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A STRONGER NONCOMMUTATIVE EGOROFF’S
THEOREM

CHARLES A. AKEMANN AND G. A. BAGHERI-BARDI

Abstract. We prove a stronger version of Egoroff’s theorem in the non-commutative

setting.

Egoroff’s theorem in abstract measure theory plays a fundamental role. It says

Theorem 1. Let (X , µ) be a measure space with µ(X ) < ∞. Let {fn}∞n=1 be a

sequence of complex-valued measurable functions which converges at almost every

point of X to a complex-valued function f . If ϵ > 0, there is a measurable set

E ⊆ X with µ(X − E) ≤ ϵ such that {fn}∞n=1 converges uniformly on E.

Ignoring a set of measure < ϵ/2, we can assume that {fn}∞n=1 are all bounded, so

without lost of generality they are bounded by 1 and f = 0. This is routine measure

theory, but it uses strongly the fact that we have sequenatial convergence. Using

these reductions, we now have the following version of Egoroff’s Theorem.

Theorem 2. Let (X , µ) be a measure space with µ(X ) < ∞. Let A be a uniformly

bounded set of measurable functions which contains 0 in its L1 norm closure. If ϵ >

0, there is a measurable set E ⊆ X with µ(X −E) ≤ ϵ and a sequence {fn}∞n=1 ⊂ A

that converges uniformly to 0 on E.

Let H be a Hilbert space and B(H) be the algebra of all bounded operators on

H. A noncommutative version of this theorem was proved by Saito in [3] as follows.

Theorem 3. Let M be a von Neumann algebra in B(H). Let A be a bounded subset

of M such that 0 lies in its strong closure A. Then, for any positive µ ∈ M∗ and

any ϵ > 0, there exist a projection e0 in M and a sequence {an}∞n=1 in A such that

lim
n→∞

∥ ane0 ∥= 0, µ(1− e0) ≤ ϵ.

A part of Saito’s proof (for which he was forced to use the boundedness assump-

tion) is based on this point: Let {ai} be a uniformly bounded net in B(H) which

strongly converges to zero then {a∗i ai} strongly converges to zero too. We show by

an example that the boundedness assumption is needed for this point.
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Example 4. Let {en}∞1 be an orthonormal set in H and consider the rank one

projection pn onto Cen. Then 0 is in the strong closure of S = {
√
npn : n ∈ N} (see

Example C.10 of [5]). We list below two points concerning this example:

(1) Every norm bounded net in S has many finite distinct elements. Therefore

there is no norm bounded net in S which converges to 0 with related to the

strong operator topology. We now apply the principle of uniform bounded-

ness to conclude there is no sequence in S which converges to 0 with related

to the strong operator topology too.

(2) There is a net {ai} in S converging to 0 in the strong operator topology.

The squares of elements of S are all the form npn. Let h =
∑

n
1
n
en then

npn(h) = en. So there is no subnet of {npn} strongly convergent to 0. Since

{a2i } does converge to zero in the weak operator topology then {a2i } can not

strongly converge to anything.

This example makes sense we cannot apply Saito’s theorem for S ⊆ M = B(H).

We make a change in Saito’s proof to show the bounded assumption is redundant.

This is an important benefit since the strong operator topology is metric on bounded

subsets of M. Our proof makes it clear that this part of Egoroff’s Theorem is not

about sequences.

Theorem 5. Let M be a von Neumann algebra in B(H). Let A be an arbitrary

subset of M and A be its strong closure. Take an arbitrary element a ∈ A. Then, for

any positive µ ∈ M∗, any projection e ∈ M and any ϵ > 0, there exist a projection

e0 ≤ e in M and a sequence {an}∞n=1 in A such that

lim
n→∞

∥ (an − a)e0 ∥= 0, µ(e− e0) ≤ ϵ.

Proof. Let {ai}i∈I be a net in A which is strongly convergent to a.

Step 1. Let us consider projections p1,i = χ[0, 1
2
](|(a− ai)e|) in eMe.

• We have ∥ (a− ai)p1,i ∥≤ 1
2
for every i ∈ I. To prove it

∥ (a− ai)p1,i ∥2 =∥ p1,i(a− ai)
∗(a− ai)p1,i ∥

=∥ p1,ie(a− ai)
∗(a− ai)ep1,i ∥

=∥ p1,i |(a− ai)e|2 p1,i ∥

=∥ |(a− ai)e| p1,i ∥2≤ (
1

2
)2.

• We show the net {p1,i}i∈I strongly converges to e and conclude there is k1 ∈ I

with µ(e− p1,k1) ≤ ϵ
2
(since µ is normal). Based on definition of projections

p1,i’s, we have
1

2
(e− p1,i) ≤ |(a− ai)e|.
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But {|(a − ai)e|} is strongly convergent to 0. This point is obtained by the

fact that {a− ai} strongly goes to zero and the following equality.

∥ |(a− ai)e| ζ ∥=∥ (a− ai)eζ ∥ (ζ ∈ H).

Step 2. We now consider projections p2,i = χ[0, 1
4
](|(a − ai)p1,k1 |) in p1,k1Mp1,k1 .

Similar to the step 1,

• We have ∥ (a− ai)p2,i ∥≤ 1
22

for every i ∈ I. To prove it

∥ (a− ai)p2,i ∥2 =∥ p2,i(a− ai)
∗(a− ai)p2,i ∥

=∥ p2,ip1,k1(a− ai)
∗(a− ai)p1,k1p2,i ∥

=∥ p2,i |(a− ai)p1,k1 |2 p2,i ∥

=∥ |(a− ai)p1,k1 | p2,i ∥2≤ (
1

4
)2.

• There is k2 ∈ I with µ(p1,k1 − p2,k2) ≤ ϵ
22
.

By induction we obtain a decreasing sequence {pn,kn}∞n=1 in M which should be

strongly convergent to a projection e0 ∈ M. Then we get

µ(e− e0) ≤ ϵ and lim
n→∞

∥ (a− akn)e0 ∥≤ lim
n→∞

∥ (a− akn)pn,kn ∥= 0.

□

Acknowledgements. The authors are deeply grateful to the referee for valuable

suggestions which have contributed to the final preparation of the paper.

References

1. I. Kaplansky, A theorem on rings of operators, Pacific J. Math., 1 (1951), 227–

232.

2. W. Rudin, Real and Complex Analysis, MacGraw-Hill Book C., 1966.

3. K. Saito, Non commutative extension of Lusin’s theorem, Tohoku Math. J., 19

(1967), 332–340.

4. M. Takesaki, Theory of operator algebra I, Springer-Verlag, New York, 1979.

5. Iain Raeburn and P. Dana Williams, Morita Equivalnce and continuous-Trace

C*-algebras, Mathematical Surveys and Monographs, 60. American Mathemat-

ical Society, Providence, RI, 1998.

(C. A. Akemann) Department of Mathematics, University of California, Santa Barbara, California

93106 USA.

E-mail address: Akemann@math.ucsb.edu

(G. A. Bagheri-Bardi) Department of Mathematics, Persian Gulf University, Boushehr 75168, Iran.

E-mail address: alihoular@gmail.com , bagheri@mailpgu.ac.ir

— 67 —



Received April 9, 2014

Revised April 20, 2014

— 68 —


