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INTEGRAL REPRESENTATIONS OF POSITIVE
DEFINITE FUNCTIONS ON CONVEX SETS OF
CERTAIN SEMIGROUPS OF RATIONAL NUMBERS

KOJI FURUTA

ABSTRACT. H. Glockner proved that an operator-valued positive definite function
on an open convex subset of QY is a restriction of the Laplace transform of an
operator-valued measure on RN. We generalize this result to a function on an
open convex subset of a certain subsemigroup of Q2.

1. Introduction

Let 7 = {m,}>2 | be a sequence of integers greater than or equal to 2, and let .S (m)
be the subsemigroup of the additive semigroup, @, of rational numbers, as defined
by

S(H)z{ﬁ:kéZ,nZl},

where Z denotes the set of all integers. For example, if m,, =n+1 for n > 1, we
have S(m) = Q, and if m,, = 2 for n > 1, then S(7) is the set of all dyadic rational
numbers.

Let © denote an open convex subset of RY (N > 1) and let ¢ be a real-valued
function on Q NIIN_, Sk (71), where Sp(m) = S(m) (1 < k < N). We say that ¢ is
positive definite if

Z cicjo(ri+rj) >0

ij=1
foralln > 1, ¢1,¢9,...,¢, € R and ry,79,...,7, € H,jleSk(m), such that 2r; €
QNI Si(7t) for 1 < i < n. In [7], N. Sakakibara proved that [0, co[NS(71) is
a perfect semigroup, that is, every positive definite function on [0, co[NS (W) has a
unique representation as an integral of multiplicative functions. In [4], we obtained
an integral representation of a positive definite function on Q2 N nglsk(m) in the
case where N = 1. In this note, we show that every positive definite function has
an integral representation in the case where N = 2. We also give a condition for
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a function of Q NTIZ_,S,(7) into B(H), where B(H) is the set of bounded linear
operators on a Hilbert space #H, to have an integral representation (Theorem 2.2).
As will be seen, our methods are applicable to any number of dimensions. The result
we obtain represents a generalization of a result by H. Gléckner ([6], Theorem 18.5).
For integral representations of continuous positive definite functions on open convex
sets of R?, we refer to A. Devinatz [3].

2. Integral representations of positive definite functions

Define the function x on S(7t) as follows (cf. [7]):
if the sequence 77 = {mn}22 | contains no even numbers, set

X(ﬁ) = (-D", ﬁ € S(m);

if 7 contains only finitely many even numbers, we may suppose that my,...,m,
are even and that m, (¢ > p) are odd. Then, we set

N i )= (~1)F, i

ml...mpmp+1...mn ml---mpmp+1..-mn

e S(m).

It is clear that x is well-defined and multiplicative, i.e., x(r1 + re) = x(r1)x(r2) for
r1,79 € S(mt). In fact, the functions r € S(7i) — €™ and r € S(7) — x(r)e’™
(where z € R) are the semicharacters of S(7) [7].

For a convex subset © of RY, let us denote by E (Q, RY ) the set of all positive
Radon measures, i, on RY such that the function z = (z1,...,zy) € RY > ¢ =
ererttrNen g yintegrable for all v = (rq,...,7y) € Q; by E(Q, RY), let us denote
the set of all signed Radon measures, x, such that |u| € E,(Q, RY). The o-algebra
of all Borel sets in RY is denoted by B(R").

In order to state our results, we need the following ([4], Theorem 2.1):

Theorem 2.1. Let a,b € RU{—o00,00} such that a < b and let m = {m,}>>, be a
sequence of integers m, > 2. Let ¢ be a positive definite function on ]a,b[NS ().
(1) If the sequence mt contains at most finitely many even numbers, then there
exist positive Radon measures p,v € FE(]a,b], R) such that

4,0(7’):/Re”du(a:)jt/Rx(T)e”dV(x), r €la,b[NS ().

Moreover, the pair (p,v) is uniquely determined by ¢.
(2) If the sequence mi contains infinitely many even numbers, then there exists
a uniquely determined measure p € E,(]a,b[, R) such that

o(r) = /Remdu(x), r €la,b[NS(nt).



Proposition 2.1. Let a,b € RU{—o00,00} such that a < b and let i = {m,}>>,
be a sequence of integers m,, > 2.

(i) If the sequence ni contains at most finitely many even numbers, then the

mapping L1 : E(Ja, b[, R) x E(]a, b}, R) — RI#0S() defined by

&wwmzéwww+/mmmwm r €la,HNS (7).

R
18 1njective.
(i) If the sequence T contains infinitely many even numbers, then the mapping

Ly : E(la, b, R) — RS0 defined by

Lal)(r) = [ eduta), r elanS()
R
15 injective.
Proof. (i) Suppose that £i(u,v) = L1(ft,7) for p,v, i, 7 € E(]a,b[, R). Using the

Jordan decomposition u = py — o, v =11 — s, L = fi1 — [l2, and ¥ = U} — Uy, We
have

[ e+ @)+ [ e+ @)
R R
— [ e+ @) + [ e+ v)(a),
R R
for r €la, b[ﬂS(m). By Theorem 2.1, we have ju1 + 1o = i1+ o and vy + v = Uy +1,
such that p = i and v = ». (ii) is proved analogously. O

Proposition 2.2. Let a1, az, by, by € RU {0, —00} such that a; < 0 < b; (i = 1,2)
and let m = {m,}22, be a sequence of integers m, > 2. Put I; =|a;,b;[ (i = 1,2)
and let @ be a positive definite function on I x I, N TI2_, Sk(nt).

(i) If the sequence mi contains at most finitely many even numbers, then there
exist positive Radon measures r; € E,(I1x] —¢, e[, R*) (1 < i < 4), where

b
€= mz’n{l%ﬂ, 52}, such that

o) = [ emant@)+ [ e dn
+ [ e + [ e @) 1)

Jorr=(s,t) € (I1x] —e, e]) NII2_, Si(71). The quadruple (ky, ks, ks, Ks) is
uniquely determined by .



(i) If the sequence i contains infinitely many even numbers, then there exists
a uniquely determined measure k € E (11 X I, R2), such that

o(r) = /R2 e"*dr(z), for rel; x N H,Zzlsk(m). (2)

Proof. (i) We use the technique that was used in the proof of Theorem 6.5.4 in [2].
For each t €] — ¢, e[NS(nt), define the functions @1, @ on I; N S(mt) by

@1(8) = 90(87 Qt)’ 902(3) = 30(87 Zt) + 90(87 0) - 2@(87 t)

forse [ NS (m), respectively. Then, ¢; and ¢, are both positive definite. Indeed,
letn>1,¢,...,¢, € Rand sq,...,5, € S(m) such that 2s; € I; (1 < i < n).
Then, (2s;, 2t) € I x Iy and we have

Z CiCjQDI(Si + Sj) = Z CiCjQO(SZ' + Sj,t + t) Z 0.
i,5=1 i,j=1

As for g, expressing the defining property of the positive definiteness of ¢ for
Cly vy Cpy—Cly...,—Cy € Rand (s1,1),...,(sp,1),(51,0),...,(s,,0) € szlsk(m),
we have

Z cicipa(s;i + s5) = Z cici (p(si + 55, 2t) + @(s; + 54,0) — 2¢(s; + s4,t)) > 0.
ij=1 ij=1

Therefore, by Theorem 2.1, there exist i, v/ € Ey(I;, R) (i = 1,2) such that
plo.20 = [ e aud@) + [ x(e i),
R R
P(5:20) + ¢(5.0) ~ 20(s,1) = [

[ dyito) + / x(s)e™ di(z).

R
For t €] — ¢, e[NS(m), we define

1 1

e = 5 (g + g — 1), v= 5(%1 + vy — 7).

By Proposition 2.1, (4, 1) is a unique pair of measures in F([;, R) such that

(s, t) = /ReS“ dp(u) + /Rx(s)esu dv,(u) for s € I N S(m). (3)

The mappings t — j; and ¢ — 1, are positive definite on | —e, [NS(7?) in the sense
that

n n
g CiCjfht;+t; § ciCiVy+t; € Ey (11, R)
ij=1 ij=1



for ¢1,...,¢, € Rand ty,...,t, € S(mi) such that 2t; €] — ¢,e[. To see this, we
consider the function ¢ : I; N S(m) — R, defined by

P(s) = /ReS“ <2”: cicjdutﬁtj) (u) + /Rx(s)esu (Zn: cl-cjdutﬁtj) (u).

ij=1 ij=1

Then, v is positive definite because

D dpdgtb(sy+50) = > Y (dpei)(dgcy) sy + Squti +15) > 0

p,g=1 p,g=11i,j=1
for dy,...,d, € Rand s1,...,8, € S(m) with 2s, € I; (1 < p < m). By Theorem
2.1, there exists a unique pair (p, o) of positive measures such that

vl = [ evdp(u)+ [ x(s)e doa).
R R

From Proposition 2.1, it follows that ZZJ‘:1 CiCiflt4t;, = P szzl CiCiVyqt, = O €
E.(I;, R). In particular, for any A € B(R), the functions ¢t — u:(A) and t — 14(A)
are positive definite on | — e, e[NS(7#). For the present, let us consider the function
pi(A). By Theorem 2.1, uy(A) can be uniquely represented as

MWZLWMW+LWWWW) (4)

with 74 € B, (] —&,¢[, R) (i = 1,2). The mappings A — 74 (i = 1,2) of B(R) into
E. (] —¢,¢[, R) satisty the following:

(

(b) 7, 4, =D T4, when {A,}22, is a sequence of disjoint sets in B(R);

(c) T4y =sup{ri : K € K(R), K C A}, where A € B(R) and K(R) denotes the
set of all compact sets of R.

a) 75 =0;

Let us verify these properties.
(a) For every t €] — 5,5[(\5(%), we have

0= m(®) = [ eari(e)+ [ xeririo)

Substituting t = 0, we have 7 (R) + 7;(R) = 0, such that 7, = 0 (i = 1,2).
(b) For t €] — &,e[NS(7t), we have

/Ret”dﬂnAn(U) + /RX(t)et”dTﬁnAn(U) = MQ Ay) = iﬂt(fln)
_ 2 < /R drl (v) + /R X(t)et“dfjn(v))



Setting ¢ = 0, we obtain > > (74 (R) + 73 (R)) = po(U;~; An) < po(R) < +o0,
which shows that >->° 74 (i = 1,2) are Radon measures (cf. [2], Exercise 2.1.28).
Furthermore, (5) implies that > >° 74 € E, (] —¢,¢[,R) (i = 1,2) and (b) follows
from Proposition 2.1.

(c) By (a) and (b), we see that, for each A € B(R), the net {7}, : K € K(R), K C
A} is increasing if the index set is ordered by inclusion (i = 1,2). By Exercise 2.1.29
in [2],

7y =sup{7i : K € K(R), K C A}
is a Radon measure and 7/, < 74, in particular, 7y € E,(] —¢,¢[, R) (i = 1,2). For
each t, we have

/R el (v) + /R X(t)e" d73(v) = lim ( /R e drie(v) + /R X(t)et”dﬁ%(“)>
= 1i[£HMt(K) = 1y (A)
- /R edrl(v) + /R x(t)e"dri(v),

which shows that 7, = 7 (i = 1,2).

By (a), (b), and (c), the functions ®; : B(R) x B(R) — R, defined by ®,;(A, B) =
74(B) (i = 1,2), are Radon bimeasures; thus, by Theorem 2.1.10 in [2], there exist
Radon measures &; (i = 1,2) on R* such that

d,(A,B) = /R2 La(u)lg(v)dri(u,v) = /RlB(v)de‘(v) for A, B € B(R),

where 14 denotes the indicator function on A. By standard arguments of integral
theory, we have

/R La(h(v)dsi(u,v) = / h(v)dr (v)

R
for A € B(R) and any 7)-integrable function h : R — R, in particular,

/ La(w)edr;(u,v) = / evdrl(v), for A€ B(R),t €] — e e[NS(m).
R? R
Combining this with (4), we have

pi(A) = / La(w)e™dr (u,v) +/ La(u)x(t)e™dry(u,v)
R? R?
for every A € B(R) and t €] — ¢,¢[NS (m) Again, by standard similar arguments
we have

[ st = [ gteintuo)+ | st

R2



for any p-integrable function g : R — R. In particular, we have

/esud,ut(u):/ esu+tvdl-€1(u,v)+/ x()e " T drky(u, v)
R R? R?

for s € ;N S(m) and t €] —e,e[NS(71). Using a similar argument for the function
t = 1 (A) (A € B(R)), we obtain

[ x@erint = [ x@er s + [ xox0er s

R2
with x; € Ey(I1x] —¢,¢[, R?) (i = 3,4). Thus, by (3) we obtain the desired repre-
sentation of .
To prove the uniqueness of the representing measure, we suppose that signed
measures k; € E(I1x] — ¢, e, R*) (1 <14 < 4) satisfy

/R2 er""“"d/ﬁ(a[:)—|—/R2 X(s)e”dmg(z)—l—/R2x(t)eT""“"d/<ag(:1:)—|—/R2 X(s)x(t)e" dry(x) =0

(6)
for r = (s,t) € (I1x] — e, €]) NII2_, Sp(mt). Letting t € 2S(m) = {2s : s € S(nt)}
in (6), we have

/2 S d(ky + Ks)(u, v) + /2 SN (8)d(kg + ky)(u,v) = 0. (7)
R R

Let us define 7; : R* = R (i = 1,2) by m(u,v) = u and 7y(u,v) = v, respectively,
and put e; = e;(v) = €. Then, by (7), we see that the image measures w; =
(er(k1+k3))™ and wy = (ey(k2 + Kq))™ satisfy [p e dwi(u) + [p x(s)e dws(u) = 0,
which implies that w; = ws = 0. This means that, for any A € B(R) and t €
| —e,e[n2S(mt),

[ et + 5 = [ a0l + ) =0

R2
By Proposition 2.1, we have (1axgr(k1 + £3))™ = (laxr(ka + £4))™ = 0, which
implies that (k1 + K3)(A X B) = (ks + k4)(A x B) =0 for A, B € B(R). Therefore,
K1+ k3 = 0, ke + kg = 0. Similarly, letting ¢ € S(m1) \ 25(nt) in (6), we obtain
k1 — k3 = 0, ks — kg = 0. Consequently, we have k; = 0 (1 < i < 4). Thus, the proof
of (i) is complete.

(ii) Suppose that 7t contains infinitely many even numbers. Then, for ¢t € I, N
S(mt), the function s — (s, t) is positive definite on I; N S(71) because 25(7t) =
S(mt) and (sy + s5,t) = (s1,t/2) + (s2,t/2) for s1,59,t € S(mt). Therefore, by
Theorem 2.1, there exists a unique measure p; € E (I, R) such that

(s, t) = /Resxdut(x) for s € I, N S(7t).

The rest of the proof is similar to that of (i) and is therefore omitted. O



Let H be a complex Hilbert space, (-,-) be the inner product on H, B(H) be
the set of all bounded linear operators on ‘H, and B(#H), be the set of all positive
operators on . We give a condition for a function of Q N II2_, S, (nt) into B(H),
where Q is an open convex subset of R?, to have an integral representation such as
(1) or (2) of Proposition 2.2. We denote by E,(Q, R?,H) the set of all functions
F : B(R?) — B(H), satisfying (F(-)¢, &) € E,(Q,R?) for all £ € H. In the
following, we consider only the case where 7 contains at most finitely many even
numbers. We can also obtain an analogous result for the case where 7t contains
infinitely many even numbers.

Theorem 2.2. Let Q be a nonempty open convex set in R? and let m = {m,}22, be
a sequence of integers, m, > 2, which contains at most finitely many even numbers.
For a function ¢ : QN I12_, Sy (m) — B(H), the following conditions are mutually
equivalent:

(i) @ is of positive type, in the sense that 3 ", (p(ri +15)&,&) > 0 for all
n>1,r,r,...,r € I2_Sp(Mt), such that 2r; € QN I2_ Sp(Mm) fori =
1,2,...,n and &,&,...,& € H;

(ii) ¢ is positive definite, in the sense that for each & € H, the function r —
(p(r)€, €) is positive definite on Q NII2_, Sy (m);

(iii) For any fited o € Q N II2_,2S,(7t), there exist functions F, : B(R?) —
B(H), (1 <i < 4) such that e=**F; € E,.(Q, R>,H) and

(p(r)é,m) = /

AR @E ) + / X(s)e" "V d(Fy(2)€, 1)

R2

+ /R X d(Fy ()€, m) + /R x(s)x ()" d(Fu(w)8, )

forr = (s,t) € QNIE_,Si(m), &1 € H.
Moreover, the quadruple (Fy, Fs, F3, Fy) is uniquely determined by ¢ and c.

Proof. Clearly (i) implies (ii), and by Proposition 1.1 in [5], we see that (iii) implies
(i). To prove that (i) implies (iii), we first suppose that dimH = 1. Once the
case where dimH = 1 is proved, the proof of the general case is obtained in a
manner similar to that used for Theorem 3.1 in [4]. For an arbitrarily fixed a €
25(m) x 25(nt), let I and I, be open intervals in R such that o € I x I, C €.
Then the function ¢, : (I; X I, —a)NIZ_, Sk (M) — R, defined by @, (r) = @(r+a),
is positive definite because

Z CiCjpa(ri +15) = Z cicjo((ri +a/2) + (rj +a/2)) >0
ij=1 ij=1



for r; € (I, x Iy — a) N I2_,Sp(m) with 2r; € I} x I, — a. By Proposition 2.2
there exist measures ; (1 < i < 4), such that ¢, has a representation of the form
(1) on (I; x I, — a) N I3, Sy(m) with some I, C I,. Putting Q, = I x I, and
kS = e ", (1 < i < 4), we have £¢ € E,(Qq, R?) and

o) = [ emani@+ [ s

+/R2 x(t)e"drS () +/R2 X(8)x(D)e™ drS (x)

for r = (s,t) € Qu NI2_,Si(7). We show that each measure £ (1 < i < 4) is
independent of the choice of a. Suppose that o,/ € QN Hi:125k(m) and a # /.
Let [ denote the line segment between o and «’. Then there exist finite points
a = wy,wy,...,w, =& in [N nglzsk(m) such that Q,, NQy, ., # 00 < p <
n — 1). By Proposition 2.1, we have ;" = x;"*' for each p. Therefore, we have
@ =k = g = kY (1 < i < 4), which completes the proof. O
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