rank of M. We consider the bounded closed subset

$$
E\left(g_{r}, 2\right):=\left\{x \in \mathbb{R}^{r} ; g_{r}(x) \leq 2\right\}
$$

of \mathbb{R}^{r}. Then we have

$$
\operatorname{root}(M)+1=\left|E\left(g_{r}, 2\right) \cap \mathbb{Z}^{r}\right|
$$

where +1 comes from the origin. For a positive integer k less than r, we write by $p_{k}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{k}$ the projection $\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right)$. Then there exists a positive definite quadratic form g_{k} of variables $\left(x_{1}, \ldots, x_{k}\right)$ and a positive real number σ_{k} such that

$$
p_{k}\left(E\left(g_{r}, 2\right)\right)=E\left(g_{k}, \sigma_{k}\right):=\left\{y \in \mathbb{R}^{k} ; g_{k}(y) \leq \sigma_{k}\right\} .
$$

The projection $\left(x_{1}, \ldots, x_{k+1}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right)$ maps $E\left(g_{k+1}, \sigma_{k+1}\right)$ to $E\left(g_{k}, \sigma_{k}\right)$. Hence, if we have the list of the points of $E\left(g_{k}, \sigma_{k}\right) \cap \mathbb{Z}^{k}$, then it is easy to make the list of the points of $E\left(g_{k+1}, \sigma_{k+1}\right) \cap \mathbb{Z}^{k+1}$. Thus, starting from $E\left(g_{1}, \sigma_{1}\right) \cap \mathbb{Z}$, we can make the list of the points of $E\left(g_{r}, 2\right) \cap \mathbb{Z}^{r}$ by induction on k.

2.3. Root lattices of type $A D E$

A root type is, by definition, a finite formal sum Σ of A_{l}, D_{m} and E_{n} with non-negative integer coefficients;

$$
\Sigma=\sum_{l \geq 1} a_{l} A_{l}+\sum_{m \geq 4} d_{m} D_{m}+\sum_{n=6}^{8} e_{n} E_{n}
$$

We denote by $L(\Sigma)$ the negative definite root lattice corresponding to Σ. The rank of $L(\Sigma)$ is given by

$$
\operatorname{rank}(L(\Sigma))=\sum_{l \geq 1} a_{l} l+\sum_{m \geq 4} d_{m} m+\sum_{n=6}^{8} e_{n} n
$$

and the number of roots of $L(\Sigma)$ is given by

$$
\begin{gather*}
\operatorname{root}(L(\Sigma))=\sum_{l \geq 1} a_{l}\left(l^{2}+l\right)+\sum_{m \geq 4} d_{m}\left(2 m^{2}-2 m\right) \tag{2.2}\\
+72 e_{6}+126 e_{7}+240 e_{8}
\end{gather*}
$$

(See, for example, Bourbaki [2].) Because of $L(\Sigma)_{\text {root }}=L(\Sigma)$, we have

$$
\begin{equation*}
L\left(\Sigma_{1}\right) \cong L\left(\Sigma_{2}\right) \Longleftrightarrow \Sigma_{1}=\Sigma_{2} \tag{2.3}
\end{equation*}
$$

We also define $e u(\Sigma)$ by

$$
e u(\Sigma):=\sum_{l \geq 1} a_{l}(l+1)+\sum_{m \geq 4} d_{m}(m+2)+\sum_{n=6}^{8} e_{n}(n+2)
$$

Lemma 2.2. Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic $K 3$ surface. Then $e u\left(\Sigma_{f}\right)$ is at most 24. Moreover, if eu $\left(\Sigma_{f}\right)<24$, then there exists at least one singular fiber of type I_{1}, II, III or IV.

Proof. Let $e(Y)$ denote the topological Euler number of a $C W$-complex Y. Then $e(X)=24$ is equal to the sum of topological Euler numbers of singular fibers of f. Every singular fiber has a positive topological Euler number. We have defined $e u(\Sigma)$ in such a way that, if $v \in R_{f}$, then $e u\left(\tau\left(S_{f, v}\right)\right) \leq e\left(f^{-1}(v)\right)$ holds, and if $e u\left(\tau\left(S_{f, v}\right)\right)<e\left(f^{-1}(v)\right)$, then the type of the fiber $f^{-1}(v)$ is either III or IV. Hence $e u\left(\Sigma_{f}\right)$ does not exceed the sum of the topological Euler numbers of reducible singular fibers, and if $e u\left(\Sigma_{f}\right)<24$, then there is an irreducible singular fiber or a singular fiber of type III or IV.

2.4. Discriminant form and overlattices

Let L be an even lattice, L^{\vee} the dual of L, D_{L} the discriminant group L^{\vee} / L of L, and q_{L} the discriminant form on D_{L}. (See Nikulin [11, n. 4] for the definitions.) An overlattice of L is, by definition, an integral sublattice of the \mathbb{Q}-lattice L^{\vee} containing L.

Lemma 2.3. (Nikulin [11, Proposition 1.4.2]) (1) Let A be an isotropic subgroup of $\left(D_{L}, q_{L}\right)$. Then the pre-image $M:=\phi_{L}^{-1}(A)$ of A by the natural projection $\phi_{L}: L^{\vee} \rightarrow D_{L}$ is an even overlattice of L, and the discriminant form $\left(D_{M}, q_{M}\right)$ of M is isomorphic to $\left(A^{\perp} / A,\left.q_{L}\right|_{A^{\perp} / A}\right)$, where A^{\perp} is the orthogonal complement of A in D_{L}, and $\left.q_{L}\right|_{A^{\perp} / A}$ is the restriction of q_{L} to A^{\perp} / A. (2) The correspondence $A \mapsto M$ gives a bijection from the set of isotropic subgroups of $\left(D_{L}, q_{L}\right)$ to the set of even overlattices of L.

Lemma 2.4. (Nikulin [11, Corollary 1.6.2]) Let S and K be two even lattices. Then the following two conditions are equivalent. (i) There is an isomorphism $\gamma: D_{S} \xrightarrow{\sim} D_{K}$ of abelian groups such that $\gamma^{*} q_{K}=-q_{S}$. (ii) There is an even unimodular overlattice of $S \oplus K$ into which S and K are primitively embedded.

2.5. Néron-Severi groups of elliptic $K 3$ surfaces

Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic $K 3$ surface with the zero section O. In the Néron-Severi lattice $N S_{X}$ of X, the cohomology classes of the zero section O and a general fiber of f generate a sublattice U_{f} of rank 2, which is isomorphic to the hyperbolic lattice

$$
H:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Let W_{f} be the orthogonal complement of U_{f} in $N S_{X}$. Because U_{f} is unimodular, we have $N S_{X}=U_{f} \oplus W_{f}$. Because U_{f} is of signature $(1,1)$ and $N S_{X}$ is of signature $(1, \rho(X)-1), W_{f}$ is negative definite of $\operatorname{rank} \rho(X)-2$. Note that W_{f} contains the sublattice

$$
S_{f}:=\bigoplus_{v \in R_{f}} S_{f, v}
$$

generated by the cohomology classes of irreducible components of reducible fibers of f that are disjoint from the zero section. By definition, S_{f} is isomorphic to $L\left(\Sigma_{f}\right)$.

Lemma 2.5. (Nishiyama [12, Lemma 6.1]) The sublattice S_{f} of W_{f} coincides with $\left(W_{f}\right)_{\text {root }}$, and the Mordell-Weil group $M W_{f}$ of f is isomorphic to W_{f} / S_{f}. In particular, $\operatorname{root}\left(L\left(\Sigma_{f}\right)\right)$ is equal to $\operatorname{root}\left(W_{f}\right)$.

Because $W_{f} \oplus U_{f} \oplus T_{X}$ has an even unimodular overlattice $H^{2}(X ; \mathbb{Z})$ into which $N S_{X}=W_{f} \oplus U_{f}$ and T_{X} are primitively embedded, and because the discriminant form of $N S_{X}$ is equal to the discriminant form of W_{f} by $D_{U_{f}}=(0)$, Lemma 2.4 implies the following:

COROLLARY 2.6. There is an isomorphism $\gamma: D_{W_{f}} \xrightarrow{\sim} D_{T_{X}}$ of abelian groups such that $\gamma^{*} q_{T_{X}}$ coincides with $-q_{W_{f}}$.

2.6. Existence of elliptic $K 3$ surfaces

Let Λ be the $K 3$ lattice $L\left(2 E_{8}\right) \oplus H^{\oplus 3}$.
Lemma 2.7. (Kondō [5, Lemma 2.1]) Let T be a positive definite primitive sublattice of Λ with $\operatorname{rank}(T)=2$, and T^{\perp} the orthogonal complement of T in Λ. Suppose that T^{\perp} contains a sublattice H_{T} isomorphic to the hyperbolic lattice. Let M_{T} be the orthogonal complement of H_{T} in T^{\perp}. Then there exists an elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ such that $T_{X} \cong T$ and $W_{f} \cong M_{T}$.

Proof. By the surjectivity of the period map of the moduli of $K 3$ surfaces (cf. Todorov [17]), there exist a $K 3$ surface X and an isomorphism $\alpha: H^{2}(X ; \mathbb{Z}) \cong \Lambda$ of lattices such that $\alpha^{-1}(T)=T_{X}$. By Kondō [5, Lemma 2.1], the $K 3$ surface X has an elliptic fibration $f: X \rightarrow \mathbb{P}^{1}$ with a section such that $\mathbb{Z}[F]^{\perp} / \mathbb{Z}[F] \cong M_{T}$, where $[F] \in U_{f}$ is the cohomology class of a fiber of f, and $\mathbb{Z}[F]^{\perp}$ is the orthogonal complement of $[F]$ in the Néron-Severi lattice $N S_{X}$. Because $N S_{X}$ coincides with $U_{f} \oplus W_{f}$, and because $\mathbb{Z}[F]^{\perp} \cap U_{f}$ coincides with $\mathbb{Z}[F]$, we see that $\mathbb{Z}[F]^{\perp} / \mathbb{Z}[F]$ is isomorphic to W_{f}.

2.7. Datum of extremal elliptic $K 3$ surfaces

Proposition 2.8. A triple $(\Sigma, M W, T)$ consisting of a root type Σ, a finite abelian group $M W$ and a positive definite even lattice T of rank 2 is a data of an extremal elliptic K3 surface if and only if the following hold:
$(D 1)$ length $(M W) \leq 2, \operatorname{rank}(L(\Sigma))=18$ and $e u(\Sigma) \leq 24$.
(D2) There exists an overlattice M of $L(\Sigma)$ satisfying the following: $(D 2-a) M / L(\Sigma) \cong M W$,
(D2-b) there exists an isomorphism $\gamma: D_{M} \xrightarrow{\sim} D_{T}$ of abelian groups such that $\gamma^{*} q_{T}=-q_{M}$, and
$(D 2-c) \operatorname{root}(L(\Sigma))=\operatorname{root}(M)$.
Proof. Suppose that there exists an extremal elliptic $K 3$ surface f : $X \rightarrow \mathbb{P}^{1}$ with data equal to $(\Sigma, M W, T)$. It is obvious that Σ and $M W$ satisfies the condition $(D 1)$. Via the isomorphism $S_{f} \cong L(\Sigma)$, the overlattice W_{f} of S_{f} corresponds to an overlattice M of $L(\Sigma)$, which satisfies the conditions $(D 2-a)-(D 2-c)$ by Lemma 2.5 and Corollary 2.6. Conversely, suppose that $(\Sigma, M W, T)$ satisfies the conditions $(D 1)$ and ($D 2$). By Lemma 2.4, the condition $(D 2-b)$ and $D_{H}=0$ imply that there exists an even unimodular overlattice of $M \oplus H \oplus T$ into which $M \oplus H$ and T are primitively embedded. By the theorem of Milnor (see, for example, Serre [15]) on the classification of even unimodular lattices, any even unimodular lattice of signature $(3,19)$ is isomorphic to the $K 3$ lattice Λ. Then Lemma 2.7 implies that there exists an elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ satisfying $W_{f} \cong M$ and $T_{X} \cong T$. The condition $(D 2-c)$ implies $M_{\text {root }}=L(\Sigma)$. Combining this with Lemma 2.5, we see that $S_{f} \cong L(\Sigma)$. Then (2.2) implies that $\Sigma_{f}=\Sigma$. Using Lemma 2.5 and the condition $(D 2-a)$, we see that $M W_{f} \cong M W$. Thus the data of $f: X \rightarrow \mathbb{P}^{1}$ coincides with $(\Sigma, M W, T)$.

Remark 2.9. In the light of Lemma 2.3, the condition $(D 2)$ is equivalent to the following:
$(D 3)$ There exists an isotropic subgroup A of $\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)$ satisfying the following:
$(D 3-a) A$ is isomorphic to $M W$,
$(D 3-b)$ there exists an isomorphism $\gamma: A^{\perp} / A \xrightarrow{\sim} D_{T}$ of abelian groups such that $\gamma^{*} q_{T}=-\left.q_{L(\Sigma)}\right|_{A^{\perp} / A}$, and
$(D 3-c) \operatorname{root}\left(\phi_{L(\Sigma)}^{-1}(A)\right)$ is equal to $\operatorname{root}(L(\Sigma))$, where $\phi_{L(\Sigma)}: L(\Sigma)^{\vee} \rightarrow$ $D_{L(\Sigma)}$ is the natural projection.

Remark 2.10. We did not use the conditions length $(M W) \leq 2$ and $e u(\Sigma) \leq 24$ in the proof of the "if" part of Proposition 2.8. It follows that, if $(\Sigma, M W, T)$ satisfies $\operatorname{rank}(L(\Sigma))=18$ and the condition $(D 2)$, then length $(M W) \leq 2$ and $e u(\Sigma) \leq 24$ follow automatically. This fact can be used when we check the computer program described in the next section.

§3. Making the list

First we list up all root types Σ satisfying $\operatorname{rank}(L(\Sigma))=18$ and $e u(\Sigma) \leq$ 24. This list \mathcal{L} consists of 712 elements.

Next we run a program that takes an element Σ of the list \mathcal{L} as an input and proceeds as follows.

Step 1. The program calculates the intersection matrix of $L(\Sigma)^{\vee}$. Using this matrix, it calculates the discriminant form of $L(\Sigma)$, and decomposes it into p-parts;

$$
\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)=\bigoplus_{p}\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)_{p}
$$

where p runs through the set $\left\{p_{1}, \ldots, p_{k}\right\}$ of prime divisors of the discriminant $\left|D_{L(\Sigma)}\right|$ of $L(\Sigma)$. We write the p_{i}-part of $\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)$ by $\left(D_{L(\Sigma), i}, q_{L(\Sigma), i}\right)$.

Step 2. For each p_{i}, it calculates the set $I\left(p_{i}\right)$ of all pairs $\left(A, A^{\perp}\right)$ of an isotropic subgroup A of $\left(D_{L(\Sigma), i}, q_{L(\Sigma), i}\right)$ and its orthogonal complement A^{\perp} such that length $(A) \leq 2$.

Step 3. For each element

$$
\mathcal{A}:=\left(\left(A_{1}, A_{1}^{\perp}\right), \ldots,\left(A_{k}, A_{k}^{\perp}\right)\right) \in I\left(p_{1}\right) \times \cdots \times I\left(p_{k}\right),
$$

it calculates the $\mathbb{Q} / 2 \mathbb{Z}$-valued quadratic form

$$
q_{\mathcal{A}}:=\left.q_{L(\Sigma), 1}\right|_{A_{1}^{\perp} / A_{1}} \times \cdots \times\left. q_{L(\Sigma), k}\right|_{A_{k}^{\perp} / A_{k}}
$$

on the finite abelian group

$$
D_{\mathcal{A}}:=A_{1}^{\perp} / A_{1} \times \cdots \times A_{k}^{\perp} / A_{k}
$$

Let $d(\mathcal{A})$ be the order of $D_{\mathcal{A}}$.
Step 4. It generates the list $\mathcal{T}(d(\mathcal{A}))$ of positive definite even lattices of rank 2 with discriminant equal to $d(\mathcal{A})$. For each $T \in \mathcal{T}(d(\mathcal{A}))$, it calculates the discriminant form of T and decomposes it into p-parts. If D_{T} is isomorphic to $D_{\mathcal{A}}$ and q_{T} is isomorphic to $-q_{\mathcal{A}}$, then it proceeds to the next step. Note that the automorphism group of a finite abelian p-group of length ≤ 2 is easily calculated, and hence it is an easy task to check whether two given quadratic forms on the finite abelian p-group of length ≤ 2 are isomorphic or not.

Step 5. It calculates the Gram matrix of the sublattice $\widetilde{L}(\mathcal{A})$ of $L(\Sigma)^{\vee}$ generated by $L(\Sigma) \subset L(\Sigma)^{\vee}$ and the pull-backs of generators of the subgroups $A_{i} \subset D_{L(\Sigma), i}$ by the projection $L(\Sigma)^{\vee} \rightarrow D_{L(\Sigma)} \rightarrow D_{L(\Sigma), i}$. Then it calculates $\operatorname{root}(\widetilde{L}(\mathcal{A}))$ by the method described in Subsection 2.2. If $\operatorname{root}(\widetilde{L}(\mathcal{A}))$ is equal to $\operatorname{root}(L(\Sigma))$ calculated by (2.2), then it puts out the pair of the finite abelian group

$$
M W:=A_{1} \times \cdots \times A_{k}
$$

and the lattice T.
Then $(\Sigma, M W, T)$ satisfies the conditions ($D 1$) and ($D 3$), and all triples ($\Sigma, M W, T)$ satisfying ($D 1$) and ($D 3$) are obtained by this program.

§4. Fundamental groups of open $K 3$ surfaces

A simple normal crossing divisor Δ on a $K 3$ surface X is said to be an ADE-configuration of smooth rational curves if each irreducible component of Δ is a smooth rational curve and the intersection matrix of the irreducible components of Δ is a direct sum of the Cartan matrices of type A_{l}, D_{m} or E_{n} multiplied by -1 . It is known that Δ is an $A D E$-configuration of smooth rational curves if and only if each connected component of Δ can be contracted to a rational double point. We consider the following quite plausible hypothesis. Let Δ be an $A D E$-configuration of smooth rational curves on a $K 3$ surface X.

Hypothesis. If $\pi_{1}^{\text {alg }}(X \backslash \Delta)$ is trivial, then so is $\pi_{1}(X \backslash \Delta)$.
Here $\pi_{1}^{a l g}(X \backslash \Delta)$ is the algebraic fundamental group of $X \backslash \Delta$, which is the pro-finite completion of the topological fundamental group $\pi_{1}(X \backslash \Delta)$.

Proposition 4.1. Suppose that Hypothesis is true for any ADEconfiguration of smooth rational curves on an arbitrary K3 surface. Let Δ be an ADE-configuration of smooth rational curves on a K3 surface X. Then $\pi_{1}(X \backslash \Delta)$ satisfies one of the following:
(i) $\pi_{1}(X \backslash \Delta)$ is trivial.
(ii) There exist a complex torus T of dimension 2 and a finite automorphism group G of T such that T / G is birational to X and that $\pi_{1}(X \backslash$ $\Delta)$ fits in the exact sequence

$$
1 \longrightarrow \pi_{1}(T) \longrightarrow \pi_{1}(X \backslash \Delta) \longrightarrow G \longrightarrow 1
$$

(iii) $\pi_{1}(X \backslash \Delta)$ is isomorphic to a symplectic automorphism group of a K3 surface.

Remark 4.2. Fujiki [4] classified the automorphism groups of complex tori of dimension 2. In particular, the G in (ii) is either one of $\mathbb{Z} /(n)$ $(n=2,3,4,6), Q_{8}$ (Quaternion of order 8), D_{12} (Dihedral of order 12) and T_{24} (Tetrahedral of order 24), whence the $\pi_{1}(X \backslash \Delta)$ in (ii) is a soluble group. Mukai [9] presented the complete list of symplectic automorphism groups of $K 3$ surfaces. (See also Kondō [6] and Xiao [18].) Under Hypothesis, therefore, we know what groups can appear as $\pi_{1}(X \backslash \Delta)$.

Proof of Proposition 4.1. Suppose that $\pi_{1}(X \backslash \Delta)$ is non-trivial. By Hypothesis, $\pi_{1}^{a l g}(X \backslash \Delta)$ is also non-trivial. For a surjective homomorphism $\phi: \pi_{1}(X \backslash \Delta) \rightarrow G$ from $\pi_{1}(X \backslash \Delta)$ to a finite group G, we denote by

$$
\psi_{\phi}: \widetilde{Y}_{\phi} \longrightarrow X
$$

the finite Galois cover of X corresponding to ϕ, which is étale over $X \backslash \Delta$ and whose Galois group is canonically isomorphic to G. Let $\rho: \widetilde{Y}_{\phi}^{\prime} \rightarrow \widetilde{Y}_{\phi}$ be the resolution of singularities, and $\gamma: \widetilde{Y}_{\phi}^{\prime} \rightarrow Y_{\phi}$ the contraction of (-1)-curves. We denote by Δ_{ϕ} the union of one-dimensional irreducible components of $\gamma\left(\rho^{-1}\left(\psi_{\phi}^{-1}(\Delta)\right)\right)$. Then it is easy to see that Y_{ϕ} is either a $K 3$ surface or a complex torus of dimension 2 , and that the Galois group G of ψ_{ϕ} acts on Y_{ϕ} symplectically. Moreover, Δ_{ϕ} is an empty set or an $A D E$-configuration of smooth rational curves. We have an exact sequence

$$
1 \longrightarrow \pi_{1}\left(Y_{\phi} \backslash \Delta_{\phi}\right) \longrightarrow \pi_{1}(X \backslash \Delta) \longrightarrow G \longrightarrow 1
$$

because $\pi_{1}\left(\widetilde{Y}_{\phi} \backslash \psi_{\phi}^{-1}(\Delta)\right)$ is isomorphic to $\pi_{1}\left(Y_{\phi} \backslash \Delta_{\phi}\right)$. Suppose that there exists a homomorphism $\phi: \pi_{1}(X \backslash \Delta) \rightarrow G$ such that Y_{ϕ} is a complex torus of dimension 2. Then Δ_{ϕ} is empty, and hence (ii) occurs. Suppose that no complex tori of dimension 2 appear as a finite Galois cover of X branched in Δ. Then any finite quotient group of $\pi_{1}(X \backslash \Delta)$ must appear in Mukai's list of symplectic automorphism groups of $K 3$ surfaces. Because this list consists of finite number of isomorphism classes of finite groups, there exists a maximal finite quotient $\phi_{\max }: \pi_{1}(X \backslash \Delta) \rightarrow G_{\max }$ of $\pi_{1}(X \backslash \Delta)$. Then $\pi_{1}\left(Y_{\phi \max } \backslash \Delta_{\phi \max }\right)$ has no non-trivial finite quotient group, and hence it is trivial by Hypothesis. Thus (iii) occurs.

For an $A D E$-configuration Δ of smooth rational curves on a $K 3$ surface X, we denote by $\mathbb{Z}[\Delta]$ the sublattice of $H^{2}(X ; \mathbb{Z})$ generated by the cohomology classes of the irreducible components of Δ, which is isomorphic to a negative definite root lattice of type $A D E$. We denote by Σ_{Δ} the root type such that $\mathbb{Z}[\Delta]$ is isomorphic to $L\left(\Sigma_{\Delta}\right)$. Using the list of extremal elliptic $K 3$ surfaces, we prove the following theorem. We consider the following conditions on a root type Σ.
$(N 1) \operatorname{rank}(L(\Sigma)) \leq 18$, and
(N2) length $\left(D_{L(\Sigma)}\right) \leq \min \{\operatorname{rank}(L(\Sigma)), 20-\operatorname{rank}(L(\Sigma))\}$.
Theorem 4.3. Suppose that a root type Σ_{Δ} satisfies the conditions (N1) and (N2). If $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$, then $\pi_{1}(X \backslash \Delta)$ is trivial.

By virtue of Lemma 4.6 below, we can easily derive the following:
Corollary 4.4. Suppose that Σ satisfies the conditions (N1) and (N2). Then Hypothesis is true for any (X, Δ) with $\Sigma_{\Delta}=\Sigma$.

Remark 4.5. The conditions (N1) and (N2) come from Nikulin [11, Theorem 1.14.1] (see also Morrison [8, Theorem 2.8]), which gives a sufficient condition for the uniqueness of the primitive embedding of $L(\Sigma)$ into the $K 3$ lattice Λ.

First we prepare some lemmas. Let $\overline{\mathbb{Z}[\Delta]}$ be the primitive closure of $\mathbb{Z}[\Delta]$ in $H^{2}(X ; \mathbb{Z})$.

Lemma 4.6. (Xiao [18, Lemma 2]) The dual of the abelianisation of $\pi_{1}(X \backslash \Delta)$ is canonically isomorphic to $\overline{\mathbb{Z}[\Delta]} / \mathbb{Z}[\Delta]$. In particular, if $\pi_{1}^{\text {alg }}(X \backslash$ $\Delta)$ is trivial, then $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$.

Let Γ_{1} and Γ_{2} be graphs with the set of vertices denoted by $\operatorname{Vert}\left(\Gamma_{1}\right)$ and $\operatorname{Vert}\left(\Gamma_{2}\right)$, respectively. An embedding of Γ_{1} into Γ_{2} is, by definition, an injection $f: \operatorname{Vert}\left(\Gamma_{1}\right) \rightarrow \operatorname{Vert}\left(\Gamma_{2}\right)$ such that, for any $u, v \in \operatorname{Vert}\left(\Gamma_{1}\right), f(u)$ and $f(v)$ are connected by an edge of Γ_{2} if and only if u and v are connected by an edge of Γ_{1}.

Let $\Gamma(\Sigma)$ denote the Dynkin graph of Σ.
Lemma 4.7. Suppose that Σ satisfies the conditions (N1) and (N2). Then there exists Σ^{\prime} satisfying $\operatorname{rank}\left(L\left(\Sigma^{\prime}\right)\right)=18$ and the condition $(N 2)$ such that $\Gamma(\Sigma)$ can be embedded in $\Gamma\left(\Sigma^{\prime}\right)$.

Proof. This is checked by listing up all Σ satisfying the conditions ($N 1$) and (N2) using computer.

Lemma 4.8. Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic surface with the zero section O. Suppose that a fiber $f^{-1}(v)$ over $v \in \mathbb{P}^{1}$ is a singular fiber of type III or IV. Let Ξ be a union of some irreducible components of $f^{-1}(v)$ that does not coincide with the whole fiber $f^{-1}(v)$. If U is a small open disk on \mathbb{P}^{1} with the center v, then $f^{-1}(U) \backslash\left(\Xi \cup\left(f^{-1}(U) \cap O\right)\right)$ has an abelian fundamental group.

Proof. This can be proved easily by the van-Kampen theorem.
Lemma 4.9. Let Σ be satisfying the conditions (N1) and (N2). Suppose that (X, Δ) and $\left(X^{\prime}, \Delta^{\prime}\right)$ satisfy the following:
(a) $\Sigma_{\Delta}=\Sigma_{\Delta^{\prime}}=\Sigma$,
(b) $\overline{\mathbb{Z}[\Delta]}=\mathbb{Z}[\Delta]$ and $\overline{\mathbb{Z}\left[\Delta^{\prime}\right]}=\mathbb{Z}\left[\Delta^{\prime}\right]$.

Then there exists a connected continuous family $\left(X_{t}, \Delta_{t}\right)$ parameterized by $t \in[0,1]$ such that $\left(X_{0}, \Delta_{0}\right)=(X, \Delta),\left(X_{1}, \Delta_{1}\right)=\left(X^{\prime}, \Delta^{\prime}\right)$ and that $\left(X_{t}, \Delta_{t}\right)$ are diffeomorphic to one another. In particular, $\pi_{1}(X \backslash \Delta)$ is isomorphic to $\pi_{1}\left(X^{\prime} \backslash \Delta^{\prime}\right)$.

Proof. By Nikulin [11, Theorem 1.14.1], the primitive embedding of $L(\Sigma)$ into the $K 3$ lattice Λ is unique up to $\operatorname{Aut}(\Lambda)$. Hence the assertion follows from Nikulin's connectedness theorem [10, Theorem 2.10].

Proof of Theorem 4.3. Let us consider the following:
Claim 1. Suppose that Σ satisfies $\operatorname{rank}(L(\Sigma))=18$ and the condition (N2). Then there exists an ADE-configuration of smooth rational curves Δ_{Σ} on a K3 surface X_{Σ} such that $\Sigma_{\Delta_{\Sigma}}=\Sigma$ and $\pi_{1}\left(X_{\Sigma} \backslash \Delta_{\Sigma}\right)=\{1\}$.

We deduce Theorem 4.3 from Claim 1. Suppose that Δ is an $A D E-$ configuration of smooth rational curves on a $K 3$ surface X such that Σ_{Δ} satisfies the conditions (N1) and (N2), and that $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$. By Lemma 4.7, there exists Σ_{1} satisfying $\operatorname{rank}\left(L\left(\Sigma_{1}\right)\right)=18$ and the condition (N2) such that $\Gamma\left(\Sigma_{\Delta}\right)$ is embedded into $\Gamma\left(\Sigma_{1}\right)$. By Claim 1, we have $\left(X_{1}, \Delta_{1}\right)$ such that $\Sigma_{\Delta_{1}}=\Sigma_{1}$ and $\pi_{1}\left(X_{1} \backslash \Delta_{1}\right)=\{1\}$. Let $\Delta^{\prime} \subset \Delta_{1}$ be the sub-configuration of smooth rational curves on X_{1} which corresponds
to the subgraph $\Gamma\left(\Sigma_{\Delta}\right) \hookrightarrow \Gamma\left(\Sigma_{1}\right)=\Gamma\left(\Sigma_{\Delta_{1}}\right)$. There is a surjection from $\pi_{1}\left(X_{1} \backslash \Delta_{1}\right)$ to $\pi_{1}\left(X_{1} \backslash \Delta^{\prime}\right)$, and hence $\pi_{1}\left(X_{1} \backslash \Delta^{\prime}\right)$ is trivial. In particular, $\mathbb{Z}\left[\Delta^{\prime}\right]$ is primitive in $H^{2}\left(X_{1} ; \mathbb{Z}\right)$. Since $\Sigma_{\Delta^{\prime}}=\Sigma_{\Delta}$, Lemma 4.9 implies that $\pi_{1}(X \backslash \Delta)$ is isomorphic to $\pi_{1}\left(X_{1} \backslash \Delta^{\prime}\right)$. Thus $\pi_{1}(X \backslash \Delta)$ is trivial.

Let $f: X \rightarrow \mathbb{P}^{1}$ be an extremal elliptic $K 3$ surface. For a point $v \in R_{f}$, we denote the total fiber of f over v by

$$
\sum_{i=1}^{r_{v}} m_{v, i} C_{v, i}
$$

where $m_{v, i}$ is the multiplicity of the irreducible component $C_{v, i}$ of $f^{-1}(v)$. We denote by Γ_{f} the union of the zero section and all irreducible components of $f^{-1}(v)\left(v \in R_{f}\right)$.

Claim 2. Suppose that $M W_{f}=(0)$. Suppose that a sub-configuration Δ of Γ_{f} satisfies the following two conditions.
(Z1) The number of $v \in R_{f}$ such that $C_{v, i} \subset \Delta$ holds for any $C_{v, i}$ with $m_{v, i}=1$ is at most one.
(Z2) Either one of the following holds:
(Z2-a) The configuration Δ does not contain the zero section,
$(Z 2-b)$ there is a point $v_{1} \in R_{f}$ such that the type $\tau\left(S_{f, v_{1}}\right)$ is A_{1} and that $F_{1}:=f^{-1}\left(v_{1}\right)$ and Δ have no common irreducible components, or $(Z 2-c) e u\left(\Sigma_{f}\right) \leq 23$.

Then $\pi_{1}(X \backslash \Delta)$ is trivial.
Proof of Claim 2. By Lemma 2.5, the assumption $M W_{f}=(0)$ implies that the cohomology classes $[O]$ and $\left[C_{v, i}\right]\left(v \in R_{f}, i=1, \ldots, r_{v}\right)$ of the irreducible components of Γ_{f} span $N S_{X}$. The relations among these generators are generated by

$$
\sum_{i=1}^{r_{v}} m_{v, i} C_{v, i}=\sum_{i=1}^{r_{v^{\prime}}} m_{v^{\prime}, i} C_{v^{\prime}, i} \quad\left(v, v^{\prime} \in R_{f}\right)
$$

Therefore the condition ($Z 1$) implies that the cohomology classes of the irreducible components of Δ constitute a subset of a \mathbb{Z}-basis of $N S_{X}$. Hence $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$. In particular, $\pi_{1}(X \backslash \Delta)$ is a perfect group
by Lemma 4.6. On the other hand, the condition $(Z 1)$ implies that there exists a point $v_{0} \in \mathbb{P}^{1}$ such that every fiber of the restriction

$$
\left.f\right|_{X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right)}: X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right) \longrightarrow \mathbb{P}^{1} \backslash\left\{v_{0}\right\}
$$

of f has a reduced irreducible component. Then, by Nori's lemma [13, Lemma $1.5(\mathrm{C})$], if U is a non-empty connected classically open subset of $\mathbb{P}^{1} \backslash\left\{v_{0}\right\}$, then the inclusion of $f^{-1}(U) \backslash\left(f^{-1}(U) \cap \Delta\right)$ into $X \backslash(\Delta \cup$ $\left.f^{-1}\left(v_{0}\right)\right)$ induces a surjection on the fundamental groups. The inclusion of $X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right)$ into $X \backslash \Delta$ also induces a surjection on the fundamental groups. We shall show that there exists a small open disk U on $\mathbb{P}^{1} \backslash\left\{v_{0}\right\}$ such that

$$
G_{U}:=\pi_{1}\left(f^{-1}(U) \backslash\left(f^{-1}(U) \cap \Delta\right)\right)
$$

is abelian. When $(Z 2-a)$ occurs, we take a small open disk disjoint from R_{f} as U. Then G_{U} is abelian, because of $f^{-1}(U) \cap \Delta=\emptyset$. Suppose that ($Z 2-b$) occurs. We can take v_{0} from $\mathbb{P}^{1} \backslash\left\{v_{1}\right\}$, because F_{1} has no irreducible components of multiplicity ≥ 2. We choose a small open disk U with the center v_{1}. There is a contraction from $f^{-1}(U) \backslash\left(f^{-1}(U) \cap \Delta\right)$ to $F_{1} \backslash\left(F_{1} \cap \Delta\right)$. Because $\pi_{1}\left(F_{1} \backslash\left(F_{1} \cap \Delta\right)\right)$ is abelian, so is G_{U}. Suppose that ($Z 2-c$) occurs. By Lemma 2.2, there exists a singular fiber $F_{2}:=f^{-1}\left(v_{2}\right)$ of type I 1 , II, III or IV. Because F_{2} has no irreducible components of multiplicity ≥ 2, we can choose v_{0} from $\mathbb{P}^{1} \backslash\left\{v_{2}\right\}$. If F_{2} is of type I_{1} or II, then $F_{2} \cap \Delta$ consists of a nonsingular point of F_{2}, and $\pi_{1}\left(F_{2} \backslash\left(F_{2} \cap \Delta\right)\right)$ is abelian. Hence G_{U} is also abelian. If F_{2} is of type III or IV, then $F_{2} \cap \Delta$ cannot coincide with the whole fiber F_{2}. Hence Lemma 4.8 implies that G_{U} is abelian. Therefore we see that $\pi_{1}(X \backslash \Delta)$ is abelian. Being both perfect and abelian, $\pi_{1}(X \backslash \Delta)$ is trivial.

Now we proceed to the proof of Claim 1. We list up all Σ satisfying the condition $(N 2)$ and $\operatorname{rank}(L(\Sigma))=18$. It consists of 297 elements. Among them, 199 elements can be the type Σ_{f} of singular fibers of some extremal elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ with $M W_{f}=0$. For these configurations, $\pi_{1}(X \backslash \Delta)$ is trivial by Claim 2. The remaining 98 configurations are listed in the second column of Table 1 below. Each of them is a sub-configuration of Γ_{f} satisfying the conditions $(Z 1)$ and $(Z 2)$, where $f: X \rightarrow \mathbb{P}^{1}$ is the extremal elliptic $K 3$ surface with $M W_{f}=0$ whose number in Table 2 is given in the third column of Table 1. The fourth and fifth columns of Table 1 indicate Σ_{f} and $e u\left(\Sigma_{f}\right)$, respectively. In the case nos. $20,28,39,41$ and 85
in Table 1, we can choose the embedding of Δ into Γ_{f} in such a way that $(Z 2-b)$ holds. In the case nos. 30, 37, 57 and 63 in Table 1, we can choose the embedding of Δ into Γ_{f} in such a way that $(Z 2-a)$ holds. By Claim 2 again, $\pi_{1}(X \backslash \Delta)$ is trivial for these 98 configurations Δ.

Remark 4.10. The graph $\Gamma\left(A_{19}\right)$ (resp. $\left.\Gamma\left(D_{19}\right)\right)$ can be embedded into Γ_{f} in such a way that $(Z 1)$ and $(Z 2)$ are satisfied, where $f: X \rightarrow \mathbb{P}^{1}$ is the extremal elliptic $K 3$ surfaces whose number in Table 2 is 312 (resp. 320). Therefore, if $\Gamma(\Delta)$ is embedded in $\Gamma\left(A_{19}\right)$ or $\Gamma\left(D_{19}\right)$, then $\Gamma(\Delta)$ can be embedded in Γ_{f} in such a way that $(Z 1)$ and $(Z 2)$ are satisfied.

Table 1. List of embedding of Δ in Γ_{f}.

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
1	$A_{2}+A_{3}+2 A_{4}+A_{5}$	19	$A_{2}+2 A_{3}+A_{4}+A_{6}$	23
2	$A_{1}+A_{2}+A_{3}+2 A_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
3	$2 A_{1}+A_{4}+2 A_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
4	$2 A_{2}+2 A_{4}+A_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
5	$A_{1}+A_{5}+2 A_{6}$	40	$A_{1}+A_{4}+A_{6}+A_{7}$	22
6	$A_{4}+2 A_{7}$	52	$A_{4}+A_{6}+A_{8}$	21
7	$A_{1}+A_{2}+2 A_{4}+A_{7}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
8	$A_{3}+2 A_{4}+A_{7}$	24	$A_{3}+A_{4}+A_{5}+A_{6}$	22
9	$A_{2}+2 A_{4}+A_{8}$	36	$A_{2}+A_{4}+A_{5}+A_{7}$	22
10	$2 A_{3}+A_{4}+A_{8}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
11	$A_{3}+A_{7}+A_{8}$	53	$A_{1}+A_{2}+A_{7}+A_{8}$	22
12	$A_{1}+2 A_{2}+A_{4}+A_{9}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
13	$A_{2}+A_{3}+A_{4}+A_{9}$	71	$2 A_{2}+A_{4}+A_{10}$	22
14	$A_{3}+A_{4}+A_{11}$	93	$A_{2}+A_{4}+A_{12}$	21
15	$A_{7}+A_{11}$	312	$A_{10}+E_{8}$	21
16	$2 A_{3}+A_{12}$	93	$A_{2}+A_{4}+A_{12}$	21
17	$A_{3}+A_{15}$	312	$A_{10}+E_{8}$	21
18	$A_{2}+2 A_{6}+D_{4}$	99	$A_{2}+A_{3}+A_{13}$	21
19	$2 A_{4}+A_{6}+D_{4}$	18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	23
20	$2 A_{2}+A_{4}+A_{6}+D_{4}$	20	$A_{1}+2 A_{2}+A_{3}+A_{4}+A_{6}$	24
21	$A_{2}+A_{4}+A_{8}+D_{4}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
22	$A_{6}+A_{8}+D_{4}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
23	$2 A_{2}+A_{10}+D_{4}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
24	$A_{4}+A_{10}+D_{4}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23

Table 1. List of embedding of Δ in Γ_{f}.

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
25	$A_{2}+A_{12}+D_{4}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
26	$A_{14}+D_{4}$	320	$D_{10}+E_{8}$	22
27	$2 A_{2}+A_{4}+2 D_{5}$	210	$2 A_{2}+D_{14}$	22
28	$A_{1}+2 A_{2}+2 A_{4}+D_{5}$	157	$A_{1}+A_{2}+2 A_{4}+D_{7}$	24
29	$A_{2}+A_{3}+2 A_{4}+D_{5}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
30	$A_{2}+A_{6}+2 D_{5}$	193	$A_{2}+A_{6}+D_{10}$	22
31	$A_{3}+A_{4}+A_{6}+D_{5}$	18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	23
32	$A_{2}+A_{4}+A_{7}+D_{5}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
33	$A_{6}+A_{7}+D_{5}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
34	$A_{2}+A_{3}+A_{8}+D_{5}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
35	$A_{3}+A_{10}+D_{5}$	69	$A_{1}+2 A_{2}+A_{3}+A_{10}$	23
36	$A_{2}+A_{11}+D_{5}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
37	$A_{4}+2 D_{7}$	213	$A_{4}+D_{14}$	21
38	$A_{3}+2 A_{4}+D_{7}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
39	$2 A_{2}+A_{3}+A_{4}+D_{7}$	20	$A_{1}+2 A_{2}+A_{3}+A_{4}+A_{6}$	24
40	$A_{2}+A_{4}+A_{5}+D_{7}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
41	$A_{1}+2 A_{2}+A_{6}+D_{7}$	14	$2 A_{1}+2 A_{2}+2 A_{6}$	24
42	$2 A_{2}+A_{7}+D_{7}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
43	$A_{4}+A_{7}+D_{7}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
44	$A_{1}+A_{2}+A_{8}+D_{7}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
45	$A_{3}+A_{8}+D_{7}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
46	$A_{11}+D_{7}$	320	$D_{10}+E_{8}$	22
47	$A_{2}+A_{4}+D_{5}+D_{7}$	200	$A_{2}+A_{5}+D_{11}$	22
48	$A_{6}+D_{5}+D_{7}$	186	$A_{9}+D_{9}$	21
49	$A_{2}+2 A_{4}+D_{8}$	66	$A_{2}+A_{7}+A_{9}$	21
50	$A_{4}+A_{6}+D_{8}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
51	$A_{2}+A_{8}+D_{8}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
52	$A_{10}+D_{8}$	320	$D_{10}+E_{8}$	22
53	$A_{1}+2 A_{4}+D_{9}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
54	$A_{2}+A_{3}+A_{4}+D_{9}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
55	$A_{3}+A_{6}+D_{9}$	76	$2 A_{1}+A_{6}+A_{10}$	22
56	$A_{2}+A_{7}+D_{9}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
57	$2 A_{2}+D_{5}+D_{9}$	210	$2 A_{2}+D_{14}$	22
58	$A_{2}+D_{7}+D_{9}$	186	$A_{9}+D_{9}$	21

Table 1. List of embedding of Δ in Γ_{f}.

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
59	$2 A_{2}+A_{4}+D_{10}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
60	$A_{3}+A_{4}+D_{11}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
61	$A_{7}+D_{11}$	320	$D_{10}+E_{8}$	22
62	$A_{2}+D_{5}+D_{11}$	186	$A_{9}+D_{9}$	21
63	$D_{7}+D_{11}$	218	D_{18}	20
64	$A_{2}+A_{4}+D_{12}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
65	$A_{6}+D_{12}$	320	$D_{10}+E_{8}$	22
66	$A_{1}+2 A_{2}+D_{13}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
67	$A_{2}+A_{3}+D_{13}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
68	$A_{3}+D_{15}$	320	$D_{10}+E_{8}$	22
69	$A_{2}+D_{16}$	320	$D_{10}+E_{8}$	22
70	$2 A_{1}+A_{4}+2 E_{6}$	303	$A_{1}+A_{4}+A_{5}+E_{8}$	23
71	$2 A_{1}+A_{2}+2 A_{4}+E_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
72	$A_{2}+2 A_{3}+A_{4}+E_{6}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
73	$2 A_{6}+E_{6}$	37	$A_{1}+2 A_{2}+A_{6}+A_{7}$	23
74	$2 A_{3}+A_{6}+E_{6}$	41	$A_{5}+A_{6}+A_{7}$	21
75	$A_{2}+A_{3}+A_{7}+E_{6}$	37	$A_{1}+2 A_{2}+A_{6}+A_{7}$	23
76	$2 A_{4}+D_{4}+E_{6}$	182	$A_{4}+A_{5}+D_{9}$	22
77	$A_{2}+A_{6}+D_{4}+E_{6}$	183	$A_{1}+A_{2}+A_{6}+D_{9}$	23
78	$A_{8}+D_{4}+E_{6}$	186	$A_{9}+D_{9}$	21
79	$A_{1}+D_{5}+2 E_{6}$	320	$D_{10}+E_{8}$	22
80	$A_{2}+2 D_{5}+E_{6}$	320	$D_{10}+E_{8}$	22
81	$A_{1}+A_{2}+A_{4}+D_{5}+E_{6}$	193	$A_{2}+A_{6}+D_{10}$	22
82	$A_{2}+A_{3}+D_{7}+E_{6}$	200	$A_{2}+A_{5}+D_{11}$	22
83	$A_{5}+D_{7}+E_{6}$	320	$D_{10}+E_{8}$	22
84	$A_{2}+D_{10}+E_{6}$	193	$A_{2}+A_{6}+D_{10}$	22
85	$A_{1}+A_{2}+2 A_{4}+E_{7}$	17	$2 A_{1}+A_{2}+2 A_{4}+A_{6}$	24
86	$A_{3}+2 A_{4}+E_{7}$	18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	23
87	$2 A_{2}+D_{7}+E_{7}$	210	$2 A_{2}+D_{14}$	22
88	$A_{2}+2 A_{4}+E_{8}$	36	$A_{2}+A_{4}+A_{5}+A_{7}$	22
89	$2 A_{1}+2 A_{2}+A_{4}+E_{8}$	30	$2 A_{2}+A_{3}+A_{4}+A_{7}$	23
90	$2 A_{3}+A_{4}+E_{8}$	24	$A_{3}+A_{4}+A_{5}+A_{6}$	22
91	$A_{3}+A_{7}+E_{8}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
92	$A_{2}+A_{4}+D_{4}+E_{8}$	182	$A_{4}+A_{5}+D_{9}$	22

Table 1. List of embedding of Δ in Γ_{f}.

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
93	$A_{6}+D_{4}+E_{8}$	186	$A_{9}+D_{9}$	21
94	$A_{1}+2 A_{2}+D_{5}+E_{8}$	210	$2 A_{2}+D_{14}$	22
95	$A_{2}+A_{3}+D_{5}+E_{8}$	198	$2 A_{2}+A_{3}+D_{11}$	23
96	$A_{3}+D_{7}+E_{8}$	213	$A_{4}+D_{14}$	21
97	$A_{2}+D_{8}+E_{8}$	210	$2 A_{2}+D_{14}$	22
98	$2 A_{1}+A_{2}+E_{6}+E_{8}$	320	$D_{10}+E_{8}$	22

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
1	$6 A_{3}$	$\mathbb{Z} /(4) \times \mathbb{Z} /(4)$	4	0	4
2	$2 A_{1}+4 A_{4}$	$\mathbb{Z} /(5)$	10	0	10
3	$2 A_{2}+2 A_{3}+2 A_{4}$	(0)	60	0	60
4	$3 A_{1}+3 A_{5}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(6)$	2	0	6
5	$4 A_{2}+2 A_{5}$	$\mathbb{Z} /(3) \times \mathbb{Z} /(3)$	6	0	6
6	$A_{3}+3 A_{5}$	$\mathbb{Z} /(6)$	4	0	6
7	$2 A_{1}+2 A_{3}+2 A_{5}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	12	0	12
8	$A_{1}+2 A_{2}+A_{3}+2 A_{5}$	$\mathbb{Z} /(6)$	6	0	12
9	$2 A_{4}+2 A_{5}$	(0)	30	0	30
10	$2 A_{2}+A_{4}+2 A_{5}$	$\mathbb{Z} /(3)$	6	0	30
11	$A_{1}+A_{3}+A_{4}+2 A_{5}$	$\mathbb{Z} /(2)$	12	0	30
12	$A_{1}+A_{2}+2 A_{3}+A_{4}+A_{5}$	$\mathbb{Z} /(2)$	24	12	36
13	$3 A_{6}$	$\mathbb{Z} /(7)$	2	1	4
14	$2 A_{1}+2 A_{2}+2 A_{6}$	(0)	42	0	42
15	$2 A_{3}+2 A_{6}$	(0)	28	0	28
16	$A_{2}+A_{4}+2 A_{6}$	(0)	28	7	28
17	$2 A_{1}+A_{2}+2 A_{4}+A_{6}$	(0)	50	20	50
18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	(0)	10	0	140
		20	0	70	
19	$A_{2}+2 A_{3}+A_{4}+A_{6}$	(0)	24	12	76
20	$A_{1}+2 A_{2}+A_{3}+A_{4}+A_{6}$	(0)	30	0	84

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
21	$2 A_{1}+2 A_{5}+A_{6}$	$\mathbb{Z} /(2)$	12	6	24
22	$A_{1}+2 A_{3}+A_{5}+A_{6}$	$\mathbb{Z} /(2)$	4	0	84
23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	(0)	30	0	42
			18	6	72
24	$A_{3}+A_{4}+A_{5}+A_{6}$	(0)	12	0	70
25	$4 A_{1}+2 A_{7}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(4)$	4	0	4
26	$2 A_{2}+2 A_{7}$	(0)	24	0	24
		$\mathbb{Z} /(2)$	12	0	12
27	$A_{1}+A_{3}+2 A_{7}$	$\mathbb{Z} /(8)$	2	0	4
28	$2 A_{1}+3 A_{3}+A_{7}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(4)$	4	0	8
29	$A_{2}+3 A_{3}+A_{7}$	$\mathbb{Z} /(4)$	4	0	24
30	$2 A_{2}+A_{3}+A_{4}+A_{7}$	(0)	12	0	120
31	$2 A_{1}+A_{2}+A_{3}+A_{4}+A_{7}$	$\mathbb{Z} /(2)$	20	0	24
32	$A_{1}+2 A_{5}+A_{7}$	$\mathbb{Z} /(2)$	6	0	24
33	$3 A_{1}+A_{3}+A_{5}+A_{7}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	8	0	12
34	$A_{1}+A_{2}+A_{3}+A_{5}+A_{7}$	$\mathbb{Z} /(2)$	12	0	24
35	$2 A_{1}+A_{4}+A_{5}+A_{7}$	$\mathbb{Z} /(2)$	2	0	120
36	$A_{2}+A_{4}+A_{5}+A_{7}$	(0)	6	0	120
			24	0	30
37	$A_{1}+2 A_{2}+A_{6}+A_{7}$	(0)	24	0	42
38	$2 A_{1}+A_{3}+A_{6}+A_{7}$	$\mathbb{Z} /(2)$	12	4	20
39	$A_{2}+A_{3}+A_{6}+A_{7}$	(0)	4	0	168
40	$A_{1}+A_{4}+A_{6}+A_{7}$	(0)	2	0	280
			18	4	32
41	$A_{5}+A_{6}+A_{7}$	(0)	16	4	22
42	$2 A_{1}+2 A_{8}$	$\mathbb{Z} /(3)$	4	2	10
43		$A_{1}+3 A_{2}+A_{3}+A_{8}$	$\mathbb{Z} /(3)$	12	0

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	MW	a	b	c
46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	(0)	6	0	180
47	$A_{1}+2 A_{2}+A_{5}+A_{8}$	$\mathbb{Z} /(3)$	6	0	18
48	$A_{2}+A_{3}+A_{5}+A_{8}$	$\mathbb{Z} /(3)$	4	0	18
49	$A_{1}+A_{4}+A_{5}+A_{8}$	(0)	18	0	30
50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	(0)	18	0	42
51	$A_{1}+A_{3}+A_{6}+A_{8}$	(0)	10	4	52
52	$A_{4}+A_{6}+A_{8}$	(0)	18	9	22
53	$A_{1}+A_{2}+A_{7}+A_{8}$	(0)	18	0	24
54	$2 A_{9}$	(0)	10	0	10
		$\mathbb{Z} /(5)$	2	0	2
55	$A_{1}+A_{2}+2 A_{3}+A_{9}$	$\mathbb{Z} /(2)$	4	0	60
56	$2 A_{1}+2 A_{2}+A_{3}+A_{9}$	$\mathbb{Z} /(2)$	6	0	60
57	$A_{1}+2 A_{4}+A_{9}$	$\mathbb{Z} /(5)$	2	0	10
58	$3 A_{1}+A_{2}+A_{4}+A_{9}$	$\mathbb{Z} /(2)$	20	10	20
59	$2 A_{1}+A_{3}+A_{4}+A_{9}$	$\mathbb{Z} /(2)$	10	0	20
60	$2 A_{1}+A_{2}+A_{5}+A_{9}$	$\mathbb{Z} /(2)$	12	6	18
61	$A_{1}+A_{3}+A_{5}+A_{9}$	$\mathbb{Z} /(2)$	10	0	12
62	$A_{4}+A_{5}+A_{9}$	(0)	10	0	30
		$\mathbb{Z} /(2)$	10	5	10
63	$3 A_{1}+A_{6}+A_{9}$	$\mathbb{Z} /(2)$	4	2	36
64	$A_{1}+A_{2}+A_{6}+A_{9}$	(0)	10	0	42
65	$A_{3}+A_{6}+A_{9}$	(0)	2	0	140
66	$A_{2}+A_{7}+A_{9}$	(0)	10	0	24
67	$A_{1}+A_{8}+A_{9}$	(0)	10	0	18
68	$A_{2}+2 A_{3}+A_{10}$	(0)	24	12	28
69	$A_{1}+2 A_{2}+A_{3}+A_{10}$	(0)	12	0	66
70	$2 A_{4}+A_{10}$	(0)	10	5	30
71	$2 A_{2}+A_{4}+A_{10}$	(0)	6	3	84
			24	9	24

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	MW	a	b	c
72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	(0)	2	0	330
73	$A_{1}+A_{3}+A_{4}+A_{10}$	(0)	20	0	22
			12	4	38
74	$A_{1}+A_{2}+A_{5}+A_{10}$	(0)	6	0	66
			18	6	24
75	$A_{3}+A_{5}+A_{10}$	(0)	4	0	66
			12	0	22
76	$2 A_{1}+A_{6}+A_{10}$	(0)	12	2	26
77	$A_{2}+A_{6}+A_{10}$	(0)	4	1	58
			16	5	16
78	$A_{1}+A_{7}+A_{10}$	(0)	2	0	88
			10	2	18
79	$A_{8}+A_{10}$	(0)	10	1	10
80	$A_{1}+3 A_{2}+A_{11}$	$\mathbb{Z} /(3)$	6	0	12
81	$3 A_{1}+2 A_{2}+A_{11}$	$\mathbb{Z} /(6)$	2	0	12
82	$A_{1}+2 A_{3}+A_{11}$	$\mathbb{Z} /(4)$	4	0	6
83	$2 A_{2}+A_{3}+A_{11}$	$\mathbb{Z} /(3)$	4	0	12
		$\mathbb{Z} /(6)$	4	2	4
84	$2 A_{1}+A_{2}+A_{3}+A_{11}$	$\mathbb{Z} /(4)$	6	0	6
		$\mathbb{Z} /(2)$	12	0	12
85	$3 A_{1}+A_{4}+A_{11}$	$\mathbb{Z} /(2)$	6	0	20
86	$A_{1}+A_{2}+A_{4}+A_{11}$	(0)	12	0	30
87	$2 A_{1}+A_{5}+A_{11}$	$\mathbb{Z} /(2)$	6	0	12
		$\mathbb{Z} /(6)$	2	0	4
88	$A_{2}+A_{5}+A_{11}$	$\mathbb{Z} /(3)$	4	0	6
89	$A_{1}+A_{6}+A_{11}$	(0)	4	0	42
90	$2 A_{1}+2 A_{2}+A_{12}$	(0)	12	6	42
91	$A_{1}+A_{2}+A_{3}+A_{12}$	(0)	6	0	52
92	$2 A_{1}+A_{4}+A_{12}$	(0)	2	0	130
			18	8	18

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
93	$A_{2}+A_{4}+A_{12}$	(0)	6	3	34
94	$A_{1}+A_{5}+A_{12}$	(0)	10	2	16
95	$A_{6}+A_{12}$	(0)	2	1	46
96	$A_{1}+2 A_{2}+A_{13}$	(0)	6	0	42
		$\mathbb{Z} /(2)$	6	3	12
97	$3 A_{1}+A_{2}+A_{13}$	$\mathbb{Z} /(2)$	2	0	42
98	$2 A_{1}+A_{3}+A_{13}$	$\mathbb{Z} /(2)$	6	2	10
99	$A_{2}+A_{3}+A_{13}$	(0)	4	0	42
100	$A_{1}+A_{4}+A_{13}$	(0)	2	0	70
			8	2	18
		$\mathbb{Z} /(2)$	2	1	18
101	$A_{5}+A_{13}$	(0)	4	2	22
102	$2 A_{2}+A_{14}$	$\mathbb{Z} /(3)$	4	1	4
103	$2 A_{1}+A_{2}+A_{14}$	(0)	12	6	18
		$\mathbb{Z} /(3)$	2	0	10
104	$A_{1}+A_{3}+A_{14}$	(0)	10	0	12
105	$A_{4}+A_{14}$	(0)	10	5	10
106	$3 A_{1}+A_{15}$	$\mathbb{Z} /(4)$	2	0	4
107	$A_{1}+A_{2}+A_{15}$	(0)	10	2	10
		$\mathbb{Z} /(2)$	4	0	6
108	$A_{3}+A_{15}$	$\mathbb{Z} /(4)$	2	0	2
109	$2 A_{1}+A_{16}$	(0)	2	0	34
			2	18	
110	$A_{2}+A_{16}$	(0)	6	3	10
111	$A_{1}+A_{17}$	(0)	4	2	10
		$\mathbb{Z} /(3)$	2	0	2
112	A_{18}	(0)	2	1	10
113	$2 A_{4}+2 D_{5}$	(0)	20	0	20
114	$A_{3}+2 A_{5}+D_{5}$	$\mathbb{Z} /(2)$	12	0	12
115	$2 A_{4}+A_{5}+D_{5}$	(0)	20	0	30
10					

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	MW	a	b	c
116	$A_{1}+A_{3}+A_{4}+A_{5}+D_{5}$	$\mathbb{Z} /(2)$	12	0	20
117	$A_{1}+2 A_{6}+D_{5}$	(0)	14	0	28
118	$2 A_{2}+A_{3}+A_{6}+D_{5}$	(0)	12	0	84
119	$A_{1}+A_{2}+A_{4}+A_{6}+D_{5}$	(0)	20	0	42
120	$A_{2}+A_{5}+A_{6}+D_{5}$	(0)	6	0	84
			12	0	42
121	$A_{1}+A_{7}+2 D_{5}$	$\mathbb{Z} /(4)$	2	0	8
122	$A_{1}+A_{2}+A_{3}+A_{7}+D_{5}$	$\mathbb{Z} /(4)$	6	0	8
123	$2 A_{1}+A_{4}+A_{7}+D_{5}$	$\mathbb{Z} /(2)$	8	0	20
124	$A_{8}+2 D_{5}$	(0)	8	4	20
125	$A_{1}+A_{4}+A_{8}+D_{5}$	(0)	2	0	180
			18	0	20
126	$A_{5}+A_{8}+D_{5}$	(0)	12	0	18
127	$2 A_{2}+A_{9}+D_{5}$	(0)	6	0	60
128	$2 A_{1}+A_{2}+A_{9}+D_{5}$	$\mathbb{Z} /(2)$	2	0	60
129	$A_{1}+A_{3}+A_{9}+D_{5}$	$\mathbb{Z} /(2)$	8	4	12
130	$A_{4}+A_{9}+D_{5}$	(0)	10	0	20
131	$A_{1}+A_{2}+A_{10}+D_{5}$	(0)	14	4	20
132	$2 A_{1}+A_{11}+D_{5}$	$\mathbb{Z} /(4)$	2	0	6
133	$A_{2}+A_{11}+D_{5}$	$\mathbb{Z} /(2)$	6	0	6
134	$A_{1}+A_{12}+D_{5}$	(0)	2	0	52
			6	2	18
135	$A_{13}+D_{5}$	(0)	6	2	10
136	$3 D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	2
137	$2 A_{3}+2 D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	0	4
138	$2 A_{2}+2 A_{4}+D_{6}$	(0)	30	0	30
139	$2 A_{1}+2 A_{5}+D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	6	0	6
140	$A_{1}+2 A_{3}+A_{5}+D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	0	12
141	$A_{3}+A_{4}+A_{5}+D_{6}$	$\mathbb{Z} /(2)$	4	0	30

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
142	$2 A_{6}+D_{6}$	(0)	14	0	14
143	$A_{2}+A_{4}+A_{6}+D_{6}$	(0)	6	0	70
144	$A_{1}+2 A_{2}+A_{7}+D_{6}$	$\mathbb{Z} /(2)$	6	0	24
145	$A_{2}+A_{3}+A_{7}+D_{6}$	$\mathbb{Z} /(2)$	4	0	24
146	$A_{1}+A_{4}+A_{7}+D_{6}$	$\mathbb{Z} /(2)$	6	2	14
147	$A_{4}+A_{8}+D_{6}$	(0)	4	2	46
148	$A_{1}+A_{2}+A_{9}+D_{6}$	$\mathbb{Z} /(2)$	6	0	10
			4	2	16
149	$A_{3}+A_{9}+D_{6}$	$\mathbb{Z} /(2)$	4	0	10
150	$A_{2}+A_{10}+D_{6}$	(0)	6	0	22
151	$A_{1}+A_{11}+D_{6}$	$\mathbb{Z} /(2)$	4	0	6
152	$A_{12}+D_{6}$	(0)	4	2	14
153	$A_{2}+A_{5}+D_{5}+D_{6}$	$\mathbb{Z} /(2)$	6	0	12
154	$A_{7}+D_{5}+D_{6}$	$\mathbb{Z} /(2)$	4	0	8
155	$2 A_{2}+2 D_{7}$	(0)	12	0	12
156	$A_{2}+3 A_{3}+D_{7}$	$\mathbb{Z} /(4)$	8	4	8
157	$A_{1}+A_{2}+2 A_{4}+D_{7}$	(0)	10	0	60
158	$A_{2}+A_{3}+A_{6}+D_{7}$	(0)	8	4	44
159	$A_{1}+A_{4}+A_{6}+D_{7}$	(0)	4	0	70
160	$A_{5}+A_{6}+D_{7}$	(0)	2	0	84
161	$2 A_{1}+A_{2}+A_{7}+D_{7}$	$\mathbb{Z} /(2)$	4	0	24
162	$A_{1}+A_{3}+A_{7}+D_{7}$	$\mathbb{Z} /(4)$	2	0	8
163	$2 A_{1}+A_{9}+D_{7}$	$\mathbb{Z} /(2)$	4	0	10
164	$A_{2}+A_{9}+D_{7}$	(0)	2	0	60
165	$A_{1}+A_{10}+D_{7}$	(0)	4	0	22
166	$A_{11}+D_{7}$	$\mathbb{Z} /(4)$	2	1	2
167	$A_{1}+A_{5}+D_{5}+D_{7}$	$\mathbb{Z} /(2)$	4	0	12
168	$A_{5}+D_{6}+D_{7}$	$\mathbb{Z} /(2)$	2	0	12
169	$2 A_{1}+2 D_{8}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	2
10					

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
170	$2 A_{2}+2 A_{3}+D_{8}$	$\mathbb{Z} /(2)$	12	0	12
171	$2 A_{5}+D_{8}$	$\mathbb{Z} /(2)$	6	0	6
172	$2 A_{1}+A_{3}+A_{5}+D_{8}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	12
173	$A_{1}+A_{4}+A_{5}+D_{8}$	$\mathbb{Z} /(2)$	2	0	30
174	$2 A_{2}+A_{6}+D_{8}$	(0)	12	6	24
175	$A_{1}+A_{2}+A_{7}+D_{8}$	$\mathbb{Z} /(2)$	2	0	24
176	$A_{1}+A_{9}+D_{8}$	$\mathbb{Z} /(2)$	2	0	10
177	$2 D_{5}+D_{8}$	$\mathbb{Z} /(2)$	4	0	4
178	$A_{1}+A_{3}+D_{6}+D_{8}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	4
179	$2 D_{9}$	(0)	4	0	4
180	$A_{1}+2 A_{2}+A_{4}+D_{9}$	(0)	12	0	30
181	$A_{1}+A_{3}+A_{5}+D_{9}$	$\mathbb{Z} /(2)$	4	0	12
182	$A_{4}+A_{5}+D_{9}$	(0)	4	0	30
183	$A_{1}+A_{2}+A_{6}+D_{9}$	(0)	4	0	42
184	$2 A_{1}+A_{7}+D_{9}$	$\mathbb{Z} /(2)$	4	0	8
185	$A_{1}+A_{8}+D_{9}$	(0)	4	0	18
186	$A_{9}+D_{9}$	(0)	4	0	10
187	$A_{4}+D_{5}+D_{9}$	(0)	4	0	20
188	$2 A_{1}+2 A_{3}+D_{10}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	0	4
189	$2 A_{4}+D_{10}$	(0)	10	0	10
190	$A_{1}+A_{3}+A_{4}+D_{10}$	$\mathbb{Z} /(2)$	2	0	20
191	$3 A_{1}+A_{5}+D_{10}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	2	4
192	$A_{3}+A_{5}+D_{10}$	$\mathbb{Z} /(2)$	2	0	12
193	$A_{2}+A_{6}+D_{10}$	(0)	2	0	42
194	$A_{8}+D_{10}$	(0)	2	0	18
195	$A_{1}+A_{2}+D_{5}+D_{10}$	$\mathbb{Z} /(2)$	4	0	6
196	$A_{2}+D_{6}+D_{10}$	$\mathbb{Z} /(2)$	2	0	6
197	$A_{1}+D_{7}+D_{10}$	$\mathbb{Z} /(2)$	2	0	4
198	$2 A_{2}+A_{3}+D_{11}$	(0)	12	0	12

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
199	$A_{1}+A_{2}+A_{4}+D_{11}$	(0)	6	0	20
200	$A_{2}+A_{5}+D_{11}$	(0)	6	0	12
201	$A_{1}+A_{6}+D_{11}$	(0)	6	2	10
202	$2 A_{1}+2 A_{2}+D_{12}$	$\mathbb{Z} /(2)$	6	0	6
203	$A_{1}+A_{2}+A_{3}+D_{12}$	$\mathbb{Z} /(2)$	4	0	6
204	$2 A_{1}+A_{4}+D_{12}$	$\mathbb{Z} /(2)$	4	2	6
205	$A_{1}+D_{5}+D_{12}$	$\mathbb{Z} /(2)$	2	0	4
206	$D_{6}+D_{12}$	$\mathbb{Z} /(2)$	2	0	2
207	$A_{1}+A_{4}+D_{13}$	(0)	2	0	20
208	$A_{5}+D_{13}$	(0)	2	0	12
209	$D_{5}+D_{13}$	(0)	4	0	4
210	$2 A_{2}+D_{14}$	(0)	6	0	6
211	$2 A_{1}+A_{2}+D_{14}$	$\mathbb{Z} /(2)$	2	0	6
212	$A_{1}+A_{3}+D_{14}$	$\mathbb{Z} /(2)$	2	0	4
213	$A_{4}+D_{14}$	(0)	4	2	6
214	$A_{1}+A_{2}+D_{15}$	(0)	4	0	6
215	$2 A_{1}+D_{16}$	$\mathbb{Z} /(2)$	2	0	2
216	$A_{2}+D_{16}$	$\mathbb{Z} /(2)$	2	1	2
217	$A_{1}+D_{17}$	(0)	2	0	4
218	D_{18}	(0)	2	0	2
219	$3 E_{6}$	$\mathbb{Z} /(3)$	2	1	2
220	$2 A_{3}+2 E_{6}$	(0)	12	0	12
221	$A_{1}+A_{3}+2 A_{4}+E_{6}$	(0)	20	0	30
222	$A_{1}+A_{5}+2 E_{6}$	$\mathbb{Z} /(3)$	2	0	6
223	$A_{2}+2 A_{5}+E_{6}$	$\mathbb{Z} /(3)$	6	0	6
224	$2 A_{2}+A_{3}+A_{5}+E_{6}$	$\mathbb{Z} /(3)$	6	0	12
225	$A_{3}+A_{4}+A_{5}+E_{6}$	(0)	12	0	30
226	$A_{6}+2 E_{6}$	(0)	6	3	12

Table 2. List of extremal elliptic K3 surfaces.

No	Σ	MW	a	b	c
227	$A_{1}+A_{2}+A_{3}+A_{6}+E_{6}$	(0)	6	0	84
			12	0	42
228	$2 A_{1}+A_{4}+A_{6}+E_{6}$	(0)	20	10	26
229	$A_{2}+A_{4}+A_{6}+E_{6}$	(0)	18	3	18
230	$A_{1}+A_{5}+A_{6}+E_{6}$	(0)	6	0	42
231	$A_{1}+A_{4}+A_{7}+E_{6}$	(0)	2	0	120
232	$A_{5}+A_{7}+E_{6}$	(0)	6	0	24
233	$2 A_{2}+A_{8}+E_{6}$	$\mathbb{Z} /(3)$	6	3	6
234	$2 A_{1}+A_{2}+A_{8}+E_{6}$	$\mathbb{Z} /(3)$	2	0	18
235	$A_{1}+A_{3}+A_{8}+E_{6}$	(0)	12	0	18
236	$A_{4}+A_{8}+E_{6}$	(0)	12	3	12
237	$A_{1}+A_{2}+A_{9}+E_{6}$	(0)	12	6	18
238	$A_{3}+A_{9}+E_{6}$	(0)	10	0	12
239	$2 A_{1}+A_{10}+E_{6}$	(0)	2	0	66
240	$A_{2}+A_{10}+E_{6}$	(0)	6	3	18
241	$A_{1}+A_{11}+E_{6}$	(0)	6	0	12
		$\mathbb{Z} /(3)$	2	0	4
242	$A_{12}+E_{6}$	(0)	4	1	10
243	$A_{3}+A_{4}+D_{5}+E_{6}$	(0)	12	0	20
244	$A_{1}+A_{6}+D_{5}+E_{6}$	(0)	2	0	84
245	$A_{7}+D_{5}+E_{6}$	(0)	8	0	12
246	$D_{6}+2 E_{6}$	(0)	6	0	6
247	$A_{2}+A_{4}+D_{6}+E_{6}$	(0)	6	0	30
248	$A_{6}+D_{6}+E_{6}$	(0)	4	2	22
249	$A_{1}+A_{4}+D_{7}+E_{6}$	(0)	4	0	30
250	$D_{5}+D_{7}+E_{6}$	(0)	4	0	12
251	$A_{4}+D_{8}+E_{6}$	(0)	8	2	8
252	$A_{1}+A_{2}+D_{9}+E_{6}$	(0)	6	0	12
253	$A_{3}+D_{9}+E_{6}$	(0)	4	0	12

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
254	$A_{1}+D_{11}+E_{6}$	(0)	2	0	12
255	$D_{12}+E_{6}$	(0)	4	2	4
256	$2 A_{2}+2 E_{7}$	(0)	6	0	6
257	$A_{1}+A_{3}+2 E_{7}$	$\mathbb{Z} /(2)$	2	0	4
258	$A_{4}+2 E_{7}$	(0)	4	2	6
259	$A_{1}+2 A_{3}+A_{4}+E_{7}$	$\mathbb{Z} /(2)$	4	0	20
260	$2 A_{2}+A_{3}+A_{4}+E_{7}$	(0)	12	0	30
261	$2 A_{3}+A_{5}+E_{7}$	$\mathbb{Z} /(2)$	4	0	12
262	$A_{1}+A_{2}+A_{3}+A_{5}+E_{7}$	$\mathbb{Z} /(2)$	6	0	12
263	$2 A_{1}+A_{4}+A_{5}+E_{7}$	$\mathbb{Z} /(2)$	8	2	8
264	$A_{2}+A_{4}+A_{5}+E_{7}$	(0)	6	0	30
265	$A_{1}+2 A_{2}+A_{6}+E_{7}$	(0)	6	0	42
266	$A_{2}+A_{3}+A_{6}+E_{7}$	(0)	4	0	42
267	$A_{1}+A_{4}+A_{6}+E_{7}$	(0)	2	0	70
		8	2	18	
268	$A_{5}+A_{6}+E_{7}$	(0)	4	2	22
269	$2 A_{2}+A_{7}+E_{7}$	(0)	6	0	24
270	$2 A_{1}+A_{2}+A_{7}+E_{7}$	$\mathbb{Z} /(2)$	2	0	24
271	$A_{1}+A_{3}+A_{7}+E_{7}$	$\mathbb{Z} /(2)$	4	0	8
272	$A_{4}+A_{7}+E_{7}$	(0)	6	2	14
273	$A_{1}+A_{2}+A_{8}+E_{7}$	(0)	6	0	18
274	$A_{3}+A_{8}+E_{7}$	(0)	4	0	18
275	$2 A_{1}+A_{9}+E_{7}$	$\mathbb{Z} /(2)$	2	0	10
276	$A_{2}+A_{9}+E_{7}$	(0)	6	0	10
		$\mathbb{Z} /(2)$	4	1	4
277	$A_{1}+A_{10}+E_{7}$	(0)	2	0	22
		6	2	8	
278	$A_{11}+E_{7}$	(0)	4	0	6
279	$D_{4}+2 E_{7}$	$\mathbb{Z} /(2)$	2	0	2

Table 2. List of extremal elliptic K3 surfaces.

No	Σ	$M W$	a	b	c
280	$A_{2}+A_{4}+D_{5}+E_{7}$	(0)	6	0	20
281	$A_{1}+A_{5}+D_{5}+E_{7}$	$\mathbb{Z} /(2)$	2	0	12
282	$A_{6}+D_{5}+E_{7}$	(0)	6	2	10
283	$A_{2}+A_{3}+D_{6}+E_{7}$	$\mathbb{Z} /(2)$	4	0	6
284	$A_{5}+D_{6}+E_{7}$	$\mathbb{Z} /(2)$	4	2	4
285	$D_{5}+D_{6}+E_{7}$	$\mathbb{Z} /(2)$	2	0	4
286	$A_{1}+A_{3}+D_{7}+E_{7}$	$\mathbb{Z} /(2)$	4	0	4
287	$A_{4}+D_{7}+E_{7}$	(0)	2	0	20
288	$A_{1}+A_{2}+D_{8}+E_{7}$	$\mathbb{Z} /(2)$	2	0	6
289	$A_{2}+D_{9}+E_{7}$	(0)	4	0	6
290	$A_{1}+D_{10}+E_{7}$	$\mathbb{Z} /(2)$	2	0	2
291	$D_{11}+E_{7}$	(0)	2	0	4
292	$A_{2}+A_{3}+E_{6}+E_{7}$	(0)	6	0	12
293	$A_{1}+A_{4}+E_{6}+E_{7}$	(0)	2	0	30
294	$A_{5}+E_{6}+E_{7}$	(0)	6	0	6
295	$D_{5}+E_{6}+E_{7}$	(0)	2	0	12
296	$2 A_{1}+2 E_{8}$	(0)	2	0	2
297	$A_{2}+2 E_{8}$	(0)	2	1	2
298	$2 A_{2}+2 A_{3}+E_{8}$	(0)	12	0	12
299	$2 A_{1}+2 A_{4}+E_{8}$	(0)	10	0	10
300	$A_{1}+A_{2}+A_{3}+A_{4}+E_{8}$	(0)	6	0	20
301	$2 A_{5}+E_{8}$	(0)	6	0	6
302	$A_{2}+A_{3}+A_{5}+E_{8}$	(0)	6	0	12
303	$A_{1}+A_{4}+A_{5}+E_{8}$	(0)	2	0	30
304	$2 A_{2}+A_{6}+E_{8}$	(0)	6	3	12
305	$2 A_{1}+A_{2}+A_{6}+E_{8}$	(0)	2	0	42
306	$A_{1}+A_{3}+A_{6}+E_{8}$	(0)	6	2	10
307	$A_{4}+A_{6}+E_{8}$	(0)	2	1	18
308	$A_{1}+A_{2}+A_{7}+E_{8}$	(0)	2	0	24

Table 2. List of extremal elliptic $K 3$ surfaces.

No	Σ	$M W$	a	b	c
309	$2 A_{1}+A_{8}+E_{8}$	(0)	2	0	18
310	$A_{2}+A_{8}+E_{8}$	(0)	6	3	6
311	$A_{1}+A_{9}+E_{8}$	(0)	2	0	10
312	$A_{10}+E_{8}$	(0)	2	1	6
313	$2 D_{5}+E_{8}$	(0)	4	0	4
314	$A_{1}+A_{4}+D_{5}+E_{8}$	(0)	2	0	20
315	$A_{5}+D_{5}+E_{8}$	(0)	2	0	12
316	$2 A_{2}+D_{6}+E_{8}$	(0)	6	0	6
317	$A_{4}+D_{6}+E_{8}$	(0)	4	2	6
318	$A_{1}+A_{2}+D_{7}+E_{8}$	(0)	4	0	6
319	$A_{1}+D_{9}+E_{8}$	(0)	2	0	4
320	$D_{10}+E_{8}$	(0)	2	0	2
321	$A_{1}+A_{3}+E_{6}+E_{8}$	(0)	2	0	12
322	$A_{4}+E_{6}+E_{8}$	(0)	2	1	8
323	$D_{4}+E_{6}+E_{8}$	(0)	4	2	4
324	$A_{1}+A_{2}+E_{7}+E_{8}$	(0)	2	0	6
325	$A_{3}+E_{7}+E_{8}$	(0)	2	0	4

References

[1] E. Artal-Bartolo, H. Tokunaga and D. Q. Zhang, Miranda-Persson's problem on extremal elliptic K3 surfaces, preprint. http://xxx.lanl.gov/list/math.AG, 9809065.
[2] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitre IV-VI, Hermann, Paris, 1968.
[3] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Second edition, Grundlehren der Mathematischen Wissenschaften, 290, Springer, New York, 1993.
[4] A. Fujiki, Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci., 24 (1988), no. 1, 1-97.
[5] S. Kondō, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), no. 1, 75-98.
[6] __, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces, With an appendix by Shigeru Mukai, Duke Math. J., 92 (1998), no. 3, 593-603.
[7] R. Miranda and U. Persson, Mordell-Weil groups of extremal elliptic K3 surfaces, Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math., XXXII, Academic Press, London (1991), pp. 167-192.
[8] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math., 75 (1984), no. 1, 105-121.
[9] S. Mukai, Finite groups of automorphisms of $K 3$ surfaces and the Mathieu group, Invent. Math., 94 (1988), no. 1, 183-221.
[10] V. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., Issue 2 (1980), 71-135.
[11] _, Integer symmetric bilinear forms and some of their applications, Math. USSR Izvestija, 14 (1980), no. 1, 103-167.
[12] K. Nishiyama, The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups, Japan. J. Math. (N.S.), 22 (1996), no. 2, 293-347.
[13] M. V. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4), 16 (1983), no. 2, 305-344.
[14] I. Piateskii-Shapiro and I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., 35 (1971), 530-572.
[15] J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, New York, 1973.
[16] T. Shioda and H. Inose, On singular $K 3$ surfaces. Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119-136.
[17] A. N. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math., 61 (1980), no. 3, 251-265.
[18] G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble), 46 (1996), no. 1, 73-88.
[19] Q. Ye, On extremal elliptic K3 surfaces, preprint. http://xxx.lanl.gov/abs/math.AG, 9901081.

Ichiro Shimada
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo, 060-0810
Japan
shimada@math.sci.hokudai.ac.jp
De-Qi Zhang
Department of Mathematics
National University of Singapore
Lower KentRidge Road, 119260
Singapore
matzdq@math.nus.edu.sg

[^0]: Received April 26, 1999.
 1991 Mathematics Subject Classification: 14J28.

