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LOCALLY TRIVIAL FIBRATIONS

WITH SINGULAR 1-DIMENSIONAL STEIN FIBER

OVER q-COMPLETE SPACES

MIHNEA COLŢOIU and VIOREL VÂJÂITU

Abstract. In connection with Serre’s problem, we consider a locally trivial
analytic fibration π : E −→ B of complex spaces with typical fiber X. We show
that if X is a Stein curve and B is q-complete, then E is q-complete.

§1. Introduction

Let π : E → B be a locally trivial analytic fibration of complex spaces

with Stein fiber X of dimension n.

The following question was raised by Serre [17]:

Under the above assumptions, does it follow that E is Stein if B is Stein?

The answer is ’Yes’ for n = 0 (Stein [23] and Le Barz [12]) and n = 1

(Mok [13]. In fact, some partial results were previously proved by various

authors, Siu [19], Sibony [18], Hirschowitz [9], etc).

However, for n ≥ 2 there are counterexamples to Serre’s question (see

Skoda [21], Demailly [7], and Coeuré–Loeb [3]).

Related to this circle of ideas we study the case when the base B is

q-complete. The normalization is chosen such that Stein spaces correspond

to 1-complete spaces.

For n = 0, i.e., E is a topological covering of B, Ballico [2] proved the

q-completeness of E. This is a particular case of a result due to Vâjâitu [24]

which gives that if π : Y → Z is a locally trivial analytic fibration with

hyperconvex fibre and Z is q-complete, then Y is q-complete. (A complex

space S is said to be hyperconvex if S is Stein and has a negative exhaustion

function which is continuous and plurisubharmonic.)

For n = 1, in order to generalize Mok’s result, Vâjâitu [26] showed if

X is non-singular, E is q-complete if B is q-complete. It remained the open

problem when X is a singular Stein curve.
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Our main result gives a complete answer to this question. It can be

stated as follows.

Theorem 1. Let π : E → B be a locally trivial analytic fibration with

typical fiber X. If X is a Stein curve and B is q-complete, then E is q-

complete, too.

We remark that for q = 1 the above theorem can be deduced from

the case when the fiber is non-singular. This is due to the fact that the

class of Stein spaces is invariant under finite holomorphic surjections (see

Narasimhan [14]).

When q > 1 the situation is drastically different because it is not known

(see Colţoiu [6]) if the following holds:

Let p : Y → Z be a finite surjective holomorphic map of complex spaces.

Assume Y is q-complete. Does it follow that Z is q-complete?

(When Z is q-complete, then Y is q-complete. See Vâjâitu [25].)

To avoid this difficulty we use essentially an approximated extension of

q-convex functions defined on complex subspaces with control of the direc-

tions of positivity of the extended function.Also the quasi-plurisubharmonic

functions (Peternell [15]; see also Demailly [8]) will play an important rôle

in the proof.

§2. Preliminaries

Throughout this paper all complex spaces are assumed to be reduced

and with countable topology.

Let Y be a complex space and TyY denotes the (Zariski) tangent space

of Y at y. Set TY = ∪y∈Y TyY .

A subset M ⊂ TY is said to be a linear set over Y (of codimension

≤ q − 1) if for every point y ∈ Y , My := M ∩ TyY ⊂ TyY is a complex

vector subspace (of codimension ≤ q − 1). If W ⊂ Y is an open subset, we

have an obvious definition of the restriction M|W .

Let π : Z → Y be an analytic morphism of complex spaces and M
a linear set over Y . For every z ∈ Z we have an induced C-linear map of

complex vector spaces π∗,z : TzZ → TyY , where y = π(z). We set

π∗M :=
⋃

z∈Z

(π∗,z)
−1(My).
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Clearly, π∗M is a linear set over Z. Moreover, if codim (M) ≤ q − 1, then

codim (π∗M) ≤ q − 1.

A (local) chart of Y at a point y ∈ Y is a holomorphic embedding

ι : U → Û , where U 3 y is an open subset of Y and Û is an open subset of

some euclidean space Cn. Holomorphic embedding means that ι(U) is an

analytic subset of Û and the induced map ι : U → ι(U) is biholomorphic.

Suppose ι : U → Û is a local chart at y; then the differential map

ι∗,y : TyY → Cn of ι at y is an injective homomorphism of complex vector

spaces.

Let D ⊂ Cn be an open subset. A function ϕ ∈ C∞(D,R) is said to

be q-convex if the quadratic form

L(ϕ, z)(ξ) =
n∑

i,j=1

∂2ϕ

∂zi∂z̄j
(z)ξiξ̄j , ξ ∈ Cn,

has at least n− q + 1 positive eigenvalues for every z ∈ D, or equivalently,

there exists a family {Mz}z∈D of (n − q + 1)-dimensional complex vector

subspaces of Cn such that L(ϕ, z)|Mz
is a positive definite form for all z ∈ D.

Let Y be a complex space. A function ϕ ∈ C∞(Y,R) is said to be q-

convex if every point of Y admits a local chart ι : U → Û ⊂ Cn such that

there is an extension ϕ̂ ∈ C∞(Û ,R) of ϕ|U which is q-convex on Û . (This

definition does not depend on the local embeddings.)

We say that Y is q-complete if there exists a q-convex function ϕ ∈

C∞(Y,R) which is exhaustive, i.e., the sublevel sets {ϕ < c}, c ∈ R, are

relatively compact in Y .

The following is due to Peternell [15].

Definition 1. Let Y be a complex space, W ⊂ Y an open set, M a

linear set over W , and ϕ ∈ C∞(W,R).

(a) Let y ∈ W . Then we say that ϕ is weakly 1-convex with respect to

My if there are: a local chart ι : U → Û of Y with y ∈ U ⊂W , Û ⊂ Cn open

set, and an extension ϕ̂ ∈ C∞(Û ,R) of ϕ|U such that L(ϕ̂, ι(y))(ι∗,yξ) ≥ 0

for every ξ ∈ My.

We say that ϕ is weakly 1-convex with respect to M if ϕ is weakly

1-convex with respect to My for every y ∈W .

(b) The function ϕ is said to be 1-convex with respect to M if every

point of W admits an open neighborhood U ⊂ W such that there exists a

1-convex function θ on U with ϕ− θ weakly 1-convex with respect to M|U .
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It is not difficult to see that the extension ϕ̂ of ϕ is irrelevant for the

above definition. In particular, if the functions ϕ and ψ are (weakly) 1-

convex with respect to M, so is their sum ϕ+ ψ.

Definition 2. Let Y be a complex space and M a linear set over

Y . We denote by B(Y,M) the set of all ϕ ∈ Co(Y,R) such that every

point of Y admits an open neighborhood D on which there are functions

f1, . . . , fk ∈ C∞(D,R) which are 1-convex with respect to M|D and

ϕ|D = max{f1, . . . , fk}.

From [24] and [4] we quote

Proposition 1. Let M be a linear set over a complex space Y and ϕ ∈
B(Y,M). Then for every η ∈ Co(Y,R), η > 0, there exists ϕ̃ ∈ C∞(Y,R)

which is 1-convex with respect to M and

ϕ ≤ ϕ̃ < ϕ+ η.

In particular, if M has codimension ≤ q − 1, then ϕ̃ is q-convex.

From [15] we have:

Proposition 2. Let Y be a complex space and ϕ ∈ C∞(Y,R) a q-

convex function. Then there is a linear set M over Y of codimension ≤ q−1

such that ϕ is 1-convex with respect to M.

Motivated by Propositions 1 and 2, we say that a complex space Y is

1-complete with respect to a linear set M over Y if there exists an exhaus-

tion function ϕ ∈ B(Y,M). Consequently a complex space Y is q-complete

if, and only if, Y is 1-complete with respect to some linear set M of codi-

mension ≤ q − 1.

Let us recall that a Stein space S is said to be hyperconvex if there is a

smooth plurisubharmonic exhaustion function ϕ : S → (−∞, 0).

In [24] the following result has been proved:

Proposition 3. Let π : E → B be a locally trivial analytic fibration

with hyperconvex fibre. If B is 1-complete with respect to a linear set M
over B, then E is 1-complete with respect to π∗M. In particular if B is

q-complete, then E is q-complete.



SINGULAR ONE DIMENSIONAL FIBERING OVER q-COMPLETE SPACES 5

From this it follows

Corollary 1. Let π : E → B be a covering space with q-complete

base B. Let M be a linear set over B of codimension ≤ q − 1 such that B

is 1-complete with respect to M. Then there exists µ : E → R a smooth

exhaustion function which is 1-convex with respect to π∗M. In particular E

is q-complete.

We shall also need the following result of M. Peternell ([15], Satz 3.1).

Proposition 4. Let Y be a complex space and A ⊂ Y a closed analytic

subset. Then there is a function h ∈ C∞(Y,R) such that:

a) h ≥ 0, {h = 0} = A.

b) For every y ∈ Y there exists an open neighborhood U of y and θ ∈

C∞(U,R) such that

log(h|U\A
) + θ|U\A

is 1-convex.

Remark 1. The function log h is locally equal to the sum of a plurisub-

harmonic function and a smooth function. Such a function is called in De-

mailly [8] a quasi-plurisubharmonic function.

§3. Construction of an auxiliary fibration

We recall that a complex space X is called hyperbolic (in the sense of

Kobayashi) if the Kobayashi semidistance dX is a distance. See the book of

S. Lang [11].

Examples and properties.

1) C \ {p, q} with p, q ∈ C, p 6= q, is hyperbolic.

2) Any open subset of a hyperbolic space is hyperbolic.

3) Let π : X ′ → X be a covering of complex spaces. Then X ′ is hyper-

bolic if and only if X is hyperbolic.

4) Any relatively compact open subset of Cn is hyperbolic.

A proof of these facts may be found in Kobayashi [10] and Lang [11].

Let us recall also the following result. (See Siu [20], p. 176 and Royden

[16], p. 311.)
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Lemma 1. Let F be a hyperbolic manifold and W a connected complex

space. Let f : W × F → F be a holomorphic map such that for some

wo ∈W the restriction of f to {wo} × F is biholomorphic onto F . Then f

is independent of the variable in W , i.e., f(w,x) = f(wo, x) for all w ∈W

and x ∈ F .

Let now X be a Stein space of pure dimension 1 (Stein curve) and W

a connected complex space.

We assume that a biholomorphic map Φ : W ×X → W ×X is given

such that the diagram

is commutative. So, for every w ∈ W we have an automorphism of X,

Φw : X → X, given by Φw(x) = Φ(w, x).

Let ν : X̃ → X be the normalization map. Every Φw, w ∈W , lifts to a

unique automorphism Φ̃w of X̃ such that the diagram

X̃
Φ̃w

−−−→ X̃

ν

y
yν

X −−−→
Φw

X

is commutative.

The maps {Φ̃w}w∈W define a unique map Φ̃ : W × X̃ → W × X̃ and

we have a commutative diagram

W × X̃
Φ̃

−−−→ W × X̃

id×ν

y
yid×ν

W ×X −−−→
Φ

W ×X.

(1)

We show

Lemma 2. Φ̃ is biholomorphic.
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This will be proved in two steps.

Step 1. Φ̃ is biholomorphic if X is irreducible.

We may assume that S := Sing(X) 6= ∅. Put S̃ = ν−1(S). Consider the

commutative diagram of isomorphisms

W × (X̃ \ S̃)
Φ̃1

−−−→W × (X̃ \ S̃)

id×ν

y
yid×ν

W × (X \ S)
Φ1

−−−→W × (X \ S)

(2)

where Φ1 := Φ|W×(X\S)
and Φ̃1 := Φ̃|

W×(X̃\S̃)
.

If card(S̃) ≥ 2, then X̃ \ S̃ is hyperbolic (by Examples 1), 2), and 3)

in the beginning of this section). It follows from Lemma 1 that the maps

Φ1 and Φ̃1 in diagram (2) are independent of w ∈ W , therefore also the

maps Φ and Φ̃ in diagram (1) are independent of w. In particular Φ̃ is

biholomorphic.

Similarly, if card(S̃) = 1 and X̃ 6= C, it follows that X̃ \ S̃ is hyperbolic

and Φ̃ is biholomorphic (being independent of w ∈W ).

It remains to study the case when X has only one singular point, say

S = {xo}, at which X is locally irreducible (therefore card(S̃) = 1) and

X̃ = C is its normalization. We may assume that ν−1(xo) = 0 ∈ C. It

follows then easily that Φ̃(w, x̃) = f(w) · x̃ with f ∈ O∗(W ), so obviously

Φ̃ is biholomorphic.

Step 2. Φ̃ is biholomorphic for arbitrary 1-dimensional Stein space X.

Clearly we may assume that X has no isolated points. Let X = ∪Xi

be the decomposition of X into irreducible components. We claim first that

for every index i there is a unique index j so that Φ(W ×Xi) = W ×Xj .

To show this, we let Reg(X) = ∪Di be the decomposition into connected

components with Xi = Di. Obviously, for each i there is a (unique) j such

that Φ(W ×Di) = W ×Dj . Using the continuity of Φ the claim follows.

Now let X̃ = ∪X̃i be the decomposition of X̃ into connected compo-

nents. Therefore ν(X̃i) = Xi and ν|
X̃i

: X̃i → Xi is the normalization of

Xi.
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From the above claim each connected component W × X̃i of W × X̃

corresponds by Φ̃ to a (unique) connected component W × X̃j . Thus we

have a commutative diagram

W × X̃i

Φ̃2

−−−→W × X̃j

id×ν

y
yid×ν

W ×Xi −−−→
Φ2

W ×Xj

(3)

where Φ2 := Φ|W×Xi
and Φ̃2 := Φ̃|

W×X̃i

.

We fix some biholomorphic map h : Xj → Xi (e.g., h = Φ−1
wo

for some

wo ∈W ) and consider the commutative diagram

W × X̃i

Φ̃2

−−−→W × X̃j

id×h̃
−−−→ W × X̃i

id×ν

y id×ν

y id×ν

y
W ×Xi −−−→

Φ2

W ×Xj −−−→
id×h

W ×Xi.

(4)

By step 1), (id×h̃) ◦ Φ̃2 is biholomorphic, so Φ̃2 is biholomorphic. It

follows that Φ̃ is biholomorphic and the Lemma 2 is completely proved.

Lemma 3. Let π : E → B be a locally trivial holomorphic fibration

with fibre X a pure 1-dimensional Stein space.

Then there exist π′ : E′ → B a locally trivial holomorphic fibration with

fibre X̃ = the normalization of X and a holomorphic map τ : E′ → E with

the following properties:

1) The diagram

is commutative.
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2) For every b ∈ B the induced map

τb : E′
b −→ Eb

is the normalization map ν : X̃ → X.

3) Let

A :=
⋃

b∈B

Sing(Eb)

and A′ := τ−1(A). Then A and A′ are closed analytic subsets of E

and E′ respectively and τ|E′\A′ : E′ \A′ → E \A is biholomorphic.

Proof. Let (Wi)i∈I be a locally finite open covering of B such that E|Wi

is trivial and Wi∩Wj is connected for every i, j ∈ I. We have the transition

functions Φij : (Wi ∩Wj) ×X → (Wi ∩Wj) ×X which are biholomorphic

and such that the diagram

is commutative.

Therefore we have induced maps Φ̃ij : (Wi ∩Wj)× X̃ → (Wi ∩Wj)× X̃
which are biholomorphisms by the previous lemma.

Then clearly {Φ̃ij} define the required holomorphic fibration π′ : E′ →
B. All other required properties in the lemma are easily verified.

Remark 2. The above two lemmas are trivial if we assume B to be

normal. In this case (B normal) it is clear that Φ̃ij are biholomorphic and it

is not necessary to make the assumption that the fiber X is a 1-dimensional

Stein space (X may be an arbitrary complex space).

§4. The proof of the main result

In this section we shall prove the subsequent Theorem 1′ which clearly

implies Theorem 1 already mentioned in the introduction.

Theorem 1′. Let π : E → B be a locally trivial analytic fibration with

Stein fibre X of dimension 1 and assume that B is 1-complete with respect

to a linear set M (over B). Then E is 1-complete with respect to π∗M.

In particular, E is q-complete if B is q-complete.



10 M. COLŢOIU AND V. VÂJÂITU

Proof. When the fiber is non-singular Theorem 1′ is proved in [26].

Subsequently we deal with the singular fibre X.

Let π′ : E′ → B be a fibration with the properties stated in Lemma 3.

Denote p := π|A : A → B which is a covering map. In fact A can be

described locally over B as follows: Let E|U ' U×X be a local trivialization.

Then A ∩ π−1(U) ' U × Sing(X) and Sing(X) is a discrete subset of X,

say Sing(X) = {aj}j∈J , since X is one dimensional. By Corollary 1 there

exists a smooth exhaustion function µ : A → R such that µ is 1-convex

with respect to p∗M.

We shall prove the following statement:

(♣) Let η : A → (0,∞) be any continuous function. Then there exists an

open neighborhood V of A in E and a smooth function µ̃ : V → R

which is 1-convex with respect to (π∗M)|V and

µ ≤ µ̃ < µ+ η

on A.

To prove (♣) we follow an idea from (Colţoiu [5], Lemma 3); but we

refine it in order to get extensions with controlled positivity directions which

are necessary for our patching process.

We fix a non-negative smooth strictly subharmonic function f : X → R

such that Sing(X) = {f = 0}.

Let also {Ui}i∈I and {Wi}i∈I be locally finite open coverings of B such

that Ui ⊂⊂Wi ⊂⊂ B and E is trivial near W i. Now select θi ∈ C∞(B,R)

with θi > 0 on U i and θi < 0 on ∂Wi.

We have E|Wi
' Wi × X and E|Wi

contains the sequence of mutually

disjoint closed analytic subsets Wi ×{aj}, j ∈ J . On Wi ×{aj} we consider

the restriction of µ and perturb it with εijθi ◦ π. More precisely, we define

near W i × {aj}

µij = µ+ εijθi ◦ π

where εij > 0 are small enough constants to be chosen later. For every

x ∈ A we set µ1(x) = max{µij(x) ; (i, j) ∈ H(x)} where H(x) = {(i, j) ∈

I × J ; x ∈Wi ×{aj}}. If εij are small enough, then µ1 is continuous on A,

µ1 ∈ B(A, p∗M), and µ ≤ µ1 < µ+ η on A.
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Moreover, on ∂(Wi × {aj}) one has

(∗) µ1 > µij

for every indices (i, j) ∈ I × J .

We shall prove that µ1 has an extension µ̃1 to a neighborhood V of A

such that µ̃1 ∈ B(V, π∗M) and this clearly will conclude the proof of (♣)

in view of the approximation Proposition 1.

For this we choose open neighborhoods Dj ⊂⊂ X of the points aj such

that Dj ∩ Dj′ = ∅ if j 6= j′. The functions µij defined on Wi × {aj} can

be extended to smooth functions µ̃ij on Wi ×Dj which are 1-convex with

respect to π∗M. Indeed, if p′ij and p′′ij denote the projections of Wi ×Dj on

Wi × {aj} and on Dj respectively, then one may set

µ̃ij := µij ◦ p
′
ij + f|Dj

◦ p′′ij.

Put

Ω :=
⋃

(i,j)∈I×J

Wi ×Dj

and for x ∈ Ω, µ̃1(x) = sup{µ̃ij(x) ; (i, j) ∈ Γ(x)} where Γ(x) = {(i, j) ∈

I × J ; x ∈Wi ×Dj}.
If V ⊂ Ω is a small enough open neighborhood of A, it follows then

from (∗) that µ̃1 is continuous on V and in fact µ̃1 ∈ B(V, π∗M), whence

the proof of statement (♣).

We now go back to the proof of Theorem 1′. Since Theorem 1′ holds

for E′, there exists a smooth exhaustion function ψ′ : E′ → R which is

1-convex with respect to (π′)∗M.

We fix some smooth function µ̃ > 0 defined near V , where V is a

sufficiently small open neighborhood of A such that µ̃|
V

is proper and µ̃ is

1-convex with respect to π∗M near V .

By Proposition 4 there is a quasi-plurisubharmonic function β : E →
[−∞,∞) with A = {β = −∞}. Also we may assume β = 0 on E \ V . Then

β′ = β◦τ is quasi-plurisubharmonic on E′ and A′ := τ−1(A) = {β′ = −∞}.
Since ψ′ is a smooth exhaustion function on E′ which is 1-convex with

respect to (π′)∗M, there is a strictly increasing smooth convex function

δ : (0,∞) → (0,∞) such that δ ◦ψ′ +β′ is 1-convex with respect to (π′)∗M
on E′ \ A′, and
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δ ◦ ψ′ + β′ > µ̃ ◦ τ

on τ−1(∂V ).

Now E is covered by the open subsets V1 := V and V2 := E \A. On V1

we consider the function ϕ1 = µ̃ and on V2 the function ϕ2 = δ◦ψ′ ◦τ−1 +β

and we define the function ψ1 : E → R given by ψ1(x) := max{ϕk(x) ; k ∈
K(x)}, where K = {1, 2} and K(x) = {k ∈ K ; x ∈ Vk}.

Then ψ1 is a continuous exhaustion function on E and ψ1 ∈ B(E, π∗M).

Thus the proof of Theorem 1′ is complete.

References

[1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces

complexes, Bull. Soc. Math. France, 90 (1962), 193–259.

[2] E. Ballico, Coverings of complex spaces and q-completeness, Riv. Mat. Univ. Parma,

(4), 7 (1981), 443–452.
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