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GARDEN REPRESENTATION AND INTERIOR
VARIATION OF REAL RATIONAL FUNCTIONS

SAYAKA TAMAE AND MASAHIKO TANIGUCHI

Abstract. In this paper, we show that the fundamental surgeries of the graph

representation for real rational functions can be achieved by classical interior vari-

ations essentially due to Schiffer. As an application we give a constructive proof

of the main theorem of Natanzon, Shapiro and Vainshtein in [2].

1. Introduction

Let f : Ĉ → Ĉ be a rational function of degree n. We say that f is in general position

if the preimage f−1(p) of any point p ∈ Ĉ consists of either n or n− 1 points. The

points of the latter type are called simple ramification points. The set of all simple

ramification points of f is denoted by Σ(f) and consists of 2n− 2 points.

Next, let τ be an anti-holomorphic involution of Ĉ. A rational function f : Ĉ → Ĉ
such that f(τp) = f(p) for any p ∈ Ĉ is called to be real. Clearly, Σ(f) = Σ(f) for

any real rational function f .

We use an object, called a garden, which consists of a weighted labeled directed

planar chord diagram and a set of weighted rooted trees each of which corresponds

to faces of the diagram. We start with the definition of it. See [2].

Definition 1.1. By a planar chord diagram (of order 2l) we mean a circle drawn

on the plane together with 2l points on this circle partitioned into l pairs in such

a way that, for any two pairs, the chords joining the points from the same pair

do not intersect. The above 2l points are called the vertices of the chord diagram.

The chords joining the vertices from the same pair and the arcs of the circle joining

adjacent vertices are called the edges. The notion of its faces is defined in a usual

way (except for the outer face of the graph, which is not a face of the diagram).

We say that a planar chord diagram is directed if its edges are directed in such

a way that the boundary of each face becomes a directed circle. A planar chord
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diagram is said to be weighted if each edge is equipped with a nonnegative inte-

ger, and labeled if there exists a bijection β which maps the set of all vertices to

{1, 2, . . . , 2l}. The value β(v) is called the label of v. Two labelings β1 and β2 are

said to be cyclically equivalent if β1(v) − β2(v) is a constant mod 2l not depending

on the choice of a vertex v.

Definition 1.2. A rooted tree is, by definition, a tree with one distinguished vertex

called the root. All other vertices of the tree are said to be inner. We say that a

rooted tree is weighted if each vertex is equipped with a positive integer.

Definition 1.3. A garden is a weighted labeled directed planar chord diagram with

a set of weighted rooted trees (possibly consisting of its roots only) associated with

faces of the diagram. The weights of the inner vertices of the trees are arbitrary

positive integers, and the weight of the root associated with a face j equals tj defined

below. The (total) weight of the garden equals the sum of the weights of all roots

and two times of the weights of all inner vertices of trees.

Here, for any face j of a weighted labeled directed planar chord diagram, dj
denotes the number of descents in the sequence of the labels of vertices ordered

cyclically along the boundary of the face j, and tj denotes the sum of dj and the

weights of all edges on the boundary of the face j.

Two gardens are said to be equivalent if there exists a bijection of the sets of the

vertices which preserves chords, orientation, the weights of edges, labels (up to the

cyclic equivalence), the rooted trees, and the weights of inner vertices. In the sequel,

we identify equivalent gardens.

Here, we recall how to get a garden from a real rational function. Take a real

rational function f of degree n in general position, and represent Σ = Σ(f) as

ΣR ∪ ΣI , where ΣR and ΣI are the sets of all real critical values and of all non-real

ones of f , respectively. The number of elements in ΣR is denoted by 2l(Σ).

Let S(f) be the preimage of the extended real line R̂ = R ∪ {∞} under f . For

every point in ΣR, S(f) contains exactly 4 arcs corresponding to a neighborhood of

it. These arcs define a 2-dimensional cell complex on Ĉ. The 2-cells of this complex

are called the faces of S(f). Here, S(f) may contain simple closed curves called

ovals as connected components.

To construct the garden G(f) representing f , we start with defining a planar

chord diagram of order 2l(Σ). The vertices of the diagram correspond to the critical

points with real critical values, and the chords correspond to arcs in S(f) lying

above R̂. Thus, the faces of the diagram correspond to the faces of S(f) lying above

R̂. The orientation of edges are induced by that of R̂. To define the labeling of the

chord diagram, consider the natural order < on ΣR. Here, if ∞ belongs to ΣR, we

assume that it is the biggest one. The label of a vertex equals the ordinal number
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of the corresponding critical value under this order. To define the weights, for any

given arc or oval, let w(x) be the number of preimages of x ∈ R̂− ΣR lying on this

arc or oval. The weight of the arc or oval is then defined as the minimum of w(x)

over all x ∈ R̂− ΣR.

The root of a tree corresponds to the boundary of a face, and inner vertices

correspond to ovals contained in the face. The weight of an inner vertex is equal to

the weight of the corresponding oval.

Example 1.1. A garden G with weight 2 is either

(i) a garden of order 0 with one root only, or

(ii) a garden of order 2 with two roots.

Here, note that the weights of the edges are 0 in the second garden, and two

kinds of orientation for each garden are equivalent. And we can find an explicit real

rational function of degree 2 with G(f) = G.

Lemma 1.1. The first garden represents any real rational function in{
z +

b

z

∣∣∣∣ b < 0

}
,

and the second garden does any one in{
z +

b

z

∣∣∣∣ b > 0

}
.

The proof is elementary. Here, note that the opposite orientation can be obtained

from the family {
−z − b

z

}
,

i.e., the functions in Lemma 1.1 with pre-composition of ϕ(z) = −z.

2. Interior variation as surgery of gardens

One of the simplest way to increase the degree of a given rational function f is to

add another rational function h to f . Such operation with h of degree 1 was used

to deform the complex structure, and is well-known as a typical kind of Schiffer’s

interior variation. See, for instance, [3] and [1, Appendix 1]. In the present context,

by using such interior variation, we can increase the weight of a given garden.

In the sequel, fix a rational function f with real coefficients of degree n ≥ 2 in

general position such that ∞ is neither a fixed point nor a critical point of f , and

let G(f) be the garden representing f .
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Theorem 2.1 (Variation of attaching an edge or of increasing the weight of a

circular edge). Let a ∈ R be neither a critical point nor a pole of f . Assume that

f ′(a) is positive.

Then for every sufficiently small ϵ > 0,

(i)

g−(z) = f(z)− ϵ

z − a
is a real rational function of degree n+1 in general position, and corresponds

to the same garden as G(f) except that the weight of the edge corresponding

to a increases by 1.

(ii)

g+(z) = f(z) +
ϵ

z − a
is a real rational function of degree n + 1 in general position, and corre-

sponds to the garden G(g+) such that one edge is added to the edge of G(f)

corresponding to a.

Remark 2.1. In this theorem, if f ′(a) is negative, then the conclusions are inter-

changed. Also the orientation and the labels are determined uniquely under the

circumstances (Cf., Remark 3.1).

Proof. Set

f ′(z) =
P (z)

Q(z)2

with real polynomials P (z), Q(z) without nontrivial common factors. Then from

the assumptions, Q(z) is of degree n and P (z) is of degree 2n− 2.

Since f ′(a) > 0, P (x) > 0 with real x sufficiently near a. Hence, if ϵ > 0 is

sufficiently small,

(x− a)2P (x) + ϵQ(x)2 = 0

has the same number, say m, of real solutions as that for P (x) = 0. While,

(x− a)2P (x)− ϵQ(x)2 = 0

has m+ 2 real solutions, and the additional two solutions locate near x = a.

In both cases, the garden representing g± are the same outside the edge corre-

sponding to a, if ϵ is sufficiently small. And from the definitions, we can conclude

the assertions. �

Remark 2.2. Lemma 1.1 can be shown by a similar argument as in the above proof

with the identical function f(z) = z (i.e., a typical real rational function of degree

1).

Next, by using interior variation with h of degree 2, we can prove the following

theorem.
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Theorem 2.2 (Variation of attaching an inner vertex). Let f(z) be as above. Fix

a point z0 = a + ib with a, b ∈ R such that f(z0) ̸∈ R̂. Then for every sufficiently

small ϵ > 0,

g(z) = f(z) + ϵ
2(z − a)

(z − a)2 + b2

is a real rational function of degree n+2 in general position, and corresponds to the

garden G(g) obtained from G(f) by adding one inner vertex corresponding to a and

the associated edge to the rooted tree of G(f).

Proof. Set

f ′(z) =
P (z)

Q(z)2

with polynomials P (z), Q(z) without nontrivial common factors. Then as before,

Q(z) is of degree n and P (z) is of degree 2n− 2.

For every sufficiently small ϵ > 0,

{(z − a)2 + b2}2P (z) + 2ϵ{b2 − (z − a)2}Q(z)2 = 0

has the same number of real solutions as that for P (z) = 0. But, g(z) has a pole at

z = z0. Since f(z0) ̸∈ R̂, z0 should be on an oval of g(z) corresponding to no inner

vertices of G(f), which show the assertion. �

Moreover, we have the following results.

Theorem 2.3 (Variation of increasing the weight of a chordal edge or of an inner

vertex). Let f(z) be as above. Suppose that the garden G(f) has a chordal edge L

or an inner vertex V0.

Let ℓ be the arc or the oval in S(f) corresponding to L or V0, respectively, and

z0 = a+ ib with a, b ∈ R be a point on ℓ which is not a pole of f . Then there are ϵ

(with sufficiently small |ϵ| > 0 ) such that

g(z) = f(z) + 2
(Re ϵ)z − Re (ϵz0)

(z − z0)(z − z0)

is a real rational function of degree n+2 in general position, and corresponds to the

garden G(g) obtained from G(f) by increasing the weight of L or V0 by 1.

Proof. First, recall that

ℓ0 =

{
Im

ϵ

z − z0
= 0

}
is a line depending arg ϵ, but not |ϵ|. Hence, fixing arg ϵ suitably, we assume that ℓ

and ℓ0 intersect transversally at z0.

Now, outside a sufficiently small neighborhood U of z0, S(g) tend to S(f) as ϵ

tend to 0. On the other hand, for a fixed ϵ, we can see that there is a unique arc,

say ℓ′, in S(g) tangent to ℓ0 at z0, and hence that S(g) ∩ U = ℓ′.
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Thus, we can conclude that ℓ′ is contained, not in a new oval of S(g), but in the

arc in S(g) corresponding to ℓ, which implies the assertion. �

3. A constructive proof of a theorem of Natanzon, Shapiro

and Vainshtein

Two rational functions f1 and f2 are called to be equivalent if there exists a Möbius

transformation ϕ such that f1 = f2◦ϕ. Let CH0,n be the set of all equivalence classes

of complex rational functions of degree n in general position. The correspondence

f 7→ Σ(f) generates a covering

CΦn : CH0,n → C0,2n−2,

where C0,2n−2 is the configuration space consisting of all (2n−2)-tuples of unordered

distinct points on Ĉ. We assume that CH0,n is provided with the weakest topology

among those making the map CΦn continuous.

Two real rational functions (τ1, f1) and (τ2, f2) are called to be equivalent if there

exists a Möbius transformation ϕ such that

f1 = f2 ◦ ϕ, ϕ ◦ τ1 = τ2 ◦ ϕ.

Every real rational function is equivalent to another (J, g), where J is the complex

conjugation and g(z) a rational function with real coefficients. Let RH0,n denote

the space of all equivalence classes of real rational functions of degree n in general

position. The topology of CH0,n induces a topology on RH0,n. In this topology

RH0,n is not connected.

Since there will be no confusions, we assume that τ = J and f has real coefficients.

We write (J, f) simply as f . Now, the main result of Natanzon, Shapiro, and

Vainshtein in [2] is the following theorem.

Theorem 3.1 ([2]). The set of all connected components of the space RH0,n can be

identified with the set of all gardens of weight n.

In this section, we will give a constructive proof of this theorem as an application

of the main theorems in Section 2.

First, it is easy to see that every garden G with weight n (> 2) can be obtained

by starting from a suitable garden G0 stated in Lemma 1.1 (with weight 2) and

applying inductively a suitable sequence of surgeries in the following list.

List of surgeries

(i) To add an edge L′ with end points on a circular edge L of the diagram in

such a way that L′ and one other new edge bound a new face, and that the

total weight increases by 1.
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(ii) To increase the weight of an edge by 1.

(iii) To add an inner vertex and the associated edge to a rooted tree.

(iv) To increase the weight of an inner vertex by 1.

(v) To rearrange labels to the given ones, keeping the weights of all edges un-

changed, when (more than two faces exist and) tj = 1 for every face j.

Remark 3.1. In the surgery (i), the assumption implies that both of L′ and the

other new edge L′′ have 0 as their weights. Here, the orientation of L′ and L′′ are

determined uniquely. We attach s + 1, s + 2 as the labels of new vertices L′ ∩ L′′

with suitable order, if the starting vertex of L has s as the label, and change the

labels s′ to s′ + 2 if s′ > s. In particular, the number dj is 1 for the new face j.

If the weight of L is m > 0, then we can splits L into L′′ and other two edges with

weights m1,m2, where m1 +m2 = m.

Actually, by using surgeries in the list, we can proceed as follows.

• Add suitable edges inductively to the weighted labeled directed planar chord

diagram of a suitably chosen starting garden G0 with weight 2, and we

have a diagram D1, which is the same as the weighted labeled directed

planar chord diagram D of G except for the labeling and the weights. (In

particular, tj = 1 for every face j if the order is positive.) Let G1 be the

garden consisting of D1 and the roots only.

• Rearrange the labels for D1 to the same ones for D, we have a new weighted

labeled directed planar chord diagram, say D2. Let G2 be the garden con-

sisting of D2 and the roots only.

• Increase the weight of all edges of D2, and we obtain the diagram D.

• Add inner vertices and edges suitably so that the resulting rooted trees are

the same as those of G except for the weights. Finally, increase the weights

of inner vertices, and we obtain the weighted rooted trees of G.

Thus, we need to show that every surgery in the list is possible. Here, the surgeries

(i), (iii), and (iv) can be achieved by applying inner variation in Theorems 2.1,

2.2, and 2.3, respectively. Also the surgery (ii) can be achieved by applying inner

variation in Theorem 2.1 or 2.3. Hence, it remains the case of surgery (v) only,

which can be achieved by using the following classical result.

Proposition 3.1 (Branch point variation). Let L be an egde in G(f), ℓ the corre-

sponding arc in S(f), and p the starting point of ℓ. Also let sp and δ be the critical

value and the connected subset of R̂ corresponding to p and ℓ, respectively. For

any proper connected subset δ′ of δ having sp as the starting point and containing

no other critical values, we can deform f so that sp moves to the end point of δ′

continuously without changing all other critical values.
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This proposition is proved by using so-called branch point variation by cutting

a curve of S(f) and repasting differently. Such a variation is useful not only for

deformation of holomorphic functions but also for that of the complex structure.

Cf., for instance, [4, Section 1].

Here, we can conclude the same result also in case that p is the ending point of ℓ.

Lemma 3.1. The surgery (v) can be achieved by applying interior variation in

Theorems 2.1 and 2.3, and branch point variation.

Proof. From the assumption, the weights of edges are 0. We start with a face,

say j1, having at least two chordal edges on the boundary. Let v1, · · · , v2k be the

vertices ordered along the boundary of j1, and Li the edge for the vertices {vi, vi+1}
for every i, where v2k+1 = v1. Let ei ∈ {1, · · · , 2k} be the desired label of vi for

every i and fix the critical value Si correponding to ei. By applying branch point

variation if necessary, we may assume that the critical values si corresponding to vi
are monotonously increasing.

Firstly, let i1 ≥ 1 be the smallest number satisfying Si > Si+1. If i = 2k, then by

applying branch point variation, we can move every critical value si to Si without

changing the weights of all edges on the boundary of j0, where we also move the

other critical values suitably. If not, we apply inner variation in Theorem 2.1 or 2.3,

and change the weight of Li1 to 1. And then, by applying branch point variation,

we can move the critical value si to Si for every i = 1, · · · , i1+1 and also the others

suitably.

Here, if Li is circular, then there exist two circlular edges, say L+ and L−, having

one common vertex vi and vi+1, respectively, with Li. Let j± be the other face

having L± as a boundary edge. By applying branch point variation as before if

necessary, we can assume that the critical values on the boundary of j± do not lie

between si1 and Si1 and si1+1 and Si1+1, respectively. Hence, we can move the value

si1 and si1+1 to Si1 and Si1+1 as desired. Here and in the sequel, we always use the

same notations for any resulting function.

Secondly, let i2 be the smallest number satisfying i > i1 and Si > Si+1. Then we

deform f so that, keeping S1, · · · , Si1+1 fixed, the critical values si are moved to Si

for i = i1 + 2, · · · , i2 + 1, and the others suitably as before. Repeating this process

till we reach to 2k, we finish to rearrange the critcal values to the desired ones {Si}
on the boundary of j1.

Now, as the next step, we take a face, say j2 adjacent to j1 along some chordal

edge, say Lj. Then, we may assume that critical values corresponding to vertices

on the boudnary of j2 different from {Sj, Sj+1} are monotonously increasing, and

greater than Sj and Sj+1. Starting from the critical value Sj+1, we proceed similarly
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as above, and we can rearrange the labels as desired on the boundaries of faces j1
and j2.

Repeating this rearrangement for all other faces step by step, we obtain the de-

sired correspondance between the critical values and vertices, and hence the desired

labeling. �

Finally, since we can show uniqueness of the garden on a component of RH0,n by

using a standard continuity argument, we finish to prove Theorem 3.1.
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