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THE JOINT UNIVERSALITY

AND THE FUNCTIONAL INDEPENDENCE

FOR LERCH ZETA-FUNCTIONS

ANTANAS LAURINČIKAS1 and KOHJI MATSUMOTO

Abstract. The joint universality theorem for Lerch zeta-functions L(λl, αl, s)
(1 ≤ l ≤ n) is proved, in the case when λls are rational numbers and αls are
transcendental numbers. The case n = 1 was known before ([12]); the rationality
of λls is used to establish the theorem for the ”joint” case n ≥ 2. As a corollary,
the joint functional independence for those functions is shown.

1. Introduction

Let s = σ + it be a complex variable, and let N, Z, Q, R and C denote

the set of all natural numbers, integers, rational numbers, real numbers

and complex numbers, respectively. The Lerch zeta-function L(λ, α, s), for

σ > 1, is defined by

L(λ, α, s) =
∞
∑

m=0

e2πiλm

(m + α)s
.

Here α, λ ∈ R, 0 < α ≤ 1, are fixed parameters. When λ ∈ Z the Lerch zeta-

function L(λ, α, s) reduces to the Hurwitz zeta-function ζ(s, α). If λ 6∈ Z,

then the function L(λ, α, s) is analytically continuable to an entire function.

Clearly, in this case we may suppose that 0 < λ < 1. In what follows we

will deal with this case only.

The Lerch zeta-function is one of the classical objects in number theory,

introduced by M. Lerch [16] in 1887.

In recent years the value-distribution of the Lerch zeta-function was

studied by D. Klusch, R. Garunkštis, M. Katsurada, W. Zhang, by the

authors and other mathematicians. In [12] the universality theorem for the

function L(λ, α, s) was proved. In order to state it we need some notation.
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By meas{A} we denote the Lebesgue measure of the set A, and, for T > 0,

we use the notation

νT (. . .) =
1

T
meas{τ ∈ [0, T ], . . .},

where in place of dots some condition satisfied by τ is to be written. Let

D = {s ∈ C : 1/2 < σ < 1}. Then the result of [12] is as follows.

Let α be a transcendental number. Let K be a compact subset of the

strip D with the connected complement, f(s) be a continuous function on

K which is analytic in the interior of K. Then for any ε > 0 it holds that

lim inf
T→∞

νT

(

sup
s∈K

|L(λ,α, s + iτ) − f(s)| < ε

)

> 0.

The universality for L(λ, α, s) was also studied in [5], [13].

It is the purpose of the present paper to obtain a joint universality

theorem for Lerch zeta-functions. Suppose n ≥ 2.

Theorem 1. Let α1, . . . , αn be transcendental numbers, λ1 = a1/q1,

. . . , λn = an/qn, (a1, q1) = 1, . . . , (an, qn) = 1, where q1, . . . , qn are distinct

positive integers and a1, . . . , an are positive integers with a1 < q1, . . . , an <

qn. Let K1, . . . ,Kn be compact subsets of the strip D with connected com-

plements, and, for 1 ≤ l ≤ n, let fl(s) be a continuous function on Kl which

is analytic in the interior of Kl. Then for every ε > 0 it holds that

lim inf
T→∞

νT

(

sup
1≤l≤n

sup
s∈Kl

|L(λl, αl, s + iτ) − fl(s)| < ε

)

> 0.

Joint universality theorems for Dirichlet L-functions were obtained by

B. Bagchi [2], [3], S.M. Gonek [7], and S.M. Voronin [18], [19]. For more

general Dirichlet series such theorems were proved in [8], [9], [14].

The proof of Theorem 1 is based on Bagchi’s method [2], [3], but some

new ideas are necessary for the proof of Lemmas 5 and 6 below.

In the case of the aforementioned universality theorem [12] for a single

zeta-function, the arithmetic nature of λ is irrelevant. However, in the proof

of Theorem 1, the fact that λl ∈ Q (1 ≤ l ≤ n) is used essentially. In

Section 4 we will discuss briefly the case when λl 6∈ Q.

As an application of Theorem 1, we will show the joint functional in-

dependence.
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Theorem 2. Let αl, λl = al/ql be as in Theorem 1, and Fj (0 ≤ j ≤ k)

be continuous functions on CNn. Suppose

k
∑

j=0

sjFj(L(λ1, α1, s), . . . , L(λn, αn, s), L′(λ1, α1, s), . . . ,

L′(λn, αn, s), . . . , L(N−1)(λ1, α1, s), . . . , L
(N−1)(λn, αn, s)) = 0

identically for all s ∈ C. Then Fj ≡ 0 (0 ≤ j ≤ k).

This theorem gives a generalization of the result proved in Garunkštis-

Laurinčikas [6]. A quite different approach to this type of problems has

recently been developed by Amou-Katsurada [1].

2. A joint limit theorem for Lerch zeta-functions

For the proof of Theorem 1 we will apply a joint limit theorem in

the sense of weak convergence of probability measures for the Lerch zeta-

functions L(λ1, α1, s), . . . L(λn, αn, s) in the space of analytic functions. De-

note by H(D) the space of analytic on D functions equipped with the

topology of uniform convergence on compacta. Let B(S) stand for the class

of Borel sets of the space S. Define on (Hn(D),B(Hn(D))) the probability

measure

PT (A) = νT

(

(L(λ1, α1, s+iτ), . . . , L(λn, αn, s+iτ)) ∈ A
)

, A ∈ B(Hn(D)).

What we need is a limit theorem in the sense of weak convergence of proba-

bility measures for PT as T → ∞, with an explicit form of the limit measure.

Denote by γ the unit circle on C, i.e. γ = {s ∈ C : |s| = 1}, and let

Ω =
∞
∏

m=0

γm,

where γm = γ for all m = 0, 1, 2, . . .. With the product topology and point-

wise multiplication the infinite dimensional torus Ω is a compact topological

Abelian group. Denoting by mH the probability Haar measure on (Ω,B(Ω)),

we obtain the probability space (Ω,B(Ω),mH). Let ω(m) be the projection

of ω ∈ Ω to the coordinate space γm, and define on the probability space

(Ω,B(Ω),mH) the Hn(D)-valued random element L(s, ω) by

L(s, ω) = (L(λ1, α1, s, ω), . . . , L(λn, αn, s, ω)),
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where

L(λl, αl, s, ω) =

∞
∑

m=0

e2πiλlmω(m)

(m + αl)s
, s ∈ D, ω ∈ Ω, l = 1, . . . , n.

The proof that L(λl, αl, s, ω) is an H(D)-valued random element can be

found in [11]. Let PL stand for the distribution of the random element

L(s, ω), i.e.

PL(A) = mH(ω ∈ Ω : L(s, ω) ∈ A), A ∈ B(Hn(D)).

Lemma 1. The probability measure PT converges weakly to PL as T →

∞.

Proof. Let D0 = {s ∈ C : σ > 1/2}. Then in [15] the result of the

lemma was proved in the case of the space Hn(D0). Obviously, from this

the lemma follows.

3. The support of the random element L

In this section we will consider the support of the measure PL. We recall

that the minimal closed set SPL
⊆ Hn(D) such that PL(SPL

) = 1 is called

the support of PL. The set SPL
consists of all f ∈ Hn(D) such that for

every neighbourhood G of f the inequality PL(G) > 0 is satisfied.

The support of the distribution of the random element X is called the

support of X and is denoted by SX .

Lemma 2. Let {Xm} be a sequence of independent Hn(D)-valued ran-

dom elements, and suppose that the series

∞
∑

m=1

Xm

converges almost surely. Then the support of the sum of this series is the

closure of the set of all f ∈ Hn(D) which may be written as a convergent

series

f =
∞
∑

m=1

f
m

, f
m

∈ SXm .
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Proof of the lemma in the case n = 1 is given in [10], Theorem 1.7.10.

The proof when n > 1 is similar to that of the case n = 1.

Let f(s) = (f1(s), . . . , fn(s)) ∈ Hn(D). Then we write

|f(s)|2 =
n

∑

l=1

|fl(s)|
2.

Lemma 3. Let {f
m

= (f1m, . . . , fnm), m ≥ 1} be a sequence in Hn(D)

which satisfies:

a) If µ1, . . . , µn are complex measures on (C,B(C)) with compact sup-

ports contained in D such that

∞
∑

m=1

∣

∣

∣

∣

n
∑

l=1

∫

C

flm dµl

∣

∣

∣

∣

< ∞,

then
∫

C

sr dµl(s) = 0

for all l = 1, . . . , n, r = 0, 1, 2, . . ..

b) The series
∞
∑

m=1

f
m

converges in Hn(D).

c) For any compact K ⊆ D

∞
∑

m=1

sup
s∈K

|f
m

(s)|2 < ∞.

Then the set of all convergent series

∞
∑

m=1

amf
m

with am ∈ γ is dense in Hn(D).

Proof. This lemma is Lemma 5.2.9 of [2], see also [3]. In [10] the proof

in the case n = 1 is given, see Theorem 6.3.10. The proof of the general

case is obtained in a similar way.
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Now we state two lemmas on entire functions of exponential type. Recall

that an entire function f(s) is of exponential type if

lim sup
r→∞

log |f(reiθ)|

r
< ∞

uniformly in θ, |θ| ≤ π.

Lemma 4. Let µ be a complex measure on (C,B(C)) with the compact

support contained in the half-plane σ > σ0, and let

f(z) =

∫

C

esz dµ(s), z ∈ C.

If f(z) 6≡ 0, then

lim sup
x→∞

log |f(x)|

x
> σ0.

This lemma is due to B. Bagchi [2]. For the proof see Lemma 6.4.10 of

[10].

Let M be a set of natural numbers having a positive density, i.e.

lim
x→∞

1

x
# {m ∈ M : m ≤ x} = d > 0.(1)

Lemma 5. Let f(s) be an entire function of exponential type, and let

lim sup
r→∞

log |f(r)|

r
> −1.

Then
∑

m∈M

|f(log m)| = ∞.

Proof. Let α > 0 be such that

lim sup
y→∞

log |f(±iy)|

y
≤ α.(2)

Let us fix a positive number β such that αβ < π, and suppose, on the

contrary, that
∑

m∈M

|f(log m)| < ∞.(3)
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Consider the set A = {m ∈ N : ∃r ∈ ((m−1/4)β, (m+1/4)β] and |f(r)| ≤

e−r}. Let, for brevity,

mM(x) =
∑

m≤x

m∈M

1.

Clearly, we have

∑

m∈M

|f(log m)| ≥
∑

m6∈A

∑′

m

|f(log k)| ≥
∑

m6∈A

∑′

m

1

k
,(4)

where
∑′

m denotes the sum extended over all natural numbers k ∈ M

satisfying (m − 1/4)β < log k ≤ (m + 1/4)β. If we denote

a = exp

{

(

m −
1

4

)

β

}

, b = exp

{

(

m +
1

4

)

β

}

,

then we have that
∑′

m

1

k
=

∑

k∈M
a<k≤b

1

k
.

Summing by parts, we find

∑

k∈M

a<k≤b

1

k
=

1

b

∑

k∈M

a<k≤b

1 +

b
∫

a

(

∑

k∈M

a<k≤u

1

)

du

u2
.(5)

Obviously,
∑

k∈M
a<k≤u

1 = mM(u) − mM(a).

The assumption (1) implies

mM(x) = dx(1 + o(1)), x → ∞,

hence, for any ε > 0, there exists a number x0 = x0(ε) such that

mM(u) ≥ du(1 − ε),

mM(a) ≤ da(1 + ε)

if a ≥ x0. Therefore
∑

k∈M

a<k≤u

1 ≥ d((u − a) − ε(a + u)).(6)
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Let η satisfy the inequality 1 < η < exp{β/2}, and consider the case u ≥ ηa.

Then we have

1

2
(u − a) − ε(a + u) ≥

1

2

(

u −
u

η

)

− ε
(u

η
+ u

)

= u

(

(1

2
− ε

)

−
1

η

(1

2
+ ε

)

)

> 0

if we choose ε sufficiently small. Hence and from (6) we obtain

∑

k∈M
a<k≤u

1 ≥
d

2
(u − a), u ≥ ηa.

Combining this with (5), and using partial summation again, we have

∑

k∈M
a<k≤b

1

k
≥

d

2b
(b − a) +

d

2

b
∫

ηa

(u − a)
du

u2
(7)

≥
d

2

{1

b
([b] − [ηa]) +

b
∫

ηa

([u] − [ηa])
du

u2
+

B

a

}

=
d

2

∑

ηa<k≤b

1

k
+

B

a
,

where [x] denotes the integer part of x, and B is a number (not always the

same) bounded by a constant. Clearly,

∑

ηa<k≤b

1

k
= log b − log(ηa) +

B

ηa

=
(

m +
1

4

)

β − log η −
(

m −
1

4

)

β + Be−mβ

=
β

2
− log η + Be−mβ .

From the choice of η it follows that

β

2
− log η > 0.

Now (7) shows
∑

k∈M

a<k≤b

1

k
≥

d

2

(β

2
− log η

)

+ Be−mβ .
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This together with (3) and (4) implies

∑

m6∈A

(

d

2

(β

2
− log η

)

+ Be−mβ

)

≤
∑

m∈M

|f(log m)| < ∞,

hence
∑

m6∈A

1 < ∞.(8)

Let A = {am : a1 < a2 < . . .}. Then (8) gives that

lim
m→∞

am

m
= 1.(9)

By the definition of the set A, there exists a sequence {λm} such that

(

am −
1

4

)

β < λm ≤
(

am +
1

4

)

β,

and |f(λm)| ≤ e−λm . Hence, in view of (9),

lim
m→∞

λm

m
= β,(10)

and

lim sup
m→∞

log |f(λm)|

λm
≤ −1.

Now we apply Theorem 6.4.12 of [10]. The assumptions of that theorem are

satisfied by (10), (2), and the condition αβ < π. Hence by that theorem it

follows that

lim sup
r→∞

log |f(r)|

r
≤ −1.

This contradicts the assumption of the lemma, and Lemma 5 is proved.

Lemma 6. The support of the measure PL is the whole of Hn(D).

Proof. It follows from the definition of Ω that {ω(m)} is a sequence

of independent random variables with respect to the measure mH . Hence

{f
m

(s, ω(m)),m ∈ N ∪ {0}} is a sequence of independent Hn(D)-valued

random elements, where

f
m

(s, ω(m)) =

(

e2πiλ1mω(m)

(m + α1)s
, . . . ,

e2πiλnmω(m)

(m + αn)s

)

.
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The support of each ω(m) is the unit circle γ. Therefore the set {f
m

(s, a) :

a ∈ γ} is the support of the random element f
m

(s, ω(m)). Consequently,

by Lemma 2 the closure of the set of all convergent series

∞
∑

m=0

f
m

(s, am), am ∈ γ,

is the support of the random element L(s, ω). It remains to check that the

latter set is dense in Hn(D).

Let µ1, . . . , µn be complex measures on (C,B(C)) with compact sup-

ports contained in D such that

∞
∑

m=0

∣

∣

∣

∣

n
∑

l=1

∫

C

e2πiλlm

(m + αl)s
dµl(s)

∣

∣

∣

∣

< ∞.(11)

It is well known that for all s ∈ C

es = 1 + B|s|e|s|.

Therefore, for m ≥ 2,

(m + αl)
−s = m−s

(

1 +
αl

m

)−s

= m−s exp
{

− s log
(

1 +
αl

m

)}

= m−s exp
{B|s|

m

}

= m−s
(

1 +
B|s|

m
eB|s|

)

= m−s + Bm−1−σ|s|eB|s|.

Hence, taking into account the properties of the measures µ1, . . . , µn, we

deduce from (11) that

∞
∑

m=0

∣

∣

∣

∣

n
∑

l=1

∫

C

e2πiλlm

ms
dµl(s)

∣

∣

∣

∣

< ∞,

which can be rewritten in the form
∞
∑

m=0
m≡r(mod q)

∣

∣

∣

∣

n
∑

l=1

∫

C

e2πiλlr

ms
dµl(s)

∣

∣

∣

∣

< ∞, 1 ≤ r ≤ q,(12)

where q = [q1, . . . , qn]. Now let

νr(A) =
n

∑

l=1

e2πiλlrµl(A), A ∈ B(C), 1 ≤ r ≤ q.
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Note that the measures ν1, . . . , νq have the same properties as µ1, . . . , µn.

Using this notation, we may write the relation (12) as follows:

∞
∑

m=0
m≡r(mod q)

∣

∣

∣

∣

∫

C

m−s dνr(s)

∣

∣

∣

∣

< ∞, 1 ≤ r ≤ q.(13)

Let

%̃r(z) =

∫

C

e−sz dνr(s), z ∈ C.

Then (13) becomes the following condition

∞
∑

m=0
m≡r(mod q)

|%̃r(log m)| < ∞, 1 ≤ r ≤ q.(14)

By Lemma 4 we obtain that %̃r(z) ≡ 0, or

lim sup
x→∞

log |%̃r(x)|

x
> −1, 1 ≤ r ≤ q.

Lemma 5 shows that the last inequality contradicts (14). Hence

%̃r(z) ≡ 0(15)

for 1 ≤ r ≤ q. Let

%l(z) =

∫

C

e−sz dµl(s), z ∈ C, l = 1, . . . , n.

Then by the definitions of νr and %̃r we have

%̃r(z) =

∫

C

e−sz
n

∑

l=1

e2πiλlr dµl(s) =

n
∑

l=1

e2πiλlr

∫

C

e−sz dµl(s)

=

n
∑

l=1

e2πiλlr%l(z),

which is identically equal to zero by (15). Multiplying by e−2πiλj , we have

n
∑

l=1

e2πi(λl−λj)r%l(z) ≡ 0, 1 ≤ r ≤ q.(16)
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Taking into account that

q
∑

r=1

e2πi(λl−λj)r =

{

q if (λl − λj) ∈ Z,

0 otherwise,

and the fact that λl − λj ∈ Z only if l = j, and summing (16) over r =

1, . . . , q, we find that

%j(z) =

∫

C

e−sz dµj(s) ≡ 0, j = 1, 2, . . . , n.

Differentiating this equality r times and then putting z = 0, we find that
∫

C

sr µj(s) = 0

for all j = 1, . . . , n, r = 0, 1, 2, . . .. Thus the condition a) of Lemma 3 for

the sequence {f
m

(s, 1), m ≥ 1} is satisfied.

Let, for a natural number N ,

S(λ,N) =
N

∑

m=0

e2πiλm.

If λ 6∈ Z, then we have

S(λ,N) =
1 − e2πiλ(N+1)

1 − e2πiλ
(17)

which is uniformly bounded for all N ≥ 1. Summing by parts, we find

N
∑

m=0

e2πiλm

(m + α)s
= S(λ,N)(N + α)−s + s

N
∫

0

S(λ, u)
du

(u + α)s+1
.

Taking N → ∞ we obtain

∞
∑

m=0

e2πiλm

(m + α)s
= s

∞
∫

0

S(λ, u)
du

(u + α)s+1
,

which converges for σ > 0 in view of (17). Consequently, the series

∞
∑

m=0

e2πiλm

(m + α)s
(18)
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with λ 6∈ Z converges (Corollary 2.1.3 of [10]) uniformly on compacta in the

half-plane σ > σ0 for any σ0 > 0. This shows that the series

∞
∑

m=0

f
m

(s, 1)

converges in Hn(D), i.e. the condition b) of Lemma 3 holds for the sequence

{f
m

(s, 1), m ≥ 1}. The condition c) of Lemma 3 is also satisfied clearly,

since for s ∈ K we have that σ > 1/2.

Now, applying Lemma 3, we have that the set of all convergent series

∞
∑

m=0

amf
m

(s, 1) =

∞
∑

m=0

f
m

(s, am)

with am ∈ γ is dense in Hn(D). This completes the proof of the lemma.

4. Proof of Theorem 1

The following deduction of Theorem 1 from the above lemmas is stan-

dard (cf. Section 6.5 of [10]), but we present it for the convenience of readers.

We begin with the Mergelyan theorem.

Lemma 7. Let K be a compact subset of C whose complement is con-

nected. Then any continuous function f(s) on K which is analytic in the

interior of K is approximable uniformly on K by polynomials of s.

Proof is given, for example, in [20].

Proof of Theorem 1. First suppose that functions fl(s), l = 1, . . . , n,

can be continued analytically to the whole of D. Denote by G the set of all

(g1, . . . , gn) ∈ Hn(D) such that

sup
1≤l≤n

sup
s∈Kl

|gl(s) − fl(s)| <
ε

4
.

Let Pn and P be probability measures defined on (S,B(S)). It is well

known (see [4], Theorem 2.1) that Pn converges weakly to P as n → ∞ if

and only if

lim inf
n→∞

Pn(G) ≥ P (G)

for all open sets G.
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The set G is open, and, by Lemma 1, the measure PT converges weakly

to PL as T → ∞. Therefore, using the above property of the weak conver-

gence of probability measures and Lemma 6, we obtain

lim inf
T→∞

νT

(

sup
1≤l≤n

sup
s∈Kl

|L(λl, αl, s + iτ) − fl(s)| <
ε

4

)

= PL(G) > 0.(19)

Now let the functions fl(s), l = 1, . . . , n, be the same as in the statement

of Theorem 1. By Lemma 7 there exist polynomials pl(s), l = 1, . . . , n, such

that

sup
1≤l≤n

sup
s∈Kl

|pl(s) − fl(s)| <
ε

2
.(20)

By the first part of the proof we have that

lim inf
T→∞

νT

(

sup
1≤l≤n

sup
s∈Kl

|L(λl, αl, s + iτ) − pl(s)| <
ε

2

)

> 0.(21)

Obviously, for l = 1, . . . , n

sup
s∈Kl

|L(λl, αl, s + iτ)| ≤ sup
s∈Kl

|L(λl, αl, s + iτ) − pl(s)| + sup
s∈Kl

|fl(s) − pl(s)|.

Therefore by (20) it is easily seen that

{

τ : sup
1≤l≤n

sup
s∈Kl

|L(λl, αl, s + iτ) − fl(s)| < ε

}

⊇

{

τ : sup
1≤l≤n

sup
s∈Kl

|L(λl, αl, s + iτ) − pl(s)| <
ε

2

}

.

This and (21) yield the assertion of Theorem 1.

Now we discuss briefly the case that 1, λ1, . . . , λn are linearly indepen-

dent over Q. Then the sequence

{(λ1m, . . . , λnm), m ∈ N}

is uniformly distributed mod 1 in Rn (see Kuipers-Niederreiter [17], Sec-

tion 1.6, Example 6.1), hence the set

Nε = {m ∈ N : (λ1m, . . . , λnm) ∈ (−ε, ε)nmod1}
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has the positive density (2ε)n. From (11) we have

∑

m∈Nε

∣

∣

∣

∣

n
∑

l=1

e2πiλlm%l(log m)

∣

∣

∣

∣

< ∞,(22)

which suggests that
∑

m∈Nε

∣

∣

∣

∣

n
∑

l=1

%l(log m)

∣

∣

∣

∣

< ∞(23)

might be also true. If (23) would be true, then using Lemmas 4 and 5 we

obtain
n

∑

l=1

%l(z) ≡ 0

for any z ∈ C. We could prove

−%1(z) +

n
∑

l=2

%l(z) ≡ 0

in the same way, hence %1(z) ≡ 0, and similarly %l(z) ≡ 0, l = 2, 3, . . . , n.

From this fact we could deduce the joint universality theorem in this case.

If we could prove the above conclusion %l(z) ≡ 0 not only from (23), but

also from (22), then this argument would be complete.

5. Proof of Theorem 2

It is sufficient to give a sketch, because the proof is a direct generaliza-

tion of that in [6]. Define the mapping h : R → CNn by

h(t) = (L(λ1, α1, σ + it), . . . , L(λn, αn, σ + it),

L′(λ1, α1, σ + it), . . . , L′(λn, αn, σ + it), . . . ,

L(N−1)(λ1, α1, σ + it), . . . , L(N−1)(λn, αn, σ + it)).

For any ε > 0 and any sνl ∈ C (0 ≤ ν ≤ N − 1, 1 ≤ l ≤ n), we can find

τ ∈ R such that

|L(ν)(λl, αl, σ + iτ) − sνl| < ε (0 ≤ ν ≤ N − 1, 1 ≤ l ≤ n).

This can be shown by the same way as in Lemma 3 of [6], by taking the

polynomial

plN (s) =

N−1
∑

ν=0

sνls
ν

ν!
(1 ≤ l ≤ n)
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and applying Theorem 1. Hence the image of R by the mapping h is dense

in CNn. From this, similarly to [6] (or Section 6.6 of [10]), we can deduce

the conclusion of Theorem 2.
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[5] R. Garunkštis, The universality theorem with weight for the Lerch zeta-function, In:

Analytic and Probabilistic Methods in Number Theory, New Trends in Probability
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Department of Mathematics

Vilnius University

Naugarduko, 24

2006 Vilnius

Lithuania

antanas.laurincikas@maf.vu.lt

Kohji Matsumoto
Graduate School of Mathematics

Nagoya University

Chikusa-ku, Nagoya, 464-8602

Japan

kohjimat@math.nagoya-u.ac.jp


