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A SUBSTITUTION RULE FOR THE PENROSE TILING

KAZUSHI KOMATSU AND FUMIHIKO NAKANO

Abstract. We study the structure of the Penrose tiling (PT, in short) con-
structed by the matching rule, and deduce directly a substitution rule from
that, which gives us (i) local configuration of the tiles, (ii) elementary proofs
of the aperiodicity, the locally isomorphic property, and the uncountability,
(iii) alternative proof of the fact that all PT’s obtained by the matching rule
can be constructed via the up-down generation.

1. Introduction

Penrose tiling (PT) is one of the remarkable aperiodic tilings consisting of only two
prototiles (e.g., two rhombs) and is known to be aperiodic, to have locally isomorphic
property, and to have uncountable family of mutually distinct ones [8]. To construct
PT, following three methods are well-known:

(i) matching rule,

(ii) inflation rule (up-down generation, UD in short), and

(iii) projection method.

Letting Pn, n = 1, 2, 3 be the set of PT’s obtained by these methods, we have ([1, 2,
6, 10]) P2 ⊂ P1 ⊂ P3 and for the opposite inclusion (P1 ⊂ P2) Robinson’s argument
using the notion of supertile is known [5]. In this paper, we would like to study
the structure of PT using de Bruijn’s matching rule only1; most of our results are
well-known but our argument is, we believe, more elementary and straightforward.

It is known that there are eight allowed patterns around each vertices (Fig-
ure 2.1.1). In section 2, we study the unique patches2 (P1, . . . , P8) determined by
each patterns (Figures 2.2.1, . . . , 2.2.8), and show that PT is the superposition of
both P6 and P8 (Theorem 2.1, Corollary 2.1). This fact implies that the patches P6

and P8 are “the local charts” in a sense, describing the local configuration of tiles in
PT, and in other words, we can regard them as “prototiles” on the construction of
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1The matching rule is to draw single and double arrows on edges of each prototiles and arrange

these tiles on the plane by matching those arrows (Figure 1.1).
2They are equal to the connected components of the empires [5].
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Figure 1.1: Two prototiles with arrows which composes PT.

PT. We remark that essentially the same fact is found by [7], but our P6 is smaller
than the decagon in [7] and is minimal in the sense that no proper subset of which
can cover P8. In section 3, we show that if we regard P6, P8 as “prototiles” then
their “matching rule” coincides (Theorem 3.1). From which we find, in section 4,
a substitution rule which gives us the family {An}∞n=1 of local charts of PT with
diam (An) → ∞ (Theorem 4.1), which easily proves the aperiodicity and the locally
isomorphic property. This substitution rule is essentially the same as well-known
inflation rule: our rule is similar to applying the inflation rule twice. However,
ours is deduced differently from the matching rule. In section 5, we show there are
uncountably many PT’s which are not congruent each other, using the idea of the
proof of uncountability of PT by UD. In section 6, we compare our substitution rule
with UD and show that all PT’s constructed by the matching rule are also obtained
by UD. In Appendix 1, we provide detailed arguments omitted in the proof of Theo-
rem 2.1. In Appendix 2, we consider some curves determined by the matching rules,
which is essentially the same as Conway’s curves[4], and study the basic properties
of them. Due to the self-similar structure of PT, they have fractal structure. We
compute the Hausdorff dimension of those objects obtained by “the thermodynamic
procedure” on these curves, which shows the difference of the density of overlaps
between upper and lower sides of An.

2. Local chart

2.1. The global rule

It is straightforward to see that at most eight patterns are allowed on each vertices
in PT, as named p1, p2, . . . , p8 in Figure 2.1.1.

When we start to put tiles following the matching rule, it turns out that we
sometimes fail to tile the plane, as is seen in the next two examples.

(1) Two joints of p5 : The pattern p5 has two “joints” which allow both p4 and p8

(Figure 2.1.2). If we put p4 on both of them, we fail to tile the plane (Figure 2.1.3):
if we put p4 on one of the joints, then we must put p8 on the other side. This
property plays an important role to determine the global distribution of tiles in PT.
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Figure 2.1.1: Eight patterns around each vertices in PT[9, p. 178, Figure 6.8].

Figure 2.1.2: If we put p4 on both
of two joints in p5,

Figure 2.1.3: then we cannot put tiles on
one of two places (pointed by arrows).
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(2) Five “joints” around p4: the pattern p4 has five “joints” (a, b, c, d, e in Fig-
ure 2.2.4) which allows both p5 and p8. If we put p5’s on four of them, then p8 must
be put on the fifth one (Figure 2.1.4). In other words, if we put p5 on all of them,
we fail to tile the plane. In fact, the number of p5’s on these joints must be either 0
or 2 or 4. These facts imply that, certain local configuration of tiles may determine
that of wider region, so that there may be some rules on the global distribution of
tiles, and henceforth we call these rules “the global rules.”

Figure 2.1.4: The five joints around p4, (i) if we put p5 here, (ii) then p5 must be
put here. (iii) if we next put p5 here, (iv) then p5 must be put here and (v) p8 must
be put here.

2.2. The unique patches determined by each patterns

The facts in former subsection imply that we should not put tiles as we like: there
must be some global rules. For instance, suppose we begin to tile the plane with
p1 as the starting point. Then the configuration of the tiles near p1 must be the
one shown in Figure 2.2.1. This patch is maximal in the sense that beyond which
we have more than two choices of putting tiles: for instance, we can put either p5

or p8 on a in Figure 2.2.1. We denote by P1 this unique patch determined by p1.
Similarly, we have P2, . . . , P8 as shown in Figures 2.2.2, . . . , 2.2.8.
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Figure 2.2.1: The patch P1 determined uniquely by p1.

Figure 2.2.2: The patch P2 determined uniquely by p2.
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Figure 2.2.3: The patch P3 determined uniquely by p3.

Figure 2.2.4: The patch P4 determined uniquely by p4.
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Figure 2.2.5: The patch P5 determined uniquely by p5.

Figure 2.2.6: The patch P6 determined uniquely by p6.
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Figure 2.2.8: The patch P8 determined uniquely by p8.

P7 is omitted and so is Figure 2.2.7, for this is the same as that shown in Fig-
ure 2.1.1; p7 does not determine any local configurations around it. If for instance
we start to put tiles from p1, we first obtain P1, and to proceed, we put one of the
allowed tiles on the boundary. Then this tile would determine further the configu-
ration of tiles to some extent. For instance, if we determine a = p5 in P1, then we
obtain P5. Hence putting p5 on a boundary point means putting the patch P5 there,
and putting tiles along the matching rule on the plane is done by repeating this
process. In other words, to tile the plane along the matching rule is to superimpose
the copies of patches P1, . . . , P8 compatibly.

2.3. The local chart

By definition, {P1, P2, . . . , P8} is a ordered set. Moreover, by Figures 2.2.1, . . . ,
2.2.8, we notice that

Pj ⊂ P8, j = 1, 2, . . . , 7. (2.1)
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In fact, we find all patterns p1, . . . , p8 on P8. Therefore, if we meet p8 frequently
enough as we tile the plane, then it would determine larger area than the other ones.
Hence if the density of p8’s is high enough, the PT should be the superposition of
P8, which turns out to be true.

Theorem 2.1 PT is the superposition of P8. In other words, for any vertex p in
PT, we can find P8 which contains p.

Figure 2.3.1 is a typical example of PT where the location of P8’s is shown3.

Figure 2.3.1: A typical example of PT. The location of P8’s are indicated by the
trapezoid-like figures. The thick ones are the centers of P ′

8(= A2) and the shaded
one is the center of A3 (P ′

8, A2 and A3 are defined in Section 4).

By Theorem 2.1, we can regard P8 as a “prototile” of PT; PT is constructed
by “tiling” the copies of P8. Hence P8 is the “local chart” which gives us the local
configuration of tiles in PT; to know how tiles are distributed near a given vertex p,
we only have to find a p8 near p and identify it on a chart P8.
Proof. It suffices to show the following fact: when we start to put tiles from Pj

(j 6= 8), then p8 appears whose corresponding P8 contains Pj.
(1) P5 : as is seen in the global rule in §2.1, one of two joints (a, b in Figure 2.2.5)
must be p8 and thus P5 is contained by a copy of P8.
(2) P4 : as is seen in the global rule in §2.1, one of the five joints (a, b, c, d, e in
Figure 2.2.4) must be p8, and thus P4 is contained by a copy of P8.

3Figure 2.3.1 is drawn by “tilings.exe” made by V. C. Gulyaev.
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(3) P2 : in any case, either p5 or p8 appears and P2 is contained by P5 or P8

respectively (Lemma 7.2).
(4) P1 : as the case (3), it is seen to be contained by either P4, P5 or P8 (Lemma 7.1).
(5) P3 : it is seen to be contained by either P2 or P5 (Lemma 7.3).
(6) P6 : it is seen to be contained by either P1, P2, P4, P5 or P8 (Lemma 7.4).
(7) P7 : P7 does not determine any vertices around it. By putting some allowed tiles
on its boundary, it becomes

P7 ⊂ Pj, j = 1, 2, . . . , 6.

Pj (j = 1, 2, . . . , 6) is already shown to be contained by P8. ¤

Remark 2.1 The global rule discussed in §2.1 can be seen in P8. In fact, by The-
orem 2.1 (Theorem 2.1 can be proved without using these rules), PT is the super-
position of P8 and there are two P5’s in P8 which are connected to p8 through their
joints. Hence one of two joints in P5 must be connected to p8 in PT. The second
rule can be seen similarly.

Corollary 2.1 PT is the superposition of P6. In other words, for any vertex p in
PT, we can find P6 which contains p.

Proof. It suffices to see that P8 is the superposition of P6 (Figure 2.3.2). ¤

Figure 2.3.2: P8 is the superposition of P6. The location of P6 is indicated by the
trapezoid-like figures.
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3. Coincidence of matching rules of P6, P8

The next question is how P8’s are distributed in PT. By Theorem 2.1 and Corol-
lary 2.1, PT is constructed by regarding P6 or P8 as the prototile and hence we
would like to know the “matching rules (overlapping rules)” of those. Then, we find

Theorem 3.1 The matching rule of P6 and that of P8 are the same.

Proof. We first study the matching rule of P6. We can put either p1 or p2 on the
left and right side (b, d in Figure 2.2.6) of P6, and can put either p2 or p3 on the
bottom (a in Figure 2.2.6). We write L = 1 (resp. L = 2) if we put p1 (resp. p2)
on the left side, and similarly for the right side. We write B = I (resp. B = II)
if we put p2 (resp. p3) on the bottom. Thus we can describe the configuration of
tiles near P6 by the triple (L,R,B), and then we find there are five possibilities:
(1, 1, I), (1, 1, II), (1, 2, II), (2, 1, II), (2, 2, II). In Figure 3.0, we show labels for
these P6’s which compose P8.

Figure 3.0:4The labelling of P6’s which compose P8.

If we let L = 1, then the arrangement of P6 is shown in Figure 3.1: another P6 is
put on the left (this patch is equal to P1). In Figure 3.1 (and similarly for the other
ones), the location of P6’s is indicated as trapezoid-like figures, with the original
one (1, ∗, ∗) having the double lines. If furthermore we let B = I (resp. B = II),
then the arrangement of P6 are given in Figure 3.2 (resp. Figure 3.3) (these patches
are equal to P2 (resp. P5)). If we put L = 2, we necessarily have B = II and the
arrangement of P6 is given in Figure 3.4 (this patch is equal to P2).

4Since Figures 3.1–3.4 are related to Figures 3.5–3.8, we number the figures of this section in
this way.
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Figure 3.1: The configuration of
P6’s in (1, ∗, ∗). Figure 3.2: The configuration of P6 in

(1, ∗, I).

Figure 3.3: The configuration of P6

in (1, ∗, II).

Figure 3.4: The configuration of P6 in
(2, ∗, II).

We next study the matching rule of P8. There are two possibilities for each
of putting tiles on the sides and bottom of P8. We write 5 L = 1, if (l2, . . . , l8) =
(p2, p8, p1, p5, p1, p4, p1), and write L = 2, if (l2, . . . , l8) = (p3, p5, p2, p6, p2, p8, p2). For

5The definition of lj ’s, rj ’s and bj ’s are given in Figure 2.2.8.

— 122 —



the bottom, we write B = I, if (b1, . . . , b7) = (p2, p8, p1, p5, p1, p8, p2) and B = II,
if (b1, . . . , b7) = (p3, p5, p2, p6, p2, p5, p3). Then we only have five possibilities for
(L, R,B): (1, 1, I), (1, 1, II), (1, 2, II), (2, 1, II), (2, 2, II). Figures 3.5, 3.6, 3.7, and
3.8 show the configurations of (1, ∗, ∗), (1, ∗, I), (1, ∗, II), (2, ∗, II) respectively from
which we see that the arrangement of P8 in these figures are the same as that of P6 in
Figures 3.1,. . . , 3.4. Therefore the statement follows clearly from these observations.

¤

Figure 3.5: The configuration of
P8 in (1, ∗, ∗).

Figure 3.6: The configuration of P8 in
(1, ∗, I).

Remark 3.1 Alternative proof for Theorem 3.1 is possible. By Corollary 2.1, all
configurations of tiles in PT must be explained by the matching rule of P6. In fact,
the arrangement of P6 in P8 (Figure 3.0), the matching rule of P8, and the global
rule in §2.1 are all explained by this rule only.

4. The substitution rule of P6, P8

By Theorem 2.1, the local arrangement of P6 can be seen in P8 (Figure 2.3.2).
Furthermore, by Theorem 3.1, it also shows the local arrangement of P8, if we
replace P6’s in Figure 2.3.2 by P8, which is done in Figure 4.1.
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Figure 3.7: The configuration of
P8 in (1, ∗, II).

Figure 3.8: The configuration of P8 in
(2, ∗, II).

Figure 4.1: The patch obtained
from P8 by replacing P6’s by P8.

Figure 4.2: The composition of An+1 by
An’s.

We denote this patch in Figure 4.1 by P ′
8. Hence we have shown that the PT is

the superposition of P ′
8. This process can be repeated. We denote this substitution
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by σ and let A0 = P6, A1 = P8, A2 = σ(P8) = P ′
8, . . . , An+1 := σ(An) and so on.

An+1 is obtained by arranging An’s as Figure 4.2 6. Thus we obtain the following
theorem.

Theorem 4.1 For any n = 0, 1, . . ., PT is the superposition of An. In other words,
for any vertex p in PT, we can find a patch congruent to An containing p.

Figure 2.3.1 shows an example of PT in which the locations of A1, A2 and A3 are
shown. So we have obtained the sequence {An} of local charts with diam (An) → ∞
which are related via the substitution described above. Theorem 4.1 gives elemen-
tary proof of important properties of PT.

Corollary 4.1 (Aperiodicity) PT is aperiodic.

Proof. Suppose we have a translation of length l under which the PT is invariant.
Pick An in PT whose diameter is more than l. The patches congruent to An−1 which
are contained in An must be mapped by this translation each other which leads us
to a contradiction: the local distribution of these patches are distinct. ¤

Corollary 4.2 (Locally isomorphic property) In PT, any finite patterns appear
infinitely many times.

Corollary 4.3 Any PT’s are locally isomorphic.

Proofs of Corollaries 4.2, 4.3 are omitted.

Remark 4.1 By applying the substitution rule to the global rule discussed in §2.1,
we obtain global rules of arbitrary large size. For instance, Figure 3.7 represents
a rule obtained by applying the substitution once to the rule (1): if the P8 in the
upper left is (1, 1, ∗), then the one in the lower right must be (1, 2, ∗).

5. Uncountability

In this section, we show that there are uncountably many PT’s which are not con-
gruent each other. In order to do this, we number the twenty patches congruent to
An in An+1 as 1, 2, . . . , 20 (Figure 5.1).

By Theorem 4.1, the configuration of tiles in PT can be determined by specifying
the location of An in An+1 in each n, which in turn is determined by a sequence

ρ = (a1, a2, . . . , an, . . .), an ∈ I := {1, 2, . . . , 20}.

Remark 5.1 Since An’s have overlaps in PT, the An+1 which contain this particular
An is not uniquely determined and so is an in this embedding procedure. We thus
define an to be the minimum among those numbers.

6The “matching rule” of An as a prototile is inductively proved to be the same as that of P6.
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Figure 5.1: The numbering of An−1 which compose An.

Since this correspondence {an} 7→ PT (ρ) is not one to one, we introduce the notion
of the cofinal sequences. We say that two sequences {an}, {bn} is cofinal iff

an = bn, n ≥ N

for some N .

Lemma 5.1 (cofinal)
Two sequences ρ, ρ′ are cofinal iff PT (ρ), PT (ρ′) are congruent.

Proof. (i) Suppose ρ, ρ′ are cofinal and let

ρ = (a1, a2, . . . , ak, bk+1, bk+2, . . .)

ρ′ = (a′
1, a

′
2, . . . , a

′
k, bk+1, bk+2, . . .)

Then the patch Ak+1 corresponding to bk+1 contains both of that corresponding to
ak, a

′
k. Hence PT(ρ) and PT(ρ′) coincide from the (k + 1)-th step so that they are

congruent.
(ii) Suppose PT (ρ),PT (ρ′) are congruent. We let them coincide by a translation.
Letting Aρ,1, A

′
ρ,1 be their starting patch of ρ, ρ′, we can find An containing both of

them for large n. Then we have

ak = a′
k, k ≥ n

so that ρ and ρ′ are cofinal. ¤

Theorem 5.1 (uncountability)
We have uncountably many PT’s which are not congruent each other.
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Proof. We write ρ ∼ ρ′ if they are cofinal. Since it is an equivalence relation, it
suffices to show that

S := {{ak}∞k=1 : ak ∈ I} / ∼
is uncountable. Suppose S is countable and let S = {[ρ(n)]}∞n=1 be its enumeration.
We choose representatives ρ(n) from each [ρ(n)]. Let {pn} be the set of prime numbers
and let Q(n) := {nk : k = 1, 2, . . .} be the set of multiples of n. We construct a
sequence δ = {δn}, δn ∈ I by the following procedure.

δk 6= a
(1)
k , k ∈ Q(2)

δk 6= a
(2)
k , k ∈ Q(3) \ Q(2)

δk 6= a
(3)
k , k ∈ Q(5) \ (Q(1) ∪ Q(2))

· · ·

δn 6= a
(n)
k , k ∈ Q(pn) \

n−1∪
j=1

Q(pj)

· · ·

Then it is clear that
[δ] 6= [ρ(n)]

for any n. ¤

6. Comparison with the inflation rule

Theorem 6.1 All PT’s constructed by the matching rule can also be obtained by
the up-down generation (UD).

Proof. By Theorem 4.1, it suffices to show that, for any n, we can construct An by
UD starting from anywhere in An.

Lemma 6.1 Let Ik be the patch made by applying to P6 the inflation rule k times.
For any n, we can find some k = k(n) such that

An ⊂ Ik(n).

Lemma 6.1 follows immediately from Lemma 6.2 below.

Lemma 6.2 Let B0 := P6, and let Bn be the patch obtained from B0 by applying
the inflation rule 2n times. Then for any n, we have

An−1 ⊂ Bn ⊂ An.

and thus ∪
n

Bn =
∪
n

An.
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Figure 6.1: The patch obtained by
applying the inflation rule twice
to P6.

Figure 6.2: The patch in Figure 6.1 is the
one made by eliminating five P6’s (located
in 1, 2, 5, 13, 20 in Figure 5.1) in P8.

Proof. B1 is equal to the patch by eliminating five P6’s (located in 1, 2, 5, 13, 20 in
Figure 5.1) from P8 (Figures 6.1, 6.2).

B2 is obtained by replacing P6’s in B1 by B1 so that B2 ⊂ A2. Furthermore, the
patch congruent to B1 lying in the center of B2 has p8 in its center, and surrounded
by B1’s. Hence A1 ⊂ B2. By repeating this procedure inductively, we have

An−1 ⊂ Bn ⊂ An

for any n. ¤

Lemma 6.1 implies that for any n we can find large “P6” which contains An (Fig-
ure 6.3 shows the case for n = 1).

In the construction of PT by UD, we transform PT to a tiling by triangles by
dividing the big (resp. small) rhomb along its long (resp. short) diagonal, and then
compose triangles along the given composition sequence.

Lemma 6.3 For any two triangles s, S in PT with s ⊂ S, we can find a composition
sequence in UD starting from s such that we obtain S by following this composition
sequence.

Proof. Divide S once into triangles along the substitution atlas and let S1 be the
one which contains s. Then divide S1 again and let S2 be the one which contains s.
We can repeat this procedure until we arrive at s. ¤

We pick and fix any triangle s in An. Take k(n) such that An ⊂ Ik(n). Regard Ik(n)

as the patch of larger tiling, and take sufficiently large triangle S which contains
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Figure 6.3: A large P6 containing
A1(= P8).

Figure 6.4: An example of P6 and the tri-
angle which contains it.

Ik(n). An example of such P6 and triangle S containing it is given in Figure 6.4. The
big P6 in Figure 6.3 and small P6 in Figure 6.4 should be identified. Since

s ⊂ An ⊂ Ik(n) ⊂ S,

we can use Lemma 6.3 and find a composition sequence in UD starting from s to
construct S, which gives us An as its subset. The proof of Theorem 6.1 is thus
completed. ¤

7. Appendix 1

This section provides the argument omitted in the proof of Theorem 2.1.

Lemma 7.1 If we start tiling from P1, it is contained by one of P4, P5, P8.

Proof. Let a, b be the vertices on the boundary of P1, as is shown in Figure 2.2.1.
If we put tiles on the boundary of P1 and proceed until we can not determine the
configuration of tiles uniquely any more, we will find either p4, p5 or p8 somewhere
and our patch then becomes P4, P5, P8 respectively. We show this fact by specifying
the location of the original p1 in the patch P4, P5, P8. The conclusion is:
(1) If we put a = p5, we have P5, that is, P1 is contained by P5 and p1 corresponds
to either A or B in Figure 7.1.2.
(2) If a = p8, we have P8 (Figure 7.1.3, A).
(3) If b = p4, we have P4 (Figure 7.1.1, A).
(4) If b = p8, we have P8 (Figure 7.1.3, B or C).
All possibilities are exhausted by those considerations. ¤
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Figure 7.1.1: Case a = p4: when we put a = p4 in P1, then we have P4 and the
original p1 is located in A.

Figure 7.1.2: Case a = p5 in P1.

Figure 7.1.3. Case a = p8 or d = p8

in P1.

Lemma 7.2 If we start tiling from P2, it is contained by either P5 or P8.

Proof. We argue as in the proof of Lemma 7.1. Let t, r1, r2 be vertices on the
boundary of P2, being shown in Figure 2.2.2.
(1) If (t, r1) = (p4, p2), we have P8 (Figure 7.2.2, A)
(2) If (t, r1) = (p4, p3) we have P8 (Figure 7.2.2, B)
(3) If t = p8, we have P8 (Figure 7.2.2, C)
(4) If r2 = p5, we have P5 (Figure 7.2.1, A) ¤
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Figure 7.2.1: Case r2 = p5 in P2.
Figure 7.2.2: Case (t, r1)
= (p4, p2), (p4, p3), t = p8 in P2.

Figure 7.3.1: Case a = p2 in P3. Figure 7.3.2: Case a = p1 in P3.

Lemma 7.3 If we start tiling from P3, it is contained by either P2 or P5.

Proof. Letting a be the vertex shown in Figure 2.2.3, we have
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(1) If a = p1, we have P5 (Figure 7.3.2, A).
(2) If a = p2, we have P2 (Figure 7.3.1, A). ¤

Lemma 7.4 If we start tiling from P6, it is contained by one of P1, P2, P4, P5, P8.

Proof. Letting a, b, c, d be the vertices shown in Figure 2.2.6, we have
(1) If a = p2, we have P2 (Figure 7.4.2, A).
(2) If (a, b) = (p3, p1), we have P5 (Figure 7.4.3, A).
(3) If (a, b) = (p3, p2), we have P2 (Figure 7.4.2, B).
(4) If b = p1, we have P1 (Figure 7.4.1, A).
(5) If c = p4, p5, p8, we have P4, P5, P8 respectively (figures are omitted). ¤

Figure 7.4.1: Case b = p1 in P6. Figure 7.4.2: Case a = p2

or (a, b) = (p3, p2) in P6.

8. Appendix 2

If we connect two single arrows in two rhombs by a curve (Figure 8.1), we have some
curves in the Penrose tiling (Figures 8.2, 8.3, 8.4).

In this section, we study some basic properties of these curves 7. These curves are
topologically equivalent to what is found by Conway [4], and in fact the statement
of Theorem 8.1 is the same as his observation, which treats the problem on how
many curves are of infinite length. We recall that, as was discussed in Section 5,
each congruence class of PT are characterized by the sequence ρ = (a1, a2, . . .), an ∈
I = {1, 2, . . . , 20} which indicates how smaller patches are embedded to larger ones.

7The curves obtained by connecting double arrows are always closed around each vertices, and
are not studied here.
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Figure 7.4.3: Case (a, b) = (p3, p1) in P6.

Figure 8.1: curves connecting single ar-
rows in two rhomb tiles.

Figure 8.2: curves in P6.

Theorem 8.1 (i) If an = 8 for large n, then PT has two curves of infinite length.

(ii) If an ∈ {3, 4, 6, 7, 9, 10} or an ∈ {12, 14, 15, 16, 17, 19} for large n, then PT has
a curve of infinite length.

(iii) Otherwise, all curves are closed.

Proof. Figures 8.2, 8.3, 8.4 show the curves on P6, P8, P
′
8 respectively. By combining

two curves in P6 suitably, we have two long curves, four closed ones, and seven ones
with open ends in P8 (Figure 8.3), which in turn glues together to make two long
curves, four closed ones, and seven ones with open ends in P ′

8 (Figure 8.4). Because
the overlapping rules of A′

ns are all equivalent, we can show that every An has
two long curves and four closed ones on the same places. Since the Patch 8 in
Figure 5.1 is the only one which includes both of two long curves, and since patches
{3, 4, 6, 7, 9, 10} include the upper one, and patches {12, 14, 15, 16, 17, 19} include
the lower one, we have the statement of Theorem 8.1. ¤

— 133 —



Figure 8.3: curves in P8.

Figure 8.4: curves in P ′
8.

The nature of curves (closed or extended) directly reflects how the patch An are
embedded to An+1 so that we can reconstruct PT from the distribution of them.
Some concrete investigation of combination of curves further show that an finite
area of PT has five-fold symmetry if and only if they are surrounded by a closed
curve.

The self-similar nature of PT implies that these curves have some fractal struc-
ture. To have some quantitative statement, we would like to consider “the ther-
modynamic limit” of An and to compute the Hausdorff dimension of that. Since
the inflation rule says the size of An is proportional to τ 2n (τ = 1+

√
5

2
), we overlap

τ−2nAn so that each two long curve and four closed ones in A′
ns defines the fractal set

denoted by X1, X2, Y1, . . . , Y4 in Figure 8.3 8.By the standard method of computing
the Hausdorff dimension (e.g., [3]), we have the following fact.

Theorem 8.2

ρ1 := dimH(X1) = dimH(Y1) =
log 2

log τ
.

ρ2 := dimH(X2) = dimH(Yj) =
log α

2 log τ
, j = 2, 3, 4, α =

3 +
√

17

2
.

8To be precise, we define the similarity transformation between τ−2nAn and τ−2(n+1)An+1 and
consider the unique invariant set determined by these transformations. For instance, in X1, the
similarity transformation is like that in the snowflake curve but we have also to attach some pieces
taken from the lower long curve.
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The fact 1 < ρ2 < ρ1 reflects the difference of the density of An−1’s in An between
the upper and lower sides of An.
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