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AFFINE STRUCTURE ON WEIL BUNDLES

IVAN KOLÁŘ

Abstract. For every r-th order Weil functor T A, we introduce the underlying k-
th order Weil functors T Ak , k = 1, . . . , r−1. We deduce that T AM → T Ar−1M

is an affine bundle for every manifold M . Generalizing the classical concept
of contact element by C. Ehresmann, we define the bundle κT AM of contact
elements of type A on M and we describe some affine properties of this bundle.

The theory of Weil bundles, [7], is a powerful tool for many general

problems in differential geometry. In the seventies, this was testified by Mo-

rimoto, [5], and the further development up to the beginning of the nineties

is reflected in the monograph [4]. The best known example of a Weil bundle

is the bundle T r
nM of n-dimensional velocities of order r on a manifold M .

In this case, there are classical proofs of the fact that T r
nM → T r−1

n M is

an affine bundle, see e.g. [4, p. 122]. However, a general advantage of the

Weil bundle technique is that it often enables us to replace extended calcu-

lations by much more concentrated algebraic expressions. From this point

of view, the affine bundle structure on T r
nM has been studied algebraically

in a recent paper by F. J. Muriel, J. Muñoz and J. Rodriguez, [6].

At the beginning of the present paper we point out that every Weil

functor TA of order r induces the underlying lower order Weil functors TAk ,

k = 1, . . . , r−1. Then we deduce that TAM → TAr−1M is an affine bundle.

In particular, this general result covers not only the velocities bundles, but

also the r-th iterated tangent bundle, which was studied systematically by

J. E. White, [8]. Next we introduce the contact elements of type A for every

Weil algebra A, which are equivalent to the A-jets by Muriel, Muñoz and

Rodriguez, [6]. Using our general results on TAM , we describe some affine

properties of κTAM .
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All manifolds and maps are assumed to be infinitely differentiable. Un-

less otherwise specified, we use the terminology and notation from [4]. —

The author acknowledges R. Alonso, J. Muñoz, J. Muriel and J. Rodriguez

for several useful discussions on the subject of this paper.

1. Let A = R×N be a Weil algebra, where N is the ideal of all nilpotent

elements, [7]. We say that A is of order r, if N r+1 = 0 and N r 6= 0. We

assume r ≥ 2 in the sequel. The order of A coincides with the order of

the Weil functor TA determined by A, [4]. We recall that every element

X ∈ TA
x0

M can be interpreted as an algebra homomorphism of the algebra

C∞M of smooth functions on a manifold M into A of the form

Xf = f(x0) + X̃f, X̃f ∈ N, f ∈ C∞M.(1)

Definition 1. The factor algebra Ak = A/Nk+1 is called the under-

lying algebra of order k. The Weil functor TAk is said to be the underlying

k-th order functor of TA.

So πk : TAM → TAkM is a surjective submersion. Write

V = N/N2,

which is a vector space. Hence A1 = R × V with zero multiplication in V .

Let B = R × P be another Weil algebra.

Lemma 1. For every algebra homomorphism f : A → B, we have

f(Nk) ⊂ P k, k = 1, . . . , r.

Proof. For k = 1, the nilpotency implies f(N) ⊂ P . Next we proceed

by iteration.

Proposition 1. Every homomorphism A → B factorizes through an

underlying homomorphism fk : Ak → Bk.

Proof. By Lemma 1, f maps Nk+1 into P k+1. This implies the exis-

tence of fk.

Taking into account the classical bijection between the homomorphisms

of Weil algebras and the natural transformations of the corresponding Weil

functors, we obtain
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Corollary 1. Every natural transformation τ : TA → TB factorizes

through a natural transformation τk : TAk → TBk .

2. Clearly, N r is a vector space. For every Z ∈ Tx0
M⊗N r = Lin(T ∗

x0
M,N r)

and every Q ∈ T ∗

x0
M , we have Z(Q) ∈ N r. We denote by T ∗

x0
f the differ-

ential of f ∈ C∞M at x0 ∈ M .

Lemma 2. For every X ∈ TA
x0

M and Z ∈ Tx0
M ⊗ N r,

(X + Z)f := f(x0) + X̃f + Z(T ∗

x0
f), f ∈ C∞M

is also an algebra homomorphism.

Proof. For another g ∈ C∞M , we have

(f(x0) + X̃f + Z(T ∗

x0
f))(g(x0) + X̃g + Z(T ∗

x0
g))

= (f(x0) + X̃f)(g(x0) + X̃g) + Z(f(x0)T
∗

x0
g + g(x0)T

∗

x0
f)

= (X + Z)(fg)

as the other three terms vanish by virtue of NN r = 0.

Clearly, X and X + Z satisfy πr−1(X) = πr−1(X + Z). Conversely, let

X,Y ∈ TA
x0

M satisfy πr−1(X) = πr−1(Y ). Then

Y f = f(x0) + X̃f + Df with Df ∈ N r.(2)

Since X and Y are algebra homomorphisms, we have

D(fg) = (f(x0) + X̃f + Df)(g(x0) + X̃g + Dg) − X(fg)

= f(x0)Dg + g(x0)Df

by virtue of NN r = 0. Hence D in an N r-valued derivation in C∞M at x0.

In the same way as in the proof in 1.5 of [4], we deduce D ∈ Tx0
M ⊗ N r.

Thus, we have proved

Proposition 2. πr−1 : TAM → TAr−1M is an affine bundle, whose

associated vector bundle is the pullback of TM ⊗ N r over TAr−1M .
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Examples. (i) The Weil algebra of the functor T r
n of the (n, r)-veloci-

ties is

D
r
n = R[x1, . . . , xn]/〈x1, . . . , xn〉

r+1,

so that N r = Sr
R

n∗. In this case we obtain the classical result mentioned

in the introduction.

(ii) The Weil algebra of the r-th iterated tangent functor T r is A =

D ⊗ · · · ⊗ D, D = D
1
1. One finds easily N r = R

∗. The underlying bundle

of order r − 1 is the so-called boundary of T rM = T · · ·TM , which was

studied in [8]. In this case we have rededuced that T rM is an affine bundle

over the boundary, whose associated vector bundle is the pullback of TM

over the boundary. (The case r = 2 is well known.)

(iii) Consider the iterated velocities functor T s
p T r

n of the order r + s,

whose Weil algebra is D
r
n ⊗D

s
p. One finds easily that the underlying bundle

of the order r + s − 1 is the fiber product

T s−1
p T r

nM ×T s−1
p T r−1

n M T s
p T r−1

n M

and the vector bundle in question is

TM ⊗ (Sr
R

n∗) ⊗ (Ss
R

p∗).

Consider a smooth map ϕ : M → Q.

Proposition 3. TAϕ : TAM → TAQ is an affine bundle morphism

over TAr−1ϕ : TAr−1M → TAr−1Q, whose associated vector bundle mor-

phism is the pullback of Tϕ ⊗ idNr .

Proof. Let D be as in (2). For every f ∈ C∞Q, write (ϕ∗D)(f) =

D(f ◦ ϕ). Since D is an N r-valued derivation at x0 ∈ M , ϕ∗D is an N r-

valued derivation at ϕ(x0) ∈ Q.

3. The group AutA of all algebra automorphisms of A is a Lie group,

[4]. By Proposition 1, we have a canonical group homomorphism AutA →

AutAk (which is not surjective in general).

Proposition 4. The kernel K of the canonical homomorphism AutA

→ Aut Ar−1 is the Abelian group V ∗ ⊗ N r.
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Proof. Let p : N → V = N/N2 be the factor projection. For Z ∈

V ∗ ⊗ N r = Lin(V,N r), we define ζ : A → A by

ζ(a + n) = a + n + Z(p(n)), a ∈ R, n ∈ N.(3)

This is an algebra homomorphism, for

ζ((a1 + n1)(a2 + n2)) = (a1 + n1)(a2 + n2) + Z(a2p(n1) + a1p(n2))

= (a1 + n1 + Z(p(n1)))(a2 + n2 + Z(p(n2))).

For another S ∈ V ∗ ⊗ N r, we have

σ(ζ(a + n)) = σ(a + n + Z(p(n))) = a + n + Z(p(n)) + S(p(n)).

Hence this is a group homomorphism of an Abelian group.

Conversely, let ζ ∈ AutA be over idAr−1
. We define

D(n) = ζ(n) − n ∈ N r, n ∈ N.

Hence D : N → N r is a linear map. By NN r = 0, every v,w ∈ N satisfy

v(ζ(w) − w) = 0, i.e., vζ(w) = vw. So

0 = D(v)D(w) = ζ(v)ζ(w) − vw − vw + vw = D(vw).

This implies D(n + vw) = D(n), so that D factorizes through a linear map

V → N r.

Since every algebra homomorphism Z : A → A induces a natural trans-

formation (denoted by the same symbol) Z : TA → TA, we have a canonical

action of Aut A on TAM , (Z,X) 7→ Z(X), X ∈ TAM . We are going to de-

duce an explicit formula for the restriction of this action to V ∗⊗N ⊂ AutA.

We shall need a lemma.

Lemma 3. We have TA1M = TM ⊗ V .

Proof. Since A1 = R×V with zero multiplication in V , the X̃ induced

by (1) from X ∈ TA1

x0
M is a V -valued derivation in C∞M at x0, i.e., an

element of Tx0
M ⊗ V , and vice versa.
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Let Z ∈ V ∗ ⊗ N r. In the notation of (3), we have

ζ(Xf) = f(x0) + X̃f + Z(p(X̃f)).(4)

By the definition of π1 and by Lemma 3, the formula ˜π1(X)f = p(X̃f)

defines a map

π̃1X : T ∗

x0
M −→ V.

Since Z : V → N r, we have Z ◦ ˜π1(X) ∈ Tx0
M ⊗ N r. Thus, (4) can be

rewritten as

Z(X) = X + Z ◦ ˜π1(X)(5)

where Z ◦ ˜π1(X) is an element of the associated vector bundle of TAM .

4. Our Definition 3 below is equivalent to 1.1.3 from [6], but we use the

approach developed in [4]. We recall that an element X ∈ TAM is said to

be an A-velocity on M .

Definition 2. An A1-velocity X ∈ TA1

x0
M is said to be regular, if X̃

is injective as a map V ∗ → Tx0
M . An A-velocity X is called regular, if

π1(X) is regular.

We denote by reg TAM the bundle of all regular A-velocities on M . If

ϕ : M → Q is an immersion, then TAϕ transforms reg TAM into reg TAQ.

The restricted and corestricted map will be denoted by reg TAϕ. Hence

reg TA is a bundle functor on the category Imm of all immersions.

The jet group Gr
n of order r in dimension n acts on reg T r

nM by the jet

composition. The equivalence classes are called regular contact elements by

C. Ehresmann, [2], or contact element in [4]. The manifold structure on the

bundle of all contact (n, r)-elements

Kr
nM = reg T r

nM/Gr
n

is described in [4, p. 124], see also [3]. For every immersion ϕ : M → Q, we

have the induced map Kr
nϕ : Kr

nM → Kr
nQ.

We shall need a vector bundle %nM over K1
nM , whose fibers are de-

fined as follows. Every X ∈ (K1
nM)x0

is identified with an n-dimensional

linear subspace σ(X) ⊂ Tx0
M and the fiber (%nM)X is the factor space

Tx0
M/σ(X). Obviously, every immersion ϕ : M → Q induces canonically a

map %nϕ : %nM → %nQ.
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5. The group Gr
n coincides with Aut D

r
n and its action on T r

nM is that

of item 3, [4]. So we introduce the following generalization of the notion of

contact element, which is equivalent to the concept of A-jet from [6].

Definition 3. The contact element determined by X ∈ reg TAM is

the equivalence class

κX = (Aut A)X = {Z(X) ; Z ∈ Aut A}.

We denote by κTAM the set of all contact A-elements on M . R. Alonso

deduced that κTAM is a smooth manifold and reg TAM → κTAM is

a smooth principal fiber bundle with structrure group AutA, [1]. Every

immersion ϕ : M → Q induces a map κTAϕ : κTAM → κTAQ. The

canonical projection µk : κTAM → κTAkM is defined by µk((Aut A)X) =

(Aut Ak)πk(X). For r = 1, κTA1M = K1
nM , n = dimV .

Proposition 5. Let X,Y ∈ reg TA
x0

M have the same projection into

T
Ar−1

x0
M . Then there exists Z ∈ V ∗ ⊗N satisfying Z(X) = Y if and only if

Y − X ∈ σ(π1(X)) ⊗ N r ⊂ Tx0
M ⊗ N r.(6)

Proof. By (5), we have Z(X) − X = Z ◦ π̃1X ∈ σ(π1(X)) ⊗ N r.

Conversely, consider the injection i : σ(π1(X)) → Tx0
M . Then (6) means

that Y −X : T ∗

x0
M → N r is of the form W ◦ i∗ with W : σ(π1(X))∗ → N r.

Since π1(X) is regular, ˜π1(X) : T ∗

x0
M → V is of the form µ ◦ i∗, where

µ : σ(π1(X))∗ → V is invertible. Define Z = W ◦ µ−1 : V → N r. Then

Z(X) = X + W ◦ µ−1 ◦ π̃1X = X + W ◦ i∗ = X + Y − X = Y .

Thus, if we fix an element S ∈ reg TAr−1M , we have defined an affine

space structure of the subset S̃ ⊂ (κTAM)κ(S) of the form S̃ = {κ(X), X ∈

reg TAM ; πr−1(X) = S}. The associated vector space is (%nM)κ(S1) ⊗N r,

where S1 is the canonical projection of S into TA1M .

The simpliest situation is in the case S̃ coincides with (κTAM)κ(S) for

every S ∈ reg TAr−1M . Then the above construction endows the fiber of

κTAM over each point X ∈ κTAr−1M with the structure of an affine space.

These affine structures on (κTAM)X are parametrized by the elements S ∈

reg TAr−1M satisfying κ(S) = X. In particular, this is true for the bundle

Kr
nM of the classical contact elements.
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C.N.R.S., Strasbourg (1953), 111–117.

[8] J. E. White, The method of iterated tangents with applications to local Riemannian

geometry, Pitman Press, 1982.

Department of Algebra and Geometry

Masaryk University
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