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INTEGRAL REPRESENTATIONS OF POSITIVE
DEFINITE FUNCTIONS ON CONVEX SETS OF

CERTAIN SEMIGROUPS OF RATIONAL NUMBERS

KOJI FURUTA

Abstract. H. Glöckner proved that an operator-valued positive definite function

on an open convex subset of QN is a restriction of the Laplace transform of an

operator-valued measure on RN . We generalize this result to a function on an

open convex subset of a certain subsemigroup of Q2.

1. Introduction

Let −→m = {mn}∞n=1 be a sequence of integers greater than or equal to 2, and let S(−→m)

be the subsemigroup of the additive semigroup, Q, of rational numbers, as defined

by

S(−→m) =

{
k

m1 · · ·mn

: k ∈ Z, n ≥ 1

}
,

where Z denotes the set of all integers. For example, if mn = n + 1 for n ≥ 1, we

have S(−→m) = Q, and if mn = 2 for n ≥ 1, then S(−→m) is the set of all dyadic rational

numbers.

Let Ω denote an open convex subset of RN (N ≥ 1) and let φ be a real-valued

function on Ω ∩ ΠN
k=1Sk(

−→m), where Sk(
−→m) = S(−→m) (1 ≤ k ≤ N). We say that φ is

positive definite if
n∑

i,j=1

cicjφ(ri + rj) ≥ 0

for all n ≥ 1, c1, c2, . . . , cn ∈ R and r1, r2, . . . , rn ∈ ΠN
k=1Sk(

−→m), such that 2ri ∈
Ω ∩ ΠN

k=1Sk(
−→m) for 1 ≤ i ≤ n. In [7], N. Sakakibara proved that [0,∞[∩S(−→m) is

a perfect semigroup, that is, every positive definite function on [0,∞[∩S(−→m) has a

unique representation as an integral of multiplicative functions. In [4], we obtained

an integral representation of a positive definite function on Ω ∩ ΠN
k=1Sk(

−→m) in the

case where N = 1. In this note, we show that every positive definite function has

an integral representation in the case where N = 2. We also give a condition for
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a function of Ω ∩ Π2
k=1Sk(

−→m) into B(H), where B(H) is the set of bounded linear

operators on a Hilbert space H, to have an integral representation (Theorem 2.2).

As will be seen, our methods are applicable to any number of dimensions. The result

we obtain represents a generalization of a result by H. Glöckner ([6], Theorem 18.5).

For integral representations of continuous positive definite functions on open convex

sets of R2, we refer to A. Devinatz [3].

2. Integral representations of positive definite functions

Define the function χ on S(−→m) as follows (cf. [7]):

if the sequence −→m = {mn}∞n=1 contains no even numbers, set

χ(
k

m1 · · ·mn

) = (−1)k,
k

m1 · · ·mn

∈ S(−→m);

if −→m contains only finitely many even numbers, we may suppose that m1, . . . ,mp

are even and that mq (q > p) are odd. Then, we set

χ(
k

m1 · · ·mpmp+1 · · ·mn

) = (−1)k,
k

m1 · · ·mpmp+1 · · ·mn

∈ S(−→m).

It is clear that χ is well-defined and multiplicative, i.e., χ(r1 + r2) = χ(r1)χ(r2) for

r1, r2 ∈ S(−→m). In fact, the functions r ∈ S(−→m) 7→ erx and r ∈ S(−→m) 7→ χ(r)erx

(where x ∈ R) are the semicharacters of S(−→m) [7].

For a convex subset Ω of RN , let us denote by E+(Ω,R
N) the set of all positive

Radon measures, µ, on RN such that the function x = (x1, . . . , xN) ∈ RN 7→ er·x =

er1x1+···+rNxN is µ-integrable for all r = (r1, . . . , rN) ∈ Ω; by E(Ω,RN), let us denote

the set of all signed Radon measures, µ, such that |µ| ∈ E+(Ω,R
N). The σ-algebra

of all Borel sets in RN is denoted by B(RN).

In order to state our results, we need the following ([4], Theorem 2.1):

Theorem 2.1. Let a, b ∈ R∪{−∞,∞} such that a < b and let −→m = {mn}∞n=1 be a

sequence of integers mn ≥ 2. Let φ be a positive definite function on ]a, b[∩S(−→m).

(1) If the sequence −→m contains at most finitely many even numbers, then there

exist positive Radon measures µ, ν ∈ E+(]a, b[,R) such that

φ(r) =

∫
R

erxdµ(x) +

∫
R

χ(r)erxdν(x), r ∈]a, b[∩S(−→m).

Moreover, the pair (µ, ν) is uniquely determined by φ.

(2) If the sequence −→m contains infinitely many even numbers, then there exists

a uniquely determined measure µ ∈ E+(]a, b[,R) such that

φ(r) =

∫
R

erxdµ(x), r ∈]a, b[∩S(−→m).
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Proposition 2.1. Let a, b ∈ R ∪ {−∞,∞} such that a < b and let −→m = {mn}∞n=1

be a sequence of integers mn ≥ 2.

(i) If the sequence −→m contains at most finitely many even numbers, then the

mapping L1 : E(]a, b[,R)× E(]a, b[,R) → R]a,b[∩S(−→m), defined by

L1(µ, ν)(r) =

∫
R

erxdµ(x) +

∫
R

χ(r)erxdν(x), r ∈]a, b[∩S(−→m),

is injective.

(ii) If the sequence −→m contains infinitely many even numbers, then the mapping

L2 : E(]a, b[,R) → R]a,b[∩S(−→m), defined by

L2(µ)(r) =

∫
R

erxdµ(x), r ∈]a, b[∩S(−→m),

is injective.

Proof. (i) Suppose that L1(µ, ν) = L1(µ̃, ν̃) for µ, ν, µ̃, ν̃ ∈ E(]a, b[,R). Using the

Jordan decomposition µ = µ1 − µ2, ν = ν1 − ν2, µ̃ = µ̃1 − µ̃2, and ν̃ = ν̃1 − ν̃2, we

have∫
R

erxd(µ1 + µ̃2)(x) +

∫
R

χ(r)erxd(ν1 + ν̃2)(x)

=

∫
R

erxd(µ̃1 + µ2)(x) +

∫
R

χ(r)erxd(ν̃1 + ν2)(x),

for r ∈]a, b[∩S(−→m). By Theorem 2.1, we have µ1+µ̃2 = µ̃1+µ2 and ν1+ ν̃2 = ν̃1+ν2,

such that µ = µ̃ and ν = ν̃. (ii) is proved analogously. □

Proposition 2.2. Let a1, a2, b1, b2 ∈ R ∪ {∞,−∞} such that ai < 0 < bi (i = 1, 2)

and let −→m = {mn}∞n=1 be a sequence of integers mn ≥ 2. Put Ii =]ai, bi[ (i = 1, 2)

and let φ be a positive definite function on I1 × I2 ∩ Π2
k=1Sk(

−→m).

(i) If the sequence −→m contains at most finitely many even numbers, then there

exist positive Radon measures κi ∈ E+(I1×] − ε, ε[,R2) (1 ≤ i ≤ 4), where

ε = min {|a2|
2
,
b2
2
}, such that

φ(r) =

∫
R2

er·xdκ1(x) +

∫
R2

χ(s)er·xdκ2(x)

+

∫
R2

χ(t)er·xdκ3(x) +

∫
R2

χ(s)χ(t)er·xdκ4(x) (1)

for r = (s, t) ∈ (I1×]− ε, ε[) ∩ Π2
k=1Sk(

−→m). The quadruple (κ1, κ2, κ3, κ4) is

uniquely determined by φ.
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(ii) If the sequence −→m contains infinitely many even numbers, then there exists

a uniquely determined measure κ ∈ E+(I1 × I2,R
2), such that

φ(r) =

∫
R2

er·xdκ(x), for r ∈ I1 × I2 ∩ Π2
k=1Sk(

−→m). (2)

Proof. (i) We use the technique that was used in the proof of Theorem 6.5.4 in [2].

For each t ∈]− ε, ε[∩S(−→m), define the functions φ1, φ2 on I1 ∩ S(−→m) by

φ1(s) = φ(s, 2t), φ2(s) = φ(s, 2t) + φ(s, 0)− 2φ(s, t)

for s ∈ I1 ∩ S(−→m), respectively. Then, φ1 and φ2 are both positive definite. Indeed,

let n ≥ 1, c1, . . . , cn ∈ R and s1, . . . , sn ∈ S(−→m) such that 2si ∈ I1 (1 ≤ i ≤ n).

Then, (2si, 2t) ∈ I1 × I2 and we have

n∑
i,j=1

cicjφ1(si + sj) =
n∑

i,j=1

cicjφ(si + sj, t+ t) ≥ 0.

As for φ2, expressing the defining property of the positive definiteness of φ for

c1, . . . , cn,−c1, . . . ,−cn ∈ R and (s1, t), . . . , (sn, t), (s1, 0), . . . , (sn, 0) ∈ Π2
k=1Sk(

−→m),

we have

n∑
i,j=1

cicjφ2(si + sj) =
n∑

i,j=1

cicj (φ(si + sj, 2t) + φ(si + sj, 0)− 2φ(si + sj, t)) ≥ 0.

Therefore, by Theorem 2.1, there exist µi
t, ν

i
t ∈ E+(I1,R) (i = 1, 2) such that

φ(s, 2t) =

∫
R

esx dµ1
t (x) +

∫
R

χ(s)esx dν1t (x),

φ(s, 2t) + φ(s, 0)− 2φ(s, t) =

∫
R

esx dµ2
t (x) +

∫
R

χ(s)esx dν2t (x).

For t ∈]− ε, ε[∩S(−→m), we define

µt =
1

2
(µ1

t + µ1
0 − µ2

t ), νt =
1

2
(ν1t + ν10 − ν2t ).

By Proposition 2.1, (µt, νt) is a unique pair of measures in E(I1,R) such that

φ(s, t) =

∫
R

esu dµt(u) +

∫
R

χ(s)esu dνt(u) for s ∈ I1 ∩ S(−→m). (3)

The mappings t 7→ µt and t 7→ νt are positive definite on ]−ε, ε[∩S(−→m) in the sense

that
n∑

i,j=1

cicjµti+tj ,
n∑

i,j=1

cicjνti+tj ∈ E+(I1,R)
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for c1, . . . , cn ∈ R and t1, . . . , tn ∈ S(−→m) such that 2ti ∈] − ε, ε[. To see this, we

consider the function ψ : I1 ∩ S(−→m) → R, defined by

ψ(s) =

∫
R

esu

(
n∑

i,j=1

cicjdµti+tj

)
(u) +

∫
R

χ(s)esu

(
n∑

i,j=1

cicjdνti+tj

)
(u).

Then, ψ is positive definite because

m∑
p,q=1

dpdqψ(sp + sq) =
m∑

p,q=1

n∑
i,j=1

(dpci)(dqcj)φ(sp + sq, ti + tj) ≥ 0

for d1, . . . , dm ∈ R and s1, . . . , sm ∈ S(−→m) with 2sp ∈ I1 (1 ≤ p ≤ m). By Theorem

2.1, there exists a unique pair (ρ, σ) of positive measures such that

ψ(s) =

∫
R

esu dρ(u) +

∫
R

χ(s)esu dσ(u).

From Proposition 2.1, it follows that
∑n

i,j=1 cicjµti+tj = ρ,
∑n

i,j=1 cicjνti+tj = σ ∈
E+(I1,R). In particular, for any A ∈ B(R), the functions t 7→ µt(A) and t 7→ νt(A)

are positive definite on ]− ε, ε[∩S(−→m). For the present, let us consider the function

µt(A). By Theorem 2.1, µt(A) can be uniquely represented as

µt(A) =

∫
R

etvdτ 1A(v) +

∫
R

χ(t)etvdτ 2A(v) (4)

with τ iA ∈ E+(] − ε, ε[,R) (i = 1, 2). The mappings A 7→ τ iA (i = 1, 2) of B(R) into

E+(]− ε, ε[,R) satisfy the following:

(a) τ i∅ = 0;

(b) τ i∪nAn
=
∑∞

n=1 τ
i
An
, when {An}∞n=1 is a sequence of disjoint sets in B(R);

(c) τ iA = sup{τ iK : K ∈ K(R), K ⊂ A}, where A ∈ B(R) and K(R) denotes the

set of all compact sets of R.

Let us verify these properties.

(a) For every t ∈]− ε, ε[∩S(−→m), we have

0 = µt(∅) =
∫
R

etvdτ 1∅ (v) +

∫
R

χ(t)etvdτ 2∅ (v).

Substituting t = 0, we have τ 1∅ (R) + τ 2∅ (R) = 0, such that τ i∅ = 0 (i = 1, 2).

(b) For t ∈]− ε, ε[∩S(−→m), we have∫
R

etvdτ 1∪nAn
(v) +

∫
R

χ(t)etvdτ 2∪nAn
(v) = µt(

∞∪
n=1

An) =
∞∑
n=1

µt(An)

=
∞∑
n=1

(∫
R

etvdτ 1An
(v) +

∫
R

χ(t)etvdτ 2An
(v)

)
.

(5)
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Setting t = 0, we obtain
∑∞

n=1(τ
1
An
(R) + τ 2An

(R)) = µ0(
∪∞

n=1An) ≤ µ0(R) < +∞,

which shows that
∑∞

n=1 τ
i
An

(i = 1, 2) are Radon measures (cf. [2], Exercise 2.1.28).

Furthermore, (5) implies that
∑∞

n=1 τ
i
An

∈ E+(]− ε, ε[,R) (i = 1, 2) and (b) follows

from Proposition 2.1.

(c) By (a) and (b), we see that, for each A ∈ B(R), the net {τ iK : K ∈ K(R), K ⊂
A} is increasing if the index set is ordered by inclusion (i = 1, 2). By Exercise 2.1.29

in [2],

τ̃ iA = sup{τ iK : K ∈ K(R), K ⊂ A}

is a Radon measure and τ̃ iA ≤ τ iA, in particular, τ̃ iA ∈ E+(]− ε, ε[,R) (i = 1, 2). For

each t, we have∫
R

etvdτ̃ 1A(v) +

∫
R

χ(t)etvdτ̃ 2A(v) = lim
K

(∫
R

etvdτ 1K(v) +

∫
R

χ(t)etvdτ 2K(v)

)
= lim

K
µt(K) = µt(A)

=

∫
R

etvdτ 1A(v) +

∫
R

χ(t)etvdτ 2A(v),

which shows that τ̃ iA = τ iA (i = 1, 2).

By (a), (b), and (c), the functions Φi : B(R)×B(R) → R, defined by Φi(A,B) =

τ iA(B) (i = 1, 2), are Radon bimeasures; thus, by Theorem 2.1.10 in [2], there exist

Radon measures κi (i = 1, 2) on R2 such that

Φi(A,B) =

∫
R2

1A(u)1B(v)dκi(u, v) =

∫
R

1B(v)dτ
i
A(v) for A,B ∈ B(R),

where 1A denotes the indicator function on A. By standard arguments of integral

theory, we have ∫
R2

1A(u)h(v)dκi(u, v) =

∫
R

h(v)dτ iA(v)

for A ∈ B(R) and any τ iA-integrable function h : R → R, in particular,∫
R2

1A(u)e
tvdκi(u, v) =

∫
R

etvdτ iA(v), for A ∈ B(R), t ∈]− ε, ε[∩S(−→m).

Combining this with (4), we have

µt(A) =

∫
R2

1A(u)e
tvdκ1(u, v) +

∫
R2

1A(u)χ(t)e
tvdκ2(u, v)

for every A ∈ B(R) and t ∈] − ε, ε[∩S(−→m). Again, by standard similar arguments

we have ∫
R

g(u)dµt(u) =

∫
R2

g(u)etvdκ1(u, v) +

∫
R2

g(u)χ(t)etvdκ2(u, v)
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for any µt-integrable function g : R → R. In particular, we have∫
R

esudµt(u) =

∫
R2

esu+tvdκ1(u, v) +

∫
R2

χ(t)esu+tvdκ2(u, v)

for s ∈ I1 ∩ S(−→m) and t ∈]− ε, ε[∩S(−→m). Using a similar argument for the function

t 7→ νt(A) (A ∈ B(R)), we obtain∫
R

χ(s)esudνt(u) =

∫
R2

χ(s)esu+tvdκ3(u, v) +

∫
R2

χ(s)χ(t)esu+tvdκ4(u, v)

with κi ∈ E+(I1×] − ε, ε[,R2) (i = 3, 4). Thus, by (3) we obtain the desired repre-

sentation of φ.

To prove the uniqueness of the representing measure, we suppose that signed

measures κi ∈ E(I1×]− ε, ε[,R2) (1 ≤ i ≤ 4) satisfy∫
R2

er·xdκ1(x)+

∫
R2

χ(s)er·xdκ2(x)+

∫
R2

χ(t)er·xdκ3(x)+

∫
R2

χ(s)χ(t)er·xdκ4(x) ≡ 0

(6)

for r = (s, t) ∈ (I1×]− ε, ε[) ∩ Π2
k=1Sk(

−→m). Letting t ∈ 2S(−→m) = {2s : s ∈ S(−→m)}
in (6), we have∫

R2

esu+tvd(κ1 + κ3)(u, v) +

∫
R2

esu+tvχ(s)d(κ2 + κ4)(u, v) = 0. (7)

Let us define πi : R
2 → R (i = 1, 2) by π1(u, v) = u and π2(u, v) = v, respectively,

and put et = et(v) = etv. Then, by (7), we see that the image measures ω1 =

(et(κ1+κ3))
π1 and ω2 = (et(κ2+κ4))

π1 satisfy
∫
R
esudω1(u)+

∫
R
χ(s)esudω2(u) = 0,

which implies that ω1 = ω2 = 0. This means that, for any A ∈ B(R) and t ∈
]− ε, ε[∩2S(−→m),∫

R2

1A(u)e
tvd(κ1 + κ3) =

∫
R2

1A(u)e
tvd(κ2 + κ4) = 0.

By Proposition 2.1, we have (1A×R(κ1 + κ3))
π2 = (1A×R(κ2 + κ4))

π2 = 0, which

implies that (κ1 + κ3)(A×B) = (κ2 + κ4)(A×B) = 0 for A,B ∈ B(R). Therefore,

κ1 + κ3 = 0, κ2 + κ4 = 0. Similarly, letting t ∈ S(−→m) \ 2S(−→m) in (6), we obtain

κ1−κ3 = 0, κ2−κ4 = 0. Consequently, we have κi = 0 (1 ≤ i ≤ 4). Thus, the proof

of (i) is complete.

(ii) Suppose that −→m contains infinitely many even numbers. Then, for t ∈ I2 ∩
S(−→m), the function s 7→ φ(s, t) is positive definite on I1 ∩ S(−→m) because 2S(−→m) =

S(−→m) and (s1 + s2, t) = (s1, t/2) + (s2, t/2) for s1, s2, t ∈ S(−→m). Therefore, by

Theorem 2.1, there exists a unique measure µt ∈ E+(I1,R) such that

φ(s, t) =

∫
R

esxdµt(x) for s ∈ I1 ∩ S(−→m).

The rest of the proof is similar to that of (i) and is therefore omitted. □
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Let H be a complex Hilbert space, ⟨·, ·⟩ be the inner product on H, B(H) be

the set of all bounded linear operators on H, and B(H)+ be the set of all positive

operators on H. We give a condition for a function of Ω ∩ Π2
k=1Sk(

−→m) into B(H),

where Ω is an open convex subset of R2, to have an integral representation such as

(1) or (2) of Proposition 2.2. We denote by E+(Ω,R
2,H) the set of all functions

F : B(R2) → B(H)+ satisfying ⟨F (·)ξ, ξ⟩ ∈ E+(Ω,R
2) for all ξ ∈ H. In the

following, we consider only the case where −→m contains at most finitely many even

numbers. We can also obtain an analogous result for the case where −→m contains

infinitely many even numbers.

Theorem 2.2. Let Ω be a nonempty open convex set in R2 and let −→m = {mn}∞n=1 be

a sequence of integers, mn ≥ 2, which contains at most finitely many even numbers.

For a function φ : Ω ∩ Π2
k=1Sk(

−→m) → B(H), the following conditions are mutually

equivalent:

(i) φ is of positive type, in the sense that
∑n

i,j=1⟨φ(ri + rj)ξi, ξj⟩ ≥ 0 for all

n ≥ 1, r1, r2, . . . , rn ∈ Π2
k=1Sk(

−→m), such that 2ri ∈ Ω ∩ Π2
k=1Sk(

−→m) for i =

1, 2, . . . , n and ξ1, ξ2, . . . , ξn ∈ H;

(ii) φ is positive definite, in the sense that for each ξ ∈ H, the function r 7→
⟨φ(r)ξ, ξ⟩ is positive definite on Ω ∩ Π2

k=1Sk(
−→m);

(iii) For any fixed α ∈ Ω ∩ Π2
k=12Sk(

−→m), there exist functions Fi : B(R2) →
B(H)+ (1 ≤ i ≤ 4) such that e−α·xFi ∈ E+(Ω,R

2,H) and

⟨φ(r)ξ, η⟩ =
∫
R2

e(r−α)·xd⟨F1(x)ξ, η⟩+
∫
R2

χ(s)e(r−α)·xd⟨F2(x)ξ, η⟩

+

∫
R2

χ(t)e(r−α)·xd⟨F3(x)ξ, η⟩+
∫
R2

χ(s)χ(t)e(r−α)·xd⟨F4(x)ξ, η⟩

for r = (s, t) ∈ Ω ∩ Π2
k=1Sk(

−→m), ξ, η ∈ H.

Moreover, the quadruple (F1, F2, F3, F4) is uniquely determined by φ and α.

Proof. Clearly (i) implies (ii), and by Proposition 1.1 in [5], we see that (iii) implies

(i). To prove that (ii) implies (iii), we first suppose that dimH = 1. Once the

case where dimH = 1 is proved, the proof of the general case is obtained in a

manner similar to that used for Theorem 3.1 in [4]. For an arbitrarily fixed α ∈
2S(−→m) × 2S(−→m), let I1 and I2 be open intervals in R such that α ∈ I1 × I2 ⊂ Ω.

Then the function φα : (I1×I2−α)∩Π2
k=1Sk(

−→m) → R, defined by φα(r) = φ(r+α),

is positive definite because

n∑
i,j=1

cicjφα(ri + rj) =
n∑

i,j=1

cicjφ((ri + α/2) + (rj + α/2)) ≥ 0
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for ri ∈ (I1 × I2 − α) ∩ Π2
k=1Sk(

−→m) with 2ri ∈ I1 × I2 − α. By Proposition 2.2

there exist measures κi (1 ≤ i ≤ 4), such that φα has a representation of the form

(1) on (I1 × Ĩ2 − α) ∩ Π2
k=1Sk(

−→m) with some Ĩ2 ⊂ I2. Putting Ωα = I1 × Ĩ2 and

καi = e−α·xκi (1 ≤ i ≤ 4), we have καi ∈ E+(Ωα,R
2) and

φ(r) =

∫
R2

er·xdκα1 (x) +

∫
R2

χ(s)er·xdκα2 (x)

+

∫
R2

χ(t)er·xdκα3 (x) +

∫
R2

χ(s)χ(t)er·xdκα4 (x)

for r = (s, t) ∈ Ωα ∩ Π2
k=1Sk(

−→m). We show that each measure καi (1 ≤ i ≤ 4) is

independent of the choice of α. Suppose that α, α′ ∈ Ω ∩ Π2
k=12Sk(

−→m) and α ̸= α′.

Let l denote the line segment between α and α′. Then there exist finite points

α = w0, w1, . . . , wn = α′ in l ∩ Π2
k=12Sk(

−→m) such that Ωwp ∩ Ωwp+1 ̸= ∅ (0 ≤ p ≤
n − 1). By Proposition 2.1, we have κ

rp
i = κ

rp+1

i for each p. Therefore, we have

καi = κw0
i = κwn

i = κα
′

i (1 ≤ i ≤ 4), which completes the proof. □
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