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DETERMINANT FORMULAS FOR THE τ-FUNCTIONS

OF THE PAINLEVÉ EQUATIONS OF TYPE A

YASUHIKO YAMADA

Abstract. Explicit determinant formulas are presented for the τ -functions of
the generalized Painlevé equations of type A. This result allows an interpreta-
tion of the τ -functions as the Plücker coordinates of the universal Grassmann
manifold.

§1. Introduction

For each generalized Cartan matrix of affine type A = (aij)ij∈I , we

introduced a representation of the Weyl group W (A) on the rational func-

tions of variables αi, fi, τi, (i ∈ I) [1]. The representation is characterized

by the action of the generator si, (i ∈ I), such that

si(αj) = αj − αiaij, si(fj) = fj +
αi

fi
uij, si(τj) = τj(fj

∏

k∈I

τ
−akj

k )δij ,

under certain conditions on the constants (uij)ij∈I .

This representation is a generalization of the Bäcklund transformations

of the Painlevé equations PIV , PV and PV I . As to the root systems of type

A
(1)
l , it is also known that there exist Painlevé type differential (or differ-

ence) system which has the W (A) symmetry [1][2]. In the context of the

Painlevé equations, the variables αi, fi and τi play the role of parameters

(or the discrete time variables), dependent variables and the τ -functions,

respectively. In [1], it is conjectured that the τ -functions have strong regu-

larity. This regularity is crucial for the differential (or difference) systems,

since it should be closely related to the Painlevé (or the singularity confine-

ment) properties.

In this paper, we prove the regularity conjecture in the case of affine

Weyl groups of type A
(1)
l and A∞, by constructing explicit determinant

formulas for the τ -functions. The determinant formulas allow an interpre-

tation of the τ -functions as Plücker coordinates of the universal Grassmann

manifold as in the theory of KP hierarchy [3].
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§2. The τ-functions

We formulate our results in the case of A∞. For the reduction to A
(1)
l

case, see Remark 1 in the last section.

Let K = C(α; f ; τ) be the field of rational functions in infinitely many

variables α = (αi), f = (fi) and τ = (τi) where i ∈ Z. For each i ∈ Z,

define an automorphism si of the field K by

si(αi) = −αi, si(αi±1) = αi±1 + αi, si(αj) = αj , (j 6= i, i ± 1),

si(fi) = fi, si(fi±1) = fi±1 ±
αi

fi

, si(fj) = fj, (j 6= i, i ± 1),

and

si(τi) = fi
τi−1τi+1

τi
, si(τj) = τj, (j 6= i).

These automorphisms satisfy the relations

s2
i = 1, (sisi+1)

3 = 1, sisj = sjsi, (j 6= i ± 1),

and define a representation of the affine Weyl group W = W (A∞) of type

A∞. One can extend this representation W to the extended affine Weyl

group W̃ by adding the automorphism π defined as

π(αi) = αi+1, π(fi) = fi+1, π(τi) = τi+1.

The diagram shift π satisfies the relation πsi = si+1π.

Let Λi (i ∈ Z) be the fundamental weights of A∞ on which the Weyl

group W̃ acts as

si(Λi) = Λi+1 + Λi−1 − Λi, si(Λj) = Λj , (j 6= i), π(Λi) = Λi+1.

We also use the notation vi = Λi −Λi−1. Then αi = −Λi−1 + 2Λi −Λi−1 =

vi − vi+1, and we can put formally Λi =
∑

j≤i vj. The action of si on vj is

given by the permutation

si(vi) = vi+1, si(vi+1) = vi, si(vj) = vj , (j 6= i, i + 1).

Furthermore, the Weyl group W is identified with the infinite symmetric

group S∞ which permutes vj.

There exist a family of rational functions φw(Λj) ∈ C(α; f) for w ∈ W̃

and j ∈ Z such that

w(τj) = φw(Λj)
∏

i∈Z

τmi

i ,
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where mi = 〈αi, wΛj〉 ∈ {0,±1} is the coefficient of Λi in wΛj . The con-

jecture in [1] states that the function φw(Λj) is a polynomial in α and f

with integral coefficients. We will prove this conjecture by constructing an

explicit determinant formula for φw(Λj). Since any function φw(Λj) is easily

obtained from the case j = 0 by the shift φw(Λj) = πj(φπ−jwπj(Λ0)), we

will concentrate on the functions φw(Λ0).

Lemma 1. If w1Λ0 = w2Λ0 for w1, w2 ∈ W , then w1(τ0) = w2(τ0).

Proof. The condition w1(Λ0) = w2(Λ0) means that the element w =

w−1
2 w1 ∈ W is in the stabilizer W0 of Λ0. An element in W belongs to W0

if and only if the corresponding permutation of {vi | i ∈ Z} ' Z preserves

the subset Z≤0. Then W0 is a product of permutations of Z≤0 and Z≥1.

Hence w ∈ W0 = 〈sj, (j ∈ Z<0)〉 × 〈sj, (j ∈ Z≥1)〉 and w(τ0) = τ0.

By this Lemma, the functions φw(Λ0) are parametrized by wΛ0. We

will prepare some notations to describe the orbit W.Λ0 = {wΛ0 | w ∈ W}

whose elements will be parametrized by Young diagrams [4].

Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λl > 0) be a partition of length l = l(λ). The

corresponding Young diagram Y is defined by

Y = {s = (i, j) | 1 ≤ i ≤ l, 1 ≤ j ≤ λi}.

The transposition λ′ = Y ′ is defined by (i, j) ∈ Y ′ if and only if (j, i) ∈ Y .

For a partition λ, the corresponding Frobenius symbol

(I, J) = ({i1 > i2 > . . . > ik > 0}, {j1 > j2 > . . . > jk ≥ 0})

is defined by

in = λn − n + 1, jn = λ′
n − n,

where k = max{n|λn ≥ n}. We always identify the three notions, partition

λ, Young diagram Y and Frobenius symbol (I, J) by these correspondence.

For w ∈ W , the element w(Λ0) can be parametrized by the partitions

λ = Y = (I, J) as follows.

Recall that Λ0 =
∑

j≤0 vj . Then we have w(Λ0) =
∑

i∈M vi, where M

is a subset of Z different from Z≤0 only by finite elements. Such subset M

(called Maya diagram) corresponds to a Young diagram Y with Frobenius

symbol (I, J) by the rule

M ∪ (−J) = Z≤0 ∪ I.
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In terms of the Maya diagram M , the coefficient mi of Λi in w(Λ0) =

(
∑

i∈M −
∑

i+1∈M )Λi is given by

• mi = 1, if i ∈ M and i + 1 /∈ M ,

• mi = −1, if i /∈ M and i + 1 ∈ M ,

• mi = 0, if i, i + 1 ∈ M or i, i + 1 /∈ M .

Translating this into the language of the Young diagrams, we have

Lemma 2. Let w(Λ0) =
∑

i∈Z
miΛi and let Y be the corresponding

Young diagram, then the Young diagram si(Y ) corresponding to siw(Λ0) is

given as follows,

• si(Y ) is obtained by adding the node with color i, if mi = 1,

• si(Y ) is obtained by removing the node with color i, if mi = −1,

• si(Y ) = Y , if mi = 0,

where the color k of the (i, j)-th node is given by k = j − i.

In summary, we have

Proposition 1. Any element in W.Λ0 can be obtained from Λ0 by the

action of sip · · · si1 with mik = 〈αik , sik−1 · · · si1(Λ0)〉 = 1, (k = 1, . . . , p).

Hence, the functions φw(Λ0) are uniquely determined by the cocycle condi-

tion

φsiw(Λ0) = si(φw(Λ0))fi, (mi = 1),

with the initial condition φid (Λ0) = 1.

It is convenient to introduce another normalization φ̃w(Λ0) defined by

φ̃w(Λ0) =
1

Nw

φw(Λ0).

Here the normalization factor Nw is a polynomial in α, which is defined, in

terms of corresponding Young diagram w(Λ0) ↔ λ = Y , as

Nw =
∏

s=(i,j)∈Y

h(s, α), h((i, j), α) = vj−λ′

j
− vλi−i+1.

Note that when specialized to αi = 1, h(s, 1) is nothing but the hook-length

of the node s ∈ Y .
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Lemma 3. The normalization factor Nw satisfies the relation

Nskw = αksk(Nw), (mk = 1).

Proof. From the Lemma 2 and the condition mk = 1 the Young dia-

gram sk(Y ) is obtained from Y by adding one node, say (i0, j0)-th node,

with color k = j0 − i0. Since λi0 = j0 − 1 and λ′
j0

= i0 − 1, the hook length

h(s, α) = vj−λ′

j
− vλi−i+1 for s = (i, j) ∈ Y contains vk or vk+1 if and only

if

• s = (i0, ∗), with h(s, α) = v∗ − vk,

• s = (∗, j0), with h(s, α) = vk+1 − v∗.

Under the action of sk, these factors are replaced with the hook length of

the same node s in the new diagram sk(Y ). Multiplying sk(Nw) by the

extra factor vk − vk+1 = αk corresponding to the added node (i0, j0), we

get Nskw.

As a Corollary of this Lemma 3 and Proposition 1 we have

Proposition 2. The normalized functions φ̃w(Λ0) are determined by

the cocycle condition

φ̃siw(Λ0) = si

(
φ̃w(Λ0)

) fi

αi
, (mi = 1),

with the initial condition φ̃id (Λ0) = 1.

Example 1. For the partitions (0), (1), (2), (1, 1), (2, 1) and (2, 2), the

corresponding normalized functions φ̃w(Λ0) are given as follows.

a12 = φ̃1(Λ0) = 1 ↔ (0),

a13 = φ̃s0(Λ0) =
f0

α0
↔ (1),

a14 = φ̃s1s0(Λ0) =
f0f1 − α1

(α0 + α1)α1
↔ (2),

a23 = φ̃s−1s0(Λ0) =
f−1f0 + α−1

(α−1 + α0)α−1
↔ (1, 1),
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a24 = φ̃s−1s1s0(Λ0) =
f−1f0f1 + α−1f1 − α1f−1

(α−1 + α0 + α1)α−1α1
↔ (2, 1),

and for the partition (2, 2), we have

a34 = φ̃s0s−1s1s0(Λ0)=
f−1f

2
0f1 + α−1f0f1 − α1f−1f0 + α0(α−1 + α0 + α1)

(α−1 + α0 + α1)(α0 + α1)(α−1 + α0)α0
.

It is interesting to note the relations

a12a34 − a13a24 + a14a23 = 0,(1)

a23 = π−1(a13)a13 − π−1(a14)a12.(2)

Each of the equations plays a fundamental role in the proof of Theorem 1

or 2 respectively.

§3. The determinant formulas

For integers p ≥ 1 and q ≥ 0, put

Xp,q = det




f−q 1 0

β−q+1 f−q+1 1
. . .

. . .
. . .

βp−2 fp−2 1

0 βp−1 fp−1




,

where βj (−q + 1 ≤ j ≤ p − 1) is given by

βj =

p−1∑

i=1

αi = vj − vp, (j > 0), βj = −

j−1∑

i=−q

αi = vj − v−q+1, (j ≤ 0).

Lemma 4. Put wp,q = (sq · · · s−1)(sp−1 · · · s0), which corresponds to

the hook diagram wp,q(Λ0) ↔ λ = ({p}, {q}), then

φp,q := φwp,q(Λ0) = Xp,q.

Proof. For p = 1 and q = 0, the formula is trivially satisfied, X1,0 = f0.

We need to check the following relations for p ≥ 1 and q ≥ 0.

Xp+1,q = sp(Xp,q)fp, Xp,q+1 = s−(q+1)(Xp,q)f−(q+1).(3)
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Let us prove the first one. By definition

Xp+1,q = det




. . .
. . .

. . . fp−2 1

αp−1 + αp fp−1 1

αp fp


 ,

expanding this with respect to the last row, we have

= det




. . .
. . .

. . . fp−2 1

sp(αp−1) fp−1


 fp − det




. . .
. . .

. . . fp−2

sp(αp−1) 1


 αp,

which is nothing but

sp(Xp,q) = fp det




. . .
. . .

. . . fp−2 1

sp(αp−1) fp−1 −
αp

fp


 .

Thus the first relation is proved. The second one is similar.

Using the notations above, we can state our main result as follows.

Theorem 1. For any w ∈ W , the normalized function φ̃w(Λ0) is given

by the following determinant

φ̃w(Λ0) = det
(
φ̃p,q

)
p∈I,q∈J

,

where (I, J) is the Frobenius symbol of λ = Y corresponding to w(Λ0).

Equivalently, we also have the following Jacobi-Trudi type ([4]) formulas

Theorem 2. For any w ∈ W , the normalized function φ̃w(Λ0) is given

by the following determinant

φ̃w(Λ0) = det
(
h

(1−j)
λi−i+j

)
1≤i,j≤l(λ)

,

where λ is the partition corresponds to w(Λ0) and h
(j)
k = πj(φ̃k,0) is the

normalized function for the single row λ = (k).
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The proofs of these theorems are given in the next section.

Corollary. For any w ∈ W , the function φw(Λ0) is a polynomial

in α and f with integral coefficients. The leading term with respect to f is∏
i∈Z

f νi

i , where νi is the number of nodes with color i in Y ↔ w(Λ0).

Proof. We will prove by induction on the length of w ∈ W . φid (Λ0) = 1

is in Z[α; f ]. Assume that R(α; f) = φw(Λ0) ∈ Z[α; f ]. By Proposition 1,

the function S(α; f) = φsiw(Λ0) for mi = 1 is given by

S(. . . , αi−1 + αi,−αi, αi+1 + αi, . . . ; . . . , fi−1 −
αi

fi
, fi, fi+1 +

αi

fi
, . . .)fi,

which belongs to Z[α; f ; 1
fi

]. The condition on the leading term of S follows

from that on R. On the other hand, from Theorem 1, we see that φsiw(Λ0) =

Nsiwφ̃siw(Λ0) is a polynomial in f , hence the function S(α; f) also belongs

to Z[α; f ].

§4. Proof of the Theorems

Lemma 5. We have

zn−1 det

[
(aij)1≤i,j≤n (xi)1≤i≤n

(yj)1≤j≤n z

]
= det

[
(aijz − xiyj)1≤i,j≤n

]
.

Proof. Let ei, (0 ≤ i ≤ n) be a basis in Cn+1. For 1 ≤ i ≤ n, put

ai = ηi + xie0, ηi =

n∑

j=1

aijej, a0 = ξ + ze0, ξ =

n∑

j=1

yjej,

and bi =

n∑

j=1

(zaij − xiyj)ej = zηi − xiξ.

Then the both hand sides of the identity are the coefficients of e0 ∧ · · · ∧ en

in

(LHS) = zn−1a0 ∧ a1 ∧ · · · ∧ an, (RHS) = e0 ∧ b1 ∧ · · · ∧ bn.

It is easy to see that these two are the same and equal to

zne0 ∧ η1 ∧ · · · ∧ ηn − zn−1
n∑

i=1

e0 ∧ η1 ∧ · · · ∧ xiξ ∧ · · · ∧ ηn.
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Proof of the Theorem 1. To prove the theorem, it is enough to check

that the determinant satisfy the transformation properties in Proposition 2.

For the actions of si, i 6= 0, the transformation properties directly

follows from eq.(3) for the hook Xp,q in Lemma 4, since the si acts only on

the single row (i > 0) or single column (i < 0).

For the s0 action, we need some computation because in this case the

size of the determinant changes. For w(Λ0) ↔ (I, J) such that m0 = 1, we

have s0w(Λ0) ↔ (I ∪ {1}, J ∪ {0}). Then

φ̃s0w = det




(
φ̃p,q

)
p∈I,q∈J

(
φ̃1,q

)
q∈J(

φ̃p,0

)
p∈I

φ̃1,0


 .

We shall prove that this is equal to s0(φ̃w) f0

α0
.

As is shown in eq.(1), we have

s0(φ̃2,1)φ̃1,0 = φ̃2.1φ̃1,0 − φ̃2,0φ̃1,1.

Applying the actions sk, k ≥ 2 or k ≤ −2 repeatedly, one get

s0(φ̃p,q)φ̃1,0 = φ̃p.qφ̃1,0 − φ̃p,0φ̃1,q,

for any p ≥ 2 and q ≥ 1. By using this and φ̃1,0 = f0/α0, we get

f0

α0
s0

(
φ̃w(Λ0)

)
= φ̃

1−|I|
1,0 det

[
φ̃p,qφ̃1,0 − φ̃p,0φ̃1,q

]
p∈I,q∈J

,

and this is indeed equal to φ̃s0w(Λ0), because of the identity in Lemma 5.

Proof of the Theorem 2. The proof for the general φ̃w(Λ0) cases can

be reduced to the single column cases by the action of sk, (k > 0) which

preserves the size of the determinant.

For the single column case λ = (1q+1), the desired formula is

φ̃1,q(Λ0) = det




h
(−q)
1 h

(−q)
2 · · · h

(−q)
q+1

1 h
(−q+1)
1 · · · h

(−q+1)
q

. . .
. . .

...

1 h
(−1)
1 h

(−1)
2

1 h
(0)
1




.(4)
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The case of q = 1 follows from the relation in eq.(2). More generally, we

have

φ̃i,1 = det

[
h

(−1)
1 h

(−1)
i+1

1 h
(0)
i

]
.(5)

To prove the case q > 1, we will check the condition in Proposition 2,

f−(q+1)

α−(q+1)
s−(q+1)(φ̃1,q(Λ0)) = φ̃1,q+1(Λ0).(6)

Using the eq.(5), the left hand side of this relation (6) can be written as

the same determinant as φ̃1,q(Λ0) in (4), with the first row h
(−q)
i replaced

by h′(−q)
i such as

h′(−q)
i =

f−(q+1)

α−(q+1)
s−(q+1)π

−q(φ̃i,0) = π−q(φ̃i,1) = det

[
h

(−q−1)
1 h

(−q−1)
i+1

1 h
(−q)
i

]
.

Then the left hand side of the eq.(6) is equal to the right hand side

φ̃1,q+1(Λ0) = det




h
(−q−1)
1 h

(−q−1)
2 · · · h

(−q−1)
q+2

1 h
(−q)
1 · · · h

(−q)
q+1

. . .
. . .

...

1 h
(−1)
1 h

(−1)
2

1 h
(0)
1




,

because of the identity

det




a00

a10

0
...

0




a0j

a1j

a2j

...

anj




1≤j≤n




= det







det

[
a00 a0j

a10 a1j

]

a2j

...

anj




1≤j≤n




.

§5. Remarks

Remark 1. The reduction to the finite rank cases A
(1)
N−1 is given by the

N -reduced condition “πN = 1”. On the variables α, f, τ , this reduction is

simply realized by the specialization

αi+N = αi, fi+N = fi, τi+N = τi.
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By putting s̄i =
∏

n∈Z
si+nN , (i ∈ Z/NZ), the representation W (A∞)

reduces to that of W = W (A
(1)
N−1) on the field C(αi; fi; τi, (i ∈ Z/NZ)).

The τ -functions for A
(1)
N−1 case is nothing but the specialization of τ for A∞

and have the same determinant formulas. Note that only the N -reduced

Young diagrams can be generated by the actions of s̄i.

Remark 2. The determinant formulas of the τ -function provide explicit

solutions for initial value problem of the associated discrete dynamical sys-

tem introduced in [1]. The polynomiality of the τ -functions and the multi-

plicative formula of f -variables in terms of the τ -functions

w(fi) =
φw(Λi)φwsi

(Λi)

φw(Λi−1)φw(Λi+1)
,

give a strong support for the singularity confinement property which the

discrete dynamical system expected to have.

Remark 3. The representation of affine Weyl groups W (A
(1)
l ) has an

interpretation as the Bäcklund transformations for the Painlevé equations

PIV (for l = 2), PV (for l = 3) and their generalizations for l ≥ 4 [2]. Under

this interpretation, the polynomials φw(Λj) are the far-reaching generaliza-

tion of the “special polynomials” arising in Painlevé equations in the sense

of Umemura et. al. [7][8]. When specialized to certain “initial solutions”,

we obtain explicit determinant formulas for the Okamoto polynomials (for

PIV [5]), the Umemura polynomials (for PV [6]) and their generalizations.

Remark 4. The normalized functions φ̃w(Λ0) can be represented as the

minor determinants of the following frame X of the universal Grassmann

manifold,

X =




. . .
. . .

. . .
. . .

. . . · · ·

h
(−2)
0 h

(−2)
1 h

(−2)
2 h

(−2)
3 · · ·

h
(−1)
0 h

(−1)
1 h

(−1)
2 · · ·

h
(0)
0 h

(0)
1 · · ·


 .

Where h
(j)
i = πj(φ̃i,0). In this picture, the Weyl group W is nothing but

the Weyl group W (GL∞). It would be interesting if the space of the initial

values of Painlevé equations can be realized as a natural sub-manifolds of

the universal Grassmann manifold.
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