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RELATIVELY MINIMAL QUASIHOMOGENEOUS

PROJECTIVE 3-FOLDS

STEFAN KEBEKUS

Abstract. In the present work we classify the relatively minimal 3-dimensional
quasihomogeneous complex projective varieties under the assumption that the
automorphism group is not solvable. By relatively minimal we understand va-
rieties X having at most

�
-factorial terminal singularities and allowing an ex-

tremal contraction X → Y where dim Y < 3.

§1. Introduction

Let X be a smooth projective threefold and G a connected algebraic

group acting algebraically on X. By minimal model theory, there exists

a sequence of extremal ray contractions and flips such that the resulting

variety X ′ has at most Q-factorial terminal singularities and either the

canonical sheaf KX′ is numerically effective, or X ′ allows an extremal ray

contraction of fiber type. See the introductory chapter of [KMM87] for a

detailed account of these matters.

It has been shown in [Keb98] that all steps of the minimal model pro-

gram are equivariant with respect to the action of G. If one assumes addi-

tionally that G acts almost transitively, which is to say that the G-action

has an open orbit, then it is shown that the minimal model program always

ends with a contraction of fiber type. The aim of the present paper is a clas-

sification of these varieties, more precisely, a classification of 3-folds which

are quasihomogeneous under the action of a linear, non-solvable algebraic

group and relatively minimal in the sense of the following definition

Definition 1.1. Throughout the present paper, a relatively minimal

variety X ′ over a base Y is a projective variety with at most Q-factorial

terminal singularities which has an extremal ray contraction φ : X ′ → Y of

fiber type, i.e., dimY < dimX.
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It should be remarked that this notion is not commonly accepted and

that other authors use different definitions.

The answer to the analogous problem in dimension 2 is known since

decades: since a surface which is quasihomogeneous under the action of

a linear algebraic group is always rational, the only varieties are P2 and

Hirzebruch-surfaces Σn. The succeeding Main Theorem should be seen as

a direct generalization of this to dimension 3. See [MU83] for a different

approach to this kind of questions.

We now list concrete examples which occur in the classification. No-

tation: a “Zariski Pr-bundle” is a variety of the form P(E), where E is a

vector bundle. Call P(E) “splitting” if E is a direct sum of line bundles:

E =
⊕r

i=1 Li.

• Homogeneous threefolds such as P3, the quadric Q3 and the full flag

variety F(1,2)(3).

• The SL2-quasihomogeneous Fano-manifolds described by Mukai and

Umemura in [MU83]. In Iskovskih’s list of Fano-threefolds (see e.g.

[Isk83, Thm. 1]) they appear under the name A′

22 and B5. Other cus-

tomary names are V S
22 and V5, respectively.

• The weighted projective spaces P(1,1,2,3) and P(1,1,1,2). The first space

is described in detail in [Keb99, Ex. 4.1], the latter is the blow-down

of the negative section of P(OP2
(2) ⊕OP2

).

• Varieties over Y ∼= P1 which are locally isomorphic to a deformation

of a quadric surface, and certain quotients of these varieties by Z2.

They are described in detail in the Sections 2.1 and 2.3 of the present

paper and called the “quadric- and S4-degenerations”.

• Singular varieties arising as quotients by Z2 of a splitting Zariski P1-

bundle over Y ∼= P2; see Example 3.3. Abusing language, call these

the “singular P1-bundles over Y ∼= S2”.

• Zariski P1-bundles over Hirzebruch-surfaces Y which are constructed

in Sections 3.3.1–3.3.2 by starting with a trivial P1-bundle and re-

peatedly performing certain elementary transformations; name these

varieties the “diagonally twisted bundles”.

The following is our main theorem, which is a complete classification

of the 3-dimensional case.
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Theorem 1.2. Let X be a 3-dimensional complex variety which is

relatively minimal over a base Y and G be a connected linear algebraic

group acting algebraically and almost transitively on X so that the kernel

of G→ Aut(X) is discrete. Assume that G is not solvable. Then,

• if Y is a point, X is isomorphic to P(1,1,2,3), P(1,1,1,2), or X is one of

the following Fano-varieties: P3, Q3, the 3-dimensional quadric, V5 or

V S
22.

• if dimY = 1, X is one of the quadric- and S4-degenerations, or a

Zariski P2-bundle over P1.

• if dimY = 2 and if Y is singular, X is a singular P1-bundle over S2.

Otherwise, X ∼= Y ×P1, where Y is an arbitrary G-quasihomogeneous

surface, or X is smooth and one of the following holds:

– X is one of the diagonally twisted bundles, or a splitting Zariski

bundle and Y is a Hirzebruch-surface Σn.

– X is the full flag variety F(1,2)(3), a splitting Zariski bundle, a

quotient of one of the relatively minimal varieties over Σ0 or a

blow-down of the diagonally twisted bundle XΣ1,k0,0. In all these

cases Y ∼= P2.

Although we found it easier to use the dimension of Y to structure the

present paper, for the reader who has been concerned with actions of semi-

simple groups it might be worth while to briefly discuss the classification

based on the dimension of the generic orbits of a maximal semi-simple

subgroup S of G.

If S acts almost transitively, the case of primary interest is that where

S ∼= SL2. Here X must in fact be smooth (see Lemma 4.3). In this setting

the case that dimY = 0 has been treated in the literature ([MU83], and the

papers of Iskovskih). In the other cases where dimY = 1 or 2, one could

apply the methods and results of [LV83] and [MJ90] if one would extend

this to all possible isotropy groups. We choose a different approach and

construct all varieties explicitly.

If the generic S-orbit is 2-dimensional, the relatively minimal varieties

over surfaces can be easily described. If Y is a curve, we again give an

explicit construction of all the possible varieties — locally these are the

well-known deformations of the cones over rational normal curves of degree



152 S. KEBEKUS

2 or 4. The remaining case where dimY = 0 is slightly more involved and

requires a line of argumentation that does not fit well into the present work.

Thus, we have chosen to treat this case in a different paper [Keb99].

Finally, if the generic S-orbit is 1-dimensional, then X is a product

Y × P1.

The author would like to thank A. Huckleberry and T. Peternell for

support and valuable discussions, and the referee for a number of sugges-

tions improving the quality of the present paper. Part of the work on this

paper was carried out during our visit to the University of Grenoble. We

are thankful to the members of that institute for their kind hospitality.

§2. Relatively minimal varieties over curves

In this section we consider the following situation unless otherwise men-

tioned:

Assumption 2.1. Let X and G be as in Theorem 1.2 and φ : X → Y

be an extremal contraction to a curve.

Recall that Y is necessarily normal and quasihomogeneous with respect

to an algebraic action of the linear algebraic group G. Thus, Y ∼= P1. If Xη

is a general φ-fiber, it is del Pezzo and quasihomogeneous. Therefore it is

isomorphic to either

• the projective plane P2

• Σ0
∼= P1 × P1

• the first Hirzebruch-surface Σ1, or

• a blow-up of Σ0 in at most two points x1 and x2 such that both natural

projections πi : Σ0 → P1 satisfy πi(x1) 6= πi(x2).

We will show that only the first two cases occur. To start with, fix some

notation:

Notation 2.2. Under the above assumption, for η ∈ Y let Xη =

φ−1(η) be the associated fiber and Gη be the stabilizer of Xη, i.e., the

isotropy group of η.

Recall the following simple fact from minimal model theory which will

be constantly used in the sequel:
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Fact 2.3. (homological equivalence of extremal curves) Let X be a

projective variety with Q-factorial terminal singularities and φ : X → Y

be an extremal contraction (Y not necessarily a curve), D ∈ Div(X) an

irreducible divisor and y ∈ Y a point. If D ∩ Xη is a nontrivial effective

divisor, then it intersects every curve in Xη positively.

Proof. There is a curve C ⊂ Xη intersecting D in a finite set. So

C.D > 0. Let C ′ ⊂ Xη be any other curve. Since φ is a contraction, there

exist a, b ∈ Q+ such that a[C] = b[C ′] as homology classes. Thus D.C ′ =
a
bD.C > 0.

Now we can characterize the φ-fibers:

Lemma 2.4. Under Assumption 2.1, a generic fiber Xη is isomorphic

to P2 or to a 2-dimensional quadric.

Proof. Suppose to the contrary. Then there exist (−1)-curves in Xη.

Choosing one of them, say C, then D := G.C is a divisor intersecting Xη

in Gη.C, i.e., a finite number of (−1)-curves. We will treat the possibilities

for Xη separately and show that in each case the existence of D yields a

contradiction to the homological equivalence of extremal curves.

Assuming Xη
∼= Σ1, there is a unique (−1)-curve C. Hence D∩Xη = C,

and there are curves C ′ ⊂ Xη with C ′.D = 0, a contradiction.

If Xη
∼= P1 ×P1 blown up in one point, there are three (−1)-curves C1,

C2 and C3 contained inXη. They satisfy C1.C2 = C2.C3 = 1 and C1.C3 = 0.

Set D := G.C2. Then, if D ∩Xη contains C1 and C2, C1.D = 0. If D ∩Xη

contains C2 and C3, C3.D = 0. As a last possibility, D ∩ Xη = C2. Then

there exists a curve in Xη which does not intersect D at all. In any case,

the homological equivalence of extremal curves is violated.

The last case is that Xη
∼= P1 ×P1 blown up in two points as described

above. First, we remark that a 1-dimensional subgroup H < G acting non-

trivially on Y cannot be isomorphic to C: if it were, since it’s isotropy at

a generic point η ∈ Y is trivial, given any (−1)-curve C ⊂ Xη, D := H.C

would be a divisor, D ∩ Xη = C, and there would exist curves in Xη not

intersecting D. In particular, this implies that G acts as C∗ on Y .

On the other hand, since Aut0(Xη) ∼= C∗ × C∗, it follows that G acts

as a torus (C∗)3. A contradiction to the assumption.
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2.1. The construction of the quadric-degenerations

In this section we construct concrete examples of varieties over P1

which satisfy the conditions of Theorem 1.2 and whose generic fibers are

smooth quadrics. For this, consider the space V0 := P3×C with coordinates

([x : y : z : w], λ). For any odd integer k > 0, let Xk
0 be the quasi-projective

variety given by:

Xk
0 := {([x : y : z : w], λ) ∈ P3 × C : 4xz − y2 = λkw2}

In order to define an action of SL2 on Xk
0 , let V = V1 ⊕ V3 be the direct

sum of the one- and the three-dimensional irreducible SL2-representation

spaces. After suitable choice of coordinates, the induced action on P3 =

P(V ) stabilizes all quadrics of the form {4xz − y2 = λw2}, where λ ∈ C

is any number. Thus, the trivial extension of this action to P3 × C yields

action on Xk
0 .

Finally, let the group H∗ ∼= C∗ act as follows:

ξ([x : y : z : w], λ) = ([x : y : z : ξ−kw], ξ2λ).

A direct calculation shows that G := H∗ × SL2 acts and stabilizes Xk
0 .

Choosing another odd number l, we construct a similar quasi-projective

variety X l
∞

over C: Again V∞ := P3 × C and X l
∞

:= {4xz − y2 = λlw2}.

Let SL2 act as above and let H∗ act by:

ξ : ([x : y : z : w], λ) 7−→ ([x : y : z : ξlw], ξ−2λ).

The last step of the construction consists in gluing V0 and V∞ in order

to obtain a P3-bundle over P1 which contains the desired quasihomogeneous

space. Define the equivalence relation

V0 3 ([x0 : y0 : z0 : w0], λ0) ∼ ([x∞ : y∞ : z∞ : w∞], λ∞) ∈ V∞

:⇐⇒ λ0λ∞ = 1 and [x0 : y0 : z0 : w0] = [x∞ : y∞ : z∞ : w∞λ
(k+l)/2
∞

].

Consider the equation definingXk
0 and substitute the equivalent coordinates

of V∞:

4x0z0 − y2
0 = λk

0w
2
0

⇐⇒ 4x∞z∞ − y2
∞

=
1

λk
∞

(w∞λ
(k+l)/2
∞

)2

⇐⇒ 4x∞z
2
∞

− y2
∞

= w2
∞
λl
∞

the last equation is that which defines X l
∞

.

There are several things to show:
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2.1.1. X(k,l) has Q-factorial terminal singularities

As a first step, we claim that H∗ acts trivially on the divisor class group

Cl(Xk
0 ). For this, note that if X̃(k,l) is an H∗-equivariant resolution of the

singularities, then there exists an H∗-equivariant surjection Cl(X(k,l)) →

Cl(Xk
0 ) and anH∗-equivariant injectionCl(X(k,l))→Cl(X̃(k,l))=Pic(X̃(k,l)).

But every component of Pic(X̃(k,l)) is a compact torus, i.e., the only alge-

braic H∗-action is trivial — see [Mum66, Lect. 19ff] for the fact that the

action of H∗ on Pic(X̃(k,l)) is algebraic.

Second, observe that Xk
0 has an isolated cDV singularity at ([0 : 0 :

0 : 1], 0), which is terminal of index one (cf. [Rei83, Par. 1]). Furthermore,

X1
0 is smooth.

We claim that all divisors D ⊂ Xk are Q-Cartier. Define a map γ :

Xk
0 → X1

0 by γ : ([x, y, z, w], λ) 7→ ([x, y, z, w], λk). This is a quotient of Xk
0

by an action of Zk. Observe that

D′ :=
∑

ξ∈H∗, ξ2k=1

ξD

is Zk-invariant, hence Cartier. This is the place where we need “k odd”.

AsH∗ acts trivially on the divisor class group ofXk
0 ,D′ is linearly equivalent

to a multiple of D. Consequently, D is Q-Cartier indeed.

The same argumentation holds for X l
∞

.

2.1.2. X(k,l) is G-quasihomogeneous

In order to see that the group actions on the quasi-projective pieces

extend to the entire variety, we show that if v0 = ([x0 : y0 : z0 : w0], λ0) ∼

([x∞ : y∞ : z∞ : w∞], λ∞) = v∞ and g ∈ G, then g.v0 ∼ g.v∞.

A simple calculation shows that this holds if g ∈ SL2. Similarly, if

ξ ∈ H∗,

ξ([x0 : y0 : z0 : w0], λ0) = ([x0 : y0 : z0 : ξ−kw0], ξ
2λ0)

ξ([x∞ : y∞ : z∞ : w∞], λ∞) = ([x∞ : y∞ : z∞ : ξlw∞], ξ−2λ∞)

Now note that (λ0ξ
2)(λ∞ξ

−2) = λ0λ∞ and ξlw∞(λ∞ξ
−2)(k+l)/2 = w0ξ

−k,

showing that ξ([x0 : y0 : z0 : w0], λ0) ∼ ξ([x∞ : y∞ : z∞ : w∞], λ∞). Due to

the product structure, g.v0 ∼ g.v∞ for all g ∈ G.

2.1.3. There exists an extremal ray contraction X(k,l) → P1

Perform a relative Mori contraction ψ : X → Z over P1. Note that if

Xµ is an arbitrary fiber of the map X → P1, then all curves contained in
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Xµ are equivalent as homology cycles: this is clear for the singular fibers

over 0 and ∞ because they are singular quadrics, and also true for the

generic fibers because the action of ±1 ∈ H∗ swaps horizontal and vertical

directions. Consequently, ψ(X) = P1, and the claim is shown.

2.2. The Characterization of Quadric-Degenerations

We will show that every relatively minimal variety over P1 whose generic

fiber Xη is a quadric is isomorphic to some X(k,l). Identify Xη with P1×P1,

and let π1 and π2 : Xη → P1 be the standard projections. Call π1-fibers

“vertical” and π2-fibers “horizontal”.

Proposition 2.5. (Characterization of Quadric-Degenerations) Un-

der Assumption 2.1, if the generic fiber Xη is isomorphic to a 2-dimen-

sional quadric, then X is isomorphic to one of the quadric-degenerations

constructed in Section 2.1.

We subdivide the proof into a number of steps:

Step 1: Description of the S-Action. Let C ⊂ Xη be a horizontal curve

and H < G a one-parameter group acting non-trivially on Y . Let Hη < H

be the stabilizer of Xη and set E := H.C. If Eη := E ∩ Xη = Hη.C is a

union of finitely many horizontal curves, then Eη does not intersect a gen-

eral horizontal curve, contradicting the homological equivalence of extremal

curves (see Fact 2.3). Thus there exists h ∈ Hη: h.C is not horizontal. In

particular, Hη is not trivial and H ∼= C∗ is a torus.

Let S be a maximal semi-simple subgroup of G. As all one-parameter

subgroups of G acting non-trivially on the base are necessarily tori, S acts

trivially on Y . If some S′ ∼= SL2 in S would act only on one factor of

Xη
∼= P1×P1, we derive a contradiction as follows: let T < S′ be a maximal

torus and F ⊂ X it’s fixed point set. Since Xη was chosen to be a general

φ-fiber, the S′-orbits in the neighboring fibers are 1-dimensional, too. So

F is a divisor. By assumption, F ∩ Xη is the union of two horizontal (or

vertical) curves, a contradiction to the homological equivalence of extremal

curves. Thus S = SL2 and it’s action is diagonal. In particular, there exists

an S-invariant diagonal δ ⊂ Xη.

Step 2: The Embedding into a Zariski Bundle. We claim δ is also in-

variant under Gη. Assume to the contrary and let g ∈ Gη be an element

not stabilizing δ. But S has only two orbits in Xη , namely δ and Xη \ δ,
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so that any group containing S and g acts transitively on Xη, i.e., contains

SL2 × SL2. But this is absurd, as we have seen.

Set D := H.δ. The desingularization D̃ of D is then quasihomogeneous.

By classification, D̃ ∼= P1 × P1. This has two consequences: First, as S

acts transitively on the fibers of D̃ → Y , all fibers of the map D̃ → D

are discrete, and the S-action on D does not have a fixed point. Since the

singularities of X are isolated, D does not meet the singular set of X. Thus,

D is Cartier. Second, if U < S is a unipotent group, then the U -fixed points

in D form a curve which is mapped injectively onto P1. This already shows

that φ has maximal rank along these curves so that there are no multiple

fibers. Furthermore, is Xν is any φ-fiber, then Xν is smooth along D ∩Xν .

Recall that φ being an extremal contraction implies that D is relatively

ample. As Xν ∩D is ample and S-invariant, there is no S-invariant curve

in Xν ∩D. In particular, the singular set of Xν is discrete. Since all fibers

are Cohen-Macaulay, it follows from Serre’s criterion that they are normal.

But the only normal SL2-surfaces containing an ample S-invariant divisor

of self-intersection 2 are the 2-dimensional quadrics. Thus, we conclude that

the dimension of the linear system |Xν ∩D| is independent of ν ∈ Y and

that D is relatively very ample, i.e., there exists an embedding X → P(E),

where E := φ∗(O(D)) is a rank 4-vector bundle.

Step 3: Local Description. Knowing that the intersection of D ∩ Xη

yields an equivariant embedding Xη → P3, one sees that there is an S-stable

splitting E = E3⊕E1, where E3 is of rank three and S acts on the fibers via

it’s irreducible 3-dimensional representation and E1 is 1-dimensional with

trivial S-action. Let T < SL2 be the diagonal matrices. Then the direct sum

decomposition of the irreducible SL2-representations into T -weight spaces

yields a T -stable splitting E3 = E−2
3 ⊕ E0

3 ⊕ E2
3 , where T acts on the total

space of Ei
3 with weight i.

As a next step, choose a G-invariant affine subset C ∼= U0 ⊂ Y ∼= P1

containing one of the G-fixed points in Y . Let y be a bundle coordinate

for E0
3 over U0; we view that as giving a T -equivariant map from E0

3 into

the standard 3-dimensional SL2-representation space V2. In order to obtain

an SL2-equivariant map E3|U0 → V2, conjugate y with the going-up and

going-down operators in SL2. This way we obtain coordinates x and z for

E−2
3 and E2

3 , respectively, giving the desired map to V2.

Use these coordinates to view X0 := φ−1(U0) as a subset of P3×C. The

generic fiber is an S-invariant quadric, hence given by c(4xz − y2) = c′w2
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where c, c′ ∈ C∗. Thus, after appropriate choice of coordinates, X∩φ−1(U0)

is given by 4xz − y2 = λkw2 or λk(4xz − y2) = w2 with k ≥ 0. The latter

case is excluded, because all φ-fibers are reduced. Furthermore, if k is even,

the closure of D′ := {x = 0} ∩ φ−1(U0) is a divisor intersecting the generic

fiber in a fiber of the ruling: a contradiction to the homological equivalence

of extremal curves (see Fact 2.3 or to D′ being Q-Cartier. The remaining

case occurs indeed, as was shown in Section 2.1.

Step 4: End of the Proof. After a similar argumentation for the part

of X over U∞ = P1 \ {0}, we again obtain the equations of one of the

quadric-degenerations described in Section 2.1. Note that the transition

map must commute with the action of SL2. On the other hand, the only

automorphisms of the smooth quadric commuting with the diagonal action

of SL2 are the identity and the involution which interchanges the horizontal

and vertical directions. But H1(P1,Z2) = 0, so that either choice gives a

variety which is isomorphic to one of the examples.

2.3. The Construction of the S4-Degenerations

Now we consider the case where Xη
∼= P2. In analogy with the con-

struction of the quadric degenerations, set V0 := P5 × C with coordinates

([a : b : c : e : f : g], λ) and let SL2 act on V0 via it’s 5-dimensional irre-

ducible representation on a . . . f . For a given k ∈ N, let the group H∗ ∼= C∗

act on V0 by

ξ : ([a : b : c : e : f : g], λ) 7−→ ([a : b : c : e : f : ξ−2kg], ξ2λ).

and define Xk
0,q to be the variety given by the ideal

3e2 − 8cf + 4fλkg, ce− 6bf + eλkg,

3be− 48af + 2cλkg + 2(λkg)2, c2 − 36af + 2cλkg + (λkg)2,

bc− 6ae+ bλkg, 3b2 − 8ac + 4aλkg.

Note that for a given λ ∈ C∗ ⊂ P1, the fiber Xλ is isomorphic to P2; the

embedding is given by [x : y : z] → ([x2 : 2xy : 2xz + y2 : 2yz : z2 :

λ−k(4xz − y2)], λ).

Given another number l ∈ N, construct X l
∞,q ⊂ V∞ = P5 ×C with H∗-

action given by ξ : ([a : b : c : e : f : g], λ) → ([a : b : c : e : f : ξ2lg], ξ−2λ).

The same calculations as in Section 2.1 show that Xk
0,q and X l

∞,q glue
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together to a variety X(k,l,q) via the relation

([a0 : b0 : c0 : e0 : f0 : g0], λ0) ∼ ([a∞ : b∞ : c∞ : e∞ : f∞ : g∞], λ∞)

:⇐⇒ λ0λ∞ = 1 and

[a0 : b0 : c0 : e0 : f0 : g0] = [a∞ : b∞ : c∞ : e∞ : f∞ : g∞λ
k+l
∞

].

It is still to be shown that X(k,l,q) has Q-factorial terminal singularities

and it suffices to show this for Xk
0,q. Define Xk

0 as in Section 2.1, even if k

is not odd. Let Z2 act on Xk
0 by

(−1) : ([x : y : z : w], λ) 7−→ ([x : y : z : −w], λ)

We claim that Xk
0,q is the quotient of Xk

0 by Z2. The quotient map is given

by

([x : y : z : w], λ) 7−→ ([x2 : 2xy : 2xz + y2 : 2yz : z2 : w2], λ).

and a direct calculation shows that the quotient is isomorphic to Xk
0,q. See

[Rei87, p. 391] for the fact that the singularities of the quotient are terminal.

In order to show that they are Q-factorial, it is sufficient to see that all Z2-

invariant divisors in Xk
0 are Q-factorial, if restricted to the quasi-projective

parts. If k is odd, this was shown for any divisor. If k is even and D ⊂ Xk
0,q

a Z2-invariant divisor, one can argue similarly and use the fact that

D′ :=
∑

ξ∈H∗, ξ2k=1

ξD

is a multiple of D and Cartier.

The same argumentation as in Section 2.1 shows that there exists an

extremal ray contraction X(k,l,q) → P1.

2.4. The Characterization of the S4-Degenerations

This is in full analogy to the quadric case.

Proposition 2.6. (Characterization of the S4-Degenerations) Under

the Assumption of 2.1, if the generic φ-fiber is isomorphic to P2, then X

is either a Zariski P2-bundle or one of the S4-degenerations constructed in

Section 2.3.

Proof. If X is smooth, take a one-parameter subgroup H < G acting

non-trivially on the base Y . Given a generic fiber Xη, there will always

be a line L ⊂ Xη, invariant under the action of the isotropy group Hη.
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Then D := H.L is a relatively ample divisor intersecting Xη in L. See

[Fuj85, Lem. 2.12] for the fact that this yields an embedding of X into

P(φ∗O(D)) which is a P2-bundle. This must be an isomorphism. Note that

X is automatically smooth if S, the semi-simple part of G, acts non-trivially

on Y .

If X is singular and there is a subgroup S′ < S, S′ ∼= SL2, acting

trivially on Y and having a fixed point on generic fibers, then the subvariety

{x ∈ X | dimS′.x < 2} contains a divisor D which intersects Xη in an S′-

homogeneous line. Now argue as in the proof of Proposition 2.5. Note that,

since D does not contain a fixed point, it is Cartier.

It remains to consider the case where S ∼= SL2 acts trivially on Y and

stabilizes a quadric curve inXη. As above, letD be the union of these curves.

In complete analogy to the proof of Proposition 2.5, all fibers are isomorphic

to P2 or S4, D is Cartier and yields an embedding into a P5-Bundle P(E).

Here E splits S-equivariantly into a direct sum of a 5-dimensional bundle

E5, where S acts via it’s irreducible representation, and a 1-dimensional

bundle E1 where the S-action is trivial. Furthermore, the subbundle P(E5)

is the unique hyperplane intersecting X in D.

We continue to argue as in 2.5, using the fact that all SL2-invariant

subsets in P5, isomorphic to P2 and not contained in the SL2-invariant

hyperplane are given by

3e2 − 8cf + 4fλg, ce− 6bf + eλg,

3be− 48af + 2cλg + 2λ2g2, c2 − 36af + 2cλg + (λg)2,

bc− 6ac+ bλg, 3b2 − 8ac+ 4aλg,

where λ ∈ C∗. Consequently, X is locally given by the equations from Sec-

tion 2.3. There is no choice of how the affine parts can be SL2-equivariantly

glued.

§3. Relatively Minimal Varieties over Surfaces

The primary aim of this section is to classify the relatively minimal

varieties over surfaces. The following lemma describes the case where a

semi-simple group acts in fiber direction.

Lemma 3.1. In the situation of Theorem 1.2, let Y be a surface. If

S < G is a semi-simple group which acts trivially on Y , then X ∼= Y × P1.

In particular, X and Y are smooth.
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Note that some of our arguments involve linearization of group actions

at fixed points. See [Huc90] or [HO80, p. 11f] for information about this.

Proof. Since φ is an extremal contraction and X is assumed to be

Q-factorial, all fibers must be of dimension 1.

Note that S acts transitively on the generic fibers. Thus, S ∼= SL2

and S has no fixed points: a linearization of the SL2-action would give a

contradiction.

Consequently, S acts transitively on all fibers, and if U < S is a maximal

connected unipotent subgroup, and Σ it’s fixed point set, then X = S.Σ ∼=
P1 × Σ.

Due to the preceding Lemma, we may consider for the rest of this

section that the semi-simple part of G acts non-trivially on Y :

Assumption 3.2. Let X and G be as in Theorem 1.2 and let φ :

X → Y be an extremal contraction to a surface. Let S < G be a maximal

semi-simple subgroup and assume that no simple factor of S acts trivially

on Y .

3.1. Varieties over Singular Surfaces

We start with the construction of the relatively minimal varieties over

a singular surface.

Example 3.3. Set X̃ := P(OP2
(e) ⊕OP2

). The automorphism group

of X̃ contains a product G := SL2 × C∗, where SL2 has a fixed point

in P2, 2-dimensional orbits in X̃ and acts trivially on the fiber over the

fixed point. The factor C∗ acts in fiber direction only, i.e., trivially on

P2. Embed Z2 diagonally into G, i.e., consider the subgroup generated by

(Diag(−1,−1),−1). Then X := X̃/Z2 is a singular variety over S2, the cone

over a non-singular conic in P2.

We will see that the examples constructed above are the only varieties

which satisfy the assumption of the Main Theorem 1.2 and are relatively

minimal over a singular surface.

Notation 3.4. Call a divisor D ⊂ X a “rational section” iff it inter-

sects the generic φ-fiber with multiplicity 1. Note that a rational section is

a section iff it does not contain a whole φ-fiber.
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Proposition 3.5. Under the Assumption 3.2, assume that Y is sin-

gular. Then X is one of the varieties constructed in Example 3.3.

Proof. As a first step, construct a rational section. By assumption, S

acts non-trivially on Y . It follows from the classification that Y ∼= Sn, the

cone over a rational normal curve and S ∼= SL2. The S-isotropy Sη of a

generic point η ∈ Y is an extension of a maximal unipotent group by a

cyclic group. Thus, Sη fixes at least one point in the fiber Xη so that the

closure E of at least one S-orbit is a rational section indeed.

The Weil-divisor E is not Cartier, or else use [Fuj85, Lem. 2.12] and

obtain a contradiction to “Y singular”. Thus, X is singular.

The next step is to construct a cover of X. Observe that a fiber Xµ

that intersects the singular set Sing(X) is pointwise S-fixed. Linearize the

S-action at a generic point f ∈ Xµ and note that, after proper choice of

coordinates, one may identify a neighborhood U(f) ∼= ∆1 × ∆2, where ∆1

is a one-dimensional and ∆2 a 2-dimensional ball. We can assume that S

acts only on the second component and that the map φ|U(f) is given by the

projection to the second factor followed by taking the quotient by Zn.

Let γ : P2 → Sn be the natural cyclic cover. Observe that γ is S-

equivariant and set X ′ := X ×Sn
P2. Calculating the preimage of U(f) one

obtains ∆1 × (n copies of ∆2 ⊂ C4 meeting in a point). If X̃ is the normal-

ization of X ′, the preimage of U(f) becomes ∆1 × (∆2
∐

· · ·
∐

∆2), so that

X̃ is a n : 1 cover over X, with finite singular set. The calculation also

shows that X̃ is Galois with group Γ = Zn.

We claim that X̃ is a split Zariski P1-bundle over P2 : X̃ ∼= P(L ⊕ O).

If φ̃ : X̃ → P2 is the natural map, consider the φ̃-fiber X̃µ over the unique

S-fixed point in P2. As it’s image in X is pointwise S-fixed, X̃µ is, too.

Using the linearization argument, let Ẽ be the closure of a generic S-orbit,

intersecting X̃µ in a generic point. Observe that Ẽ contains a unique S-fixed

point and is smooth there. Consequently, Ẽ is a smooth section, X̃ = P(E)

is a Zariski P1-bundle and, as all Ext-groups on P2 vanish, E is split: we

may assume E = OP2
(e) ⊕OP2

.

We must show that the action of Γ is the same as in the Example 3.3

above. Identify an SL2-invariant neighborhood of X̃µ with C2×P1 in a way

that S acts on the first factor only. By equivariance, Γ maps S-orbits to S-

orbits. Consequently, the quotient by Γ has two cyclic quotient singularities

of type 1
n(1, 1, a) and 1

n(1, 1,−a). As quotient singularities are terminal only
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if of type 1
n(1, a,−a) (cf. [Rei87, Sect. 5.3]), n = 2 and a = 1. This yields

the claim.

3.2. Varieties over Smooth Surfaces

In [Keb98] we were discussing the possibility to compactify homoge-

neous spaces to particularly simple varieties. We refer the reader to Sec-

tion 5.2 of that paper for a proof of the fact that the X is a automatically a

Zariski P1-bundle if X is relatively minimal over a smooth surface and G is

not solvable. The rest of Section 3 is concerned with an investigation which

rank-two vector bundles do actually occur. We assume that X is a Zariski

bundle without further mention.

Remark that under the Assumption 3.2 Y is a rational G-quasihomo-

geneous surface with non-trivial S-action. Since X is now supposed to be

smooth, Y is smooth, so that Y ∼= Σn or P2. Later on, we will consider

these cases separately.

Notation 3.6. Let φ : X → Y be as above and assume that there

exists a map π : Y → Z ∼= P1, e.g. if Y is isomorphic to a (blown-up)

Hirzebruch surface Σn. Then, if F ∈ Z is a generic point, set FY := π−1(F )

and FX := φ−1(FY ).

3.3. The Construction of the Diagonally Twisted Bundles

The following varieties will be of great importance in the classification:

3.3.1. The Construction of the XΣn,k0,k∞

Let Y be the Hirzebruch-surface Σn, n > 0 and X := Y × P1. Let

S := SL2 act on Y and P1 and let S act onX diagonally, i.e., simultaneously

on both components.

We claim that S acts almost transitively on X and that the exceptional

set (i.e., the complement of the open orbit) contains a unique S-invariant

section over Y . In order to see this, let B < S be the Borel group of S

stabilizing FX . The B-action on FX is very special: Since the S-action on

Σn stabilizes the 0- and the ∞-sections, the B-action on FX stabilizes two

fibers. Therefore the unipotent part BU of B acts in fiber direction only,

showing that the B-action on FX is quasihomogeneous and that there is

exactly one B-invariant section in FX . Using the S-action in order to move

FX around shows that S does indeed act almost transitively and that there

is a unique S-invariant rational section E. The fact that S does not have
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any fixed points on Y immediately implies that E is indeed a section and

E ∼= Y ∼= Σn. Let E0 and E∞ denote the 0- and ∞-section of E, respectively.

The curves E0 and E∞ are the only S-invariant subsets in E. We can

now perform an elementary transformation with center being E0 or E∞,

obtaining a new P1-bundle which is not necessarily the compactification of

a line bundle. By elementary transformation we understand the process of

blowing up E0 and then blowing down the strict transform of φ−1φ(E0).

Such transformations always exist; see [Mar73] for a complete reference.

Since the centers of the transformations are SL2-invariant, SL2 acts on the

transformed varieties, and the entire procedure is equivariant.

The strict transform of E is again invariant and isomorphic to Σn so

that one may iterate the process. Let XΣn,k0,k∞
be the variety obtained by

transforming k0 times with center being the 0- and k∞ times with center

being the ∞-section of E. Let Fk0,k∞
be the strict transform of FX in

XΣn,k0,k∞
.

As above, BU acts on Fk0,k∞
by adding multiples of a section. Note

that Fk0,k∞

∼= Σk0+k∞
and the sections added by BU vanish of order k0 at

Fk0,k∞
∩ E0 and of order k∞ at Fk0,k∞

∩E∞.

3.3.2. The Construction of the XΣ0,n

Let S := SL2 act diagonally on Y = Σ0. Since S is a simply-connected

semi-simple group and H1(Y,O) = 0, the S-action on Y can be lifted to

the total space of any line bundle O(n,m) over Y ; see [HO80, p. 98] for

details. For n ∈ N+ the group S therefore acts on the compactification

X = P(O(n,−n) ⊕ O) which is a P1-bundle φ : X → Y . This lifting is

unique up to the C∗-action given by the principal C∗-actions on the first

factor.

Let σ0 and σ∞ be the S-invariant sections defined by the direct sum

structure. Since there are no other sections, it follows that S acts transitively

on the complement X \ (σ0 ∪σ∞ ∪∆X), where ∆X is the preimage π−1(∆)

of the S-invariant diagonal ∆ in Y .

If i : ∆ ↪→ Y is the canonical embedding, then i∗(O(n,−n)) is trivial.

Thus φ|∆X
: ∆X → Y is the trivial P1-bundle and therefore all S-orbits in

∆X are 1-dimensional sections over ∆ = P1.

Let C = Sx be such a section which does not lie in σ0 ∪ σ∞ and define

XΣ0,n to be the elementary transformation of X with respect to C in ∆X .

This manifold is still an S-equivariant P1-bundle over Y . However now the

transforms σ′0 and σ′
∞

intersect transversally in an S-orbit C ′ = Sx ∼= P1
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over ∆.

Given any two S-orbits Ci := Sxi as above, there exists a unique trans-

formation g of the C∗-action which commutes with the S-action so that

g(C1) = C2. This defines an S-equivariant isomorphism between the spaces

X1
Σ0,n and X2

Σ0,n which are defined by elementary transformations along

C1 and C2 respectively. In this sense the diagonally twisted bundle XΣ0,n is

uniquely defined.

3.4. The Classification of S-quasihomogeneous Bundles

3.4.1. Bundles over Σn

The following lemma gives a first characterization of split Zariski bun-

dles:

Lemma 3.7. Under the Assumption 3.2, assume additionally that Y ∼=
Σn and that FX

∼= P1 × P1, where FX is defined as in Notation 3.6. Then

X is isomorphic to a fibered product : X ∼= Y ×Z Y
′. In particular, X is a

split Zariski bundle: X ∼= P(L ⊕O).

Proof. The space X has relative Picard-number 2 over Z and the

general fiber FX is Fano. Thus, there exists a second Mori-contraction φ′ :

X → Y ′ over Z which is different from φ.

The Picard-number of Y ′ is 2, so Y ′ is not a curve. If dimY ′ = 3, then

the contraction was divisorial inducing a contraction from FX to a surface,

which is obviously impossible. Therefore, the contraction φ′ is of fiber type.

Consequently X is a P1-bundle over Y ′ with fibers being the horizontal

curves in FX and their translates.

With the aid of the preceding lemma we can now carry out the classi-

fication of S-quasihomogeneous bundles over Σn.

Proposition 3.8. (Characterization ofXΣn,k0,k∞
)Under the Assump-

tion 3.2, if Y ∼= Σn, n > 0 and S acts almost transitively on X, then either

X ∼= Y × P1, or S ∼= SL2 and there exist numbers k0, k∞ ≥ 0 such that

X ∼= XΣn,k0,k∞
is one of the diagonally twisted bundles constructed in Sec-

tion 3.3.1.

Proof. Since no factor of S acts trivially on Y , S ∼= SL2. There are

exactly two S-invariant curves σ0, σ∞ in Y ; these are sections over Z.

Call the preimages φ−1(σ0) and φ−1(σ∞) of these sections A0 and A∞,

respectively.
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Figure 1: an algorithm for simplifying special P1-bundles

The S-invariant divisors in X: Let FX be as in Notation 3.6. If B is the

Borel group in SL2 stabilizing FX , then, because FX ∩A0 and FX ∩A∞ are

invariant, BU , the unipotent part of B, acts trivially on the base. Instead,

BU acts on the fibers of φ|FX
and fixes a unique point in each. Consequently

there exists a unique B-invariant section in FX ; other B-invariant curves

are the fibers A0 ∩ FX and A∞ ∩ FX . Using S to move FX , one sees that

the only closed S-invariant divisors are A0, A∞ and a unique section, called

E. Furthermore, E ∩ FX being the only B-invariant section implies that

E ∩ FX is the unique curve of negative self-intersection in FX if FX
∼= Σm,

m > 0.

Application of the Algorithm: As a next step perform the sequence

of elementary transformations given by the algorithm outlined in Figure 1.

One must show that the algorithm stops. Since the center of the elementary

transform intersects FX in a point not contained in E, i.e., not contained

in the ∞-section of FX , the self-intersection of E ∩ FX in FX rises by one.

Since it was negative when the algorithm started, it will eventually become

zero, implying FX
∼= Σ0, and the process terminates.

We claim that the point “Stop (B)” is never arrived at, i.e., A0 and

A∞ having only one S-invariant curve implies FX
∼= Σ0. Note that S has
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only one invariant curve in A0 and A∞ if and only if A0, A∞
∼= Σ0 and S

acts diagonally. This implies that BU has unique fixed points in FX ∩ A0

and FX ∩ A∞, namely the intersection with E. Consequence: if σ ⊂ FX is

a section not intersecting E and u ∈ BU \ {1}, then σ, u.σ and E ∩ FX are

three mutually disjoint sections in FX over FY . Therefore FX
∼= Σ0.

The Situation where the Algorithm stops: Let us now assume that the

algorithm already stopped, i.e., FX
∼= Σ0. Apply Lemma 3.7: as the algo-

rithm terminates, the transformed variety is isomorphic to Y ×Z Y
′. Now

to say that there is a unique B-invariant section in FX over FY which is

not diagonal, it is equivalent to say that there exists a unique S-invariant

curve in Y ′. Hence Y ′ ∼= Σ0 and SL2 acts diagonally. In particular, X is

the trivial bundle over Y and SL2 acts diagonally. Recall that this is the

starting situation of Section 3.3.1.

End of the Proof : As a last step there is to prove that the inverses of the

transformations we performed are the transformations used in Section 3.3.1,

i.e., elementary transformations with center being E0 or E∞. This, however,

is clear if one takes into account that the algorithm transforms with centers

being curves in A0 or A∞ not intersecting E.

3.4.2. Bundles over Σ0

The primary goal of this section is to characterize the diagonally twisted

P1 bundles over Σ0
∼= P1 × P1. It is necessary to prove that sections which

arise as closures of S-orbits are either disjoint or intersect transversally. The

following lemma is a first step in this direction.

Lemma 3.9. Let B < SL2 be a Borel group and Σn a Hirzebruch-

surface with a surjection φ : Σn → P1. Assume that B acts almost transi-

tively on Σn and that Σn contains two B-invariant sections σ1 and σ2 over

P1. Then either σ1 and σ2 are disjoint or they intersect transversally.

Proof. As a first step, remark that there are at most 2 B-invariant sec-

tions in Σn. The existence of a third would contradict the almost transitive

action, because if η ∈ P1 is a point in the open orbit, then it’s isotropy group

must act almost transitively on the fiber Xη and fix the intersection with of

Xη all invariant sections. But there are no non-trivial automorphisms of a

generic fiber fixing three points. This means that we only need to find two

disjoint or transversal sections in order to prove the claim.

The same line of argument shows that B may not have two fixed points

on the base P1, for otherwise the unipotent part U of B would act trivially
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on P1. Thus, if Xη is a general fiber, U would stabilize Xη . But U acts non-

trivially on Σn, because Σn and B both have dimension 2. Consequently,

U would act non-trivially on Xη, and Xη contains only one point which is

invariant under the isotropy group Bη. So there would only be one invariant

section.

We prove the lemma by induction

Start of Induction: n = 0. Assume without loss of generality that φ :

Σ0
∼= P1 × P1 → P1 is the projection onto the first factor. If the B-action

on the second factor has two fixed points, then there are 2 disjoint sections,

and we are finished. Otherwise, note that there is only one B-action on P1

with exactly one fixed point — up to isomorphy. Thus, after appropriate

choice of coordinates, we can assume that B acts diagonally on Σ0. In this

situation B stabilizes the diagonal in Σ0 and a fiber of the projection to the

second factor. These curves meet transversally.

Step of Induction: Assume that the lemma is true for all numbers

smaller than a given n > 0. We will assume that the lemma is false for

n and derive a contradiction. Thus, suppose that we are given two B-

invariant divisors σ1 and σ2 which do not intersect transversally. Let σ1

be the unique curve of negative self-intersection in Σn, this curve is a sec-

tion which is invariant under the full automorphism group. Let F be the

unique B-invariant φ-fiber, the preimage of the B-fixed point in P1.

Claim: the group B has two fixed points in F .

If the claim holds, then we can perform a B-equivariant elementary

transformation where we choose the center to be the B-fixed point which

is not contained in σ1. If X ′ is the transformed variety and σ′1 and σ′2
are the strict transforms of σ1 and σ2, then σ′1 and σ′2 still intersect non-

transversally: the intersection number σ′1.σ
′

2 is even bigger than σ1.σ2. On

the other hand, by choice of the center, X ′ ∼= Σn−1. We obtain a contradic-

tion to the induction hypothesis and are finished.

It remains to show the claim. Again assume to the contrary, i.e., as-

sume that there was only one B-fixed point in F . Let T < B be a torus.

Since all B-actions on P1 which have only one fixed point are isomor-

phic, we know that T acts on F ∼= P1 with weight 2. Similarly, T acts

on σ1 with weight 2; this is because σ1 is a section and the restricted map

φ|σ1
: σ1 → P1 is equivariant. Now linearize the T -action at the intersection

point σ1 ∩ F . Realize that F and σ1 intersect transversally. But the only

2-dimensional T -representation space containing two T -invariant curves of

weight 2 which additionally intersect transversally has weights (2, 2). Thus,
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any two T -invariant curves passing through the intersection point must in-

tersect transversally. But since the intersection σ1∩σ2 is B-fixed, σ1∩σ2 ⊂ F

so that σ1 and σ2 are two T -invariant curves passing through σ1 ∩ F . This

is absurd.

Proposition 3.10. (Characterization of the XΣ0,n) Under the As-

sumption 3.2, if Y ∼= Σ0 and S acts almost transitively on X, then X

is a splitting bundle or one of the diagonally twisted bundles XΣ0,n from

Example 3.3.2.

Proof. To start with, choose a morphism π : Y → Z × P1 and define

F , FX and FY as in Notation 3.6. If FX
∼= Σ0, we are finished by using

Lemma 3.7. Thus, assume that FX
∼= Σn, n > 0. No simple factor of

S acts trivially on Y . Thus either S ∼= SL2, acting diagonally on Y or

S ∼= SL2 × SL2.

If S ∼= SL2 × SL2, let S′ < S be the factor of S acting trivially on

Z and note that there are always two disjoint S′-invariant sections σ1 and

σ2 in FX over FY . If S′′ is the other factor of S, then S′′ must stabilize

the locus where S′ has 1-dimensional orbits; this is because S′ and S′′

commute. In particular, S′′.σ1 and S′′.σ2 ⊂ FX are two disjoint sections

over Z, displaying X as a splitting Zariski bundle.

For the remainder of the proof consider the situation where S ∼= SL2.

The isotropy Sη at a generic point η ∈ Y is a torus. This torus fixes two

points in the associated Sη-invariant φ-fiber Xη, and a standard argument

shows that the closures of their S-orbits are rational sections. If these are

disjoint, we can stop here. Thus, assume that they have non-trivial inter-

section. We claim that X ∼= XΣ0,n.

As a first step in this direction show that the σ• intersect transversally.

In order to see this, consider the stabilizer B of FX , which is a Borel-

subgroup of S. The curves σ1∩FX and σ2∩FX are two B-invariant sections

in FX over FY which intersect in a single point. Lemma 3.9 claims that

the intersection of these curves must be transversal. This transversality

implies that the sections become disjoint if one performs an elementary

transformation with center σ1 ∩σ2. In other words, if X ′ is the transformed

variety, then the strict transforms of σ1 and σ2 are disjoint. This already

shows that X ′ is a splitting Zariski bundle.

The Triviality of the Bundle over the Diagonal : If ∆X denotes the

preimage of the S-invariant diagonal ∆ ⊂ Y , then ∆X contains the center
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of the transformation and is transversal to both σ1 and σ2. Thus, after

blowing up σ1 ∩ σ2, the strict transform of ∆X becomes disjoint from the

strict transforms of the σ•. This in turn implies that the exceptional divisor

of the blow-up is isomorphic to Σ0, and S acts with one-dimensional orbits

there. By construction, the same holds for the preimage of ∆ in X ′. So X ′

is of the form P(O(n,−n) ⊕ O) since these are the only split P1-bundles

which are trivial over the diagonal.

We have seen that the center of the back-transformationX ′
99K X is not

contained in one of the S-invariant sections. So that back-transformation is

exactly the construction performed in Example 3.3.2.

This establishes the isomorphy X ∼= XΣ0,n once we know that n 6= 0.

Recall that SL2 acts almost transitively on X ′. But if n was 0, then X ′ ∼=
Σ0 ×P1 was the trivial bundle and SL2 having one-dimensional orbits over

the diagonal would imply that SL2 acts trivially on the second factor, a

contradiction.

This proves X ∼= XΣ0,n, and the claim is shown.

3.4.3. Bundles over P2

The classification of bundles over P2 is mainly a corollary of the classi-

fications we have carried out already.

Proposition 3.11. Under the Assumption 3.2, if Y ∼= P2 and S acts

almost transitively on X, then X is isomorphic to a splitting P1-bundle, to

the flag manifold F(1,2)(3), a blow-down of XΣ1,k0,0, or to a quotient of one

of the relatively minimal varieties over Σ0.

Proof. We tell between the possible S-actions on Y :

S ∼= SL3: If SL3 acts transitively on X, then X ∼= F(1,2)(3); this follows

from the classification of the homogeneous manifolds. See [Win95].

Otherwise, the exceptional set E is an unbranched cover of P2. A

connected component ofE is a section, realizing Y as a splitting Zariski

bundle.

S ∼= SL2, and S has a fixed point µ ∈ Y : Blow up the φ-fiber Xµ an

obtain a P1-bundle X ′ → Y ′ ∼= Σ1. Let E ⊂ X ′ be the exceptional

divisor of the blow-up. By Proposition 3.8, there are only two possi-

bilities:
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If X ′ is a splitting Zariski bundle, then let σ1 and σ2 be two

disjoint sections over Y . They intersect E in two different fibers of the

fibration E → Xµ. Consequence: the images of σ1 and σ2 in X are

disjoint sections, too. Thus X is split.

IfX ′ ∼= XΣ1,k0,k∞
, claim that k∞ = 0. As a first step, realize that S

acts non-trivially on Xµ, or else a linearization argument would reveal

that S has only 2-dimensional orbits. Thus, S acts diagonally on E,

and there is exactly one S-invariant curve in E. This already shows

that k∞ = 0, for otherwise E had to contain two distinct S-invariant

curves: the intersection with the unique S-invariant section over Y ′

and the center of the back-transformation XΣ1,k0,k∞−1 99K XΣ1,k0,k∞
.

S ∼= SL2, and S does not have a fixed point in Y : Recall that there

exists an S-equivariant cover γ : Σ0 → P2. The pull-back X ′ := X ×Y

Σ0 is S-quasihomogeneous. It was shown in Proposition 3.10 that X ′

is a splitting bundle or X ′ ∼= XΣ0,n, and X is a quotient of X ′ by Z2.

3.5. The Remaining Cases

It remains to consider the cases where S does not act almost transi-

tively. We start with a classification of the varieties over Σn.

Proposition 3.12. Under the Assumption 3.2, if Y ∼= Σn and S has

generic orbits of dimension ≤ 2, then X is a splitting Zariski bundle.

Proof. If S acts almost transitively on Y , then there is a subgroup

S′ < S acting almost transitively on Y with S′ ∼= SL2. Hence, assume

without loss of generality that S ∼= SL2. Choose π : Y → Z ∼= P1. If

FX
∼= Σ0, apply Lemma 3.7 and stop. Otherwise, let B < S be the Borel-

group stabilizing FX and note that the generic B-orbit in FX has dimension

at most 1.

Claim: there are two disjoint B-invariant sections σ0, σ∞ in FX over

FY .

In order to prove the claim, let T < B be a maximal torus. Recall that

T is not normal in B. Thus T acts non-trivially on FX , and a curve on FX

is B-invariant if and only if it is T -invariant. Now the claim follows from

the following fact: a maximal torus in Aut(Σm) always contains a subtorus

whose fixed point set are two sections.
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Now we apply the claim: D• := S.σ• are disjoint sections in X over Y ,

and we are finished.

If S acts on Y with 1-dimensional orbits, then choose π : Y → Z so

that S acts trivially on Y . Now there are two possibilities: the first is that

FX
∼= Σm, where m > 0. But then there are necessarily two disjoint sections

in FX over FY . Recall that the set D := {x ∈ X | dimS.x ≤ 1} is closed.

By what we saw above, D is a 2 : 1 unbranched cover over Y . But Y is

simply connected. Thus, D consists of 2 disjoint sections, and X is a split

Zariski bundle.

It remains to consider relatively minimal varieties over P2.

Proposition 3.13. In the setting of 3.2, if Y ∼= P2, and S has generic

orbits of dimension ≤ 2, then X is a splitting bundle.

Proof. Consider the different possibilities for the S-action on Y .

S ∼= SL3: All SL3-orbits are isomorphic to P2 and, by S acting transitively,

are unbranched covers of Y . Three of them yield the identification with

the trivial bundle.

S ∼= SL2, and S has a fixed point µ ∈ Y : We blow up the φ-fiber Xµ,

obtain a P1-bundle over Σ1 and apply Proposition 3.12. Argue as in

the proof of Proposition 3.11 to see that X is split as well.

S ∼= SL2, and S does not have a fixed point in Y : Take a Borel group

B < S. The isotropy Bη of a generic point in η ∈ Y is finite and cyclic.

Hence there exists unique Bη-invariant point f ∈ Xη and D := B.f

is a unique S-invariant section. The vanishing of all Ext-groups yields

the claim.

§4. Relatively Minimal Varieties over a Point

Now we prove the classification Theorem 1.2 under the additional as-

sumption that Y is a point. The next lemma shows that nontrivial varieties

occur only if the semi-simple part S of G is isomorphic to SL2.

Lemma 4.1. Under the assumption of Theorem 1.2, assume that Y is

a point. If G contains a connected semi-simple group S other than SL2,

then X ∼= P3, Q3 or the weighted projective space P(1,1,1,2).
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Proof. First assume that X is singular and let X̃ → X be an equiv-

ariant resolution of the singularities. By [Mor82, Cor. 3.6], there exists a

relative contraction ψ : X̃ → X ′ over X. Note that ψ must be divisorial. If

E is the exceptional divisor, use the classification of [Mor82, Thm. 3.3] to

see that E ∼= P2, P1 × P1 or a singular quadric. As the map S → Aut(E)

may not have a positive dimensional kernel, S acts transitively on E. This

already rules out the singular quadric. No G-invariant curve or divisor may

intersect E. Consequently, the G-exceptional set in X ′ contains an isolated

fixed point. By [HO80, Thm. 1 on p. 113], X ′ is a cone over a rational

homogeneous surface. Again using the [Mor82, Thm. 3.3], only P3 and the

blow down of the ∞-section of P(OP2
(2) ⊕ OP2

) are possible. This variety

is isomorphic to P(1,1,1,2). By equality of the Picard-numbers, X ′ = X.

If X is smooth and homogeneous, then claim that X ∼= P3 or Q3. If the

complement of the open orbit has dimension< 2, then use [HO80, Thm. 1 on

p. 113 and Thm. 1 on p. 121] to yield the claim (the other varieties occurring

in the classification are either not rational or have higher Picard-numbers).

If the G-exceptional set contains a divisor E, then S acts non-trivially on

E, and E ∼= P2 or P1 ×P1. Now [Bǎd82, Thms. 1 and 5] apply, showing the

claim.

As a next step we rule the possibility out that the generic S-orbit is a

curve.

Lemma 4.2. Under the assumption of Theorem 1.2, let Y be a point.

If G contains a subgroup S ∼= SL2, then the generic S-orbit is of dimension

2 or 3.

Proof. Assume to the contrary and let C ⊂ X be any curve which

is not SL2-invariant. Then D := SL2.C is an S-invariant divisor and the

generic S-invariant curve does not intersect D. A contradiction to X being

minimal over a point.

The case that the generic SL2-orbit is 2-dimensional has been classified

in [Keb99]. The main result of that paper is that X ∼= Q3, P3, P(1,1,1,2) or

P(1,1,2,3).

The case that SL2 acts almost transitively will be considered now. As a

first step we recall that the assumption on Q-factorial singularities already

implies that X is smooth.
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Lemma 4.3. Let X be a projective 3-dimensional variety with at most

terminal singularities, quasihomogeneous with respect to an algebraic action

of SL2. Then either X is smooth or not Q-factorial.

Proof. If X is not smooth, the singularities are isolated, hence fixed.

Let p ∈ X be a singular point. Recall that X can equivariantly embedded

into a projective space. Together with the complete reducibility of SL2

representations this yields an embedding of a neighborhood A of p into a

representation space V such that A is realized as the closure of an SL2

orbit. A linearization argument using the assumption that SL2 has a three-

dimensional orbit yields that p is necessarily the unique fixed point in A;

consequently, it’s image is 0.

Follow the proof [Kra85, Lemma 5 on p. 210] in order to construct two

divisors D1, D2 ⊂ X with D1 ∩D2 = {p}.

Since X is smooth, it must be contained in Iskovskih’s list. It remains

to identify those varieties which occur in our context.

Proposition 4.4. In the setting of Theorem 1.2, let Y be a point. If

S = SL2 acts almost transitively on X, then X is one of the following

Fano-varieties: P3, Q3, V
S
22 or V5.

Proof. We have already seen that X is necessarily smooth. Let T < S

be a maximal torus, and let F ⊂ X be the set of T -fixed points.

If F is discrete, use a linearization argument to see that the Lefschetz-

index of every fixed point is positive. The Borel fixed point theorem asserts

that F is not empty. Thus, χ(X) > 0 by the Hopf index theorem. We know

already that b0 = b6 = 1, b1 = b5 = 0 as X is rational and b2 = b4 = 1 by

the assumption that ρ(X) = 1. Accordingly, χ(X) > 0 is possible iff b3 < 4.

The classification of Iskovskih implies already that only P3, Q3, V5 and V22

are possible. Recall that the only quasihomogeneous variety of type V22 is

the special V S
22.

If F is not discrete, then let H be a component of E, the complement of

the open S-orbit in X, such that dim(F ∩H) = 1. Since S is 3-dimensional,

E is of pure dimension 2 and is the support of an effective divisor generat-

ing the anticanonical bundle −KX . The S-action on H cannot be almost

transitive; instead, the generic S-orbit must be 1-dimensional. Furthermore,

X does not contain an S-fixed point, or else a linearization at this point

would reveal a contradiction to the quasihomogeneous action of S, there
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being no 3-dimensional representation of SL2 with 3-dimensional orbits.

This implies already that the normalization H̃ of H must be smooth. The

closed and disjoint S-orbits realize H̃ as a product H̃ ∼= C × P1, where C

is a smooth curve and S acts on the second factor only. In particular, there

is no isolated T -fixed point in H̃, and also none in H. As a next step, show

that H is smooth. In order verify this claim, note that F ∩H is smooth and

that every S-orbit in H intersects F ∩H transversally. If H was singular,

let x ∈ Hsing be a T -fixed point. If U < SL2 is a one-parameter group not

fixing x, then by what we said above, the map

F × U −→ E

(f, u) 7−→ u.f

has maximal rank at (x, 1), a contradiction. The adjunction formula and

the non-triviality of KH show that H is Fano. So H ∼= P1 ×P1 and [Bǎd82,

Thm. 5] yields the claim.

References
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