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DUALITY FOR MULTIOBJECTIVE
FRACTIONAL VARIATIONAL PROBLEMS
WITH GENERALIZED INVEXITY*
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ABSTRACT. A multiobjective fractional variational problem (FV P) is con-
sidered. By establishing the multiobjective nonfractional variational problem
(NFV P) equivalent to (FV P), we formulate the Mond-Weir type dual prob-
lem (FV D) of (FVP) and prove some duality theorems for (FV P) under
generalized invexity assumptions.
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1. Introduction

Duality theorems for fractional minimization problems have been of much
interest in the past ([1],(4],[5],(8]). Recently there has been of growing interest
in studying duality for multiobjective (fractional) variational and control
problems ([2], [7], [10]). Using the parametric equivalence, Bector et al. (1]
formulated a dual program for a multiobjective fractional program having
continuously differentiable convex functions.

In this paper, a multiobjective fractional variational problem (FVP) is
considered. By establishing the multiobjective nonfractional variational prob-
lem (NFV P) equivalent to (FV P), we formulate the Mond-Weir type dual
problem (FV D) of (FVP), and prove weak, strong and converse duality
theorems for (F'V P) under generalized invexity assumptions.

2. Notations and Preliminaries

The following conventions for vectors in R™ will be used:

*This research was supported by KOSEF 971-0106-113-1 .
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-73—<_-y = l‘iéyi, i=17""n;

T<y &= ;<y;, t=1,---,n;

<y << z;Jvy;, t=1,---,n but z # y;
z L y is the negation of z < y.

Let I = [a,b] be a real interval and f : I x R" x R® — RP, g:I x R™ x
R® - RPand h: IXx R®*x R® — R™ be continuously differentiable functions.

Let C(I, R™) denote the space of piecewise smooth functions z with norm
Izl = llz|loo + || Pz||co, where the differentiable operator D is given by

t
u=Dz < z(t) = a +/ u(s)ds,

where is « is a given boundary value.
Consider the following multiobjective fractional variational problem:

(FVP) Minimize Jof (=0 e()dt (ff N det)

[Lott,z(),2(8)dt - \ [Pgtdt’  [Pgrdt
subject to z(a) = a,z(b) = B,
h(t,z(t),z(t)) = 0.

Assume that ¢'(¢t,z,%) > 0 and f(t,z,z) 2 0foralli =1, ---,p.
Let X denote the set of all feasible solutions of (F'V P).

Definition 1. A point z* € X is said to be an efficient solution of (FV P)
if for all z € X,

[P ft,z,8)dt [P f(t, 2%, %)dt
Sl otz )dt T [ g(t,z*, &%)t

Now we define the pseudo-invex and the quasi-invex functionals as follows

\
Definition 2. The functional f: f is (strictly) pseudo-invex at (u, %) w.r.t.
n if there exists n(t, z,u) with n(¢,z,z) = 0 such that

b .
[t 2,0 et + (Dt 2, ) ey, e 20

b b
- / f(t,2,8)dt 2 (>) / £(2,u, ).



Definition 3. The functional fab f is (strictly) quasi-invex at (u,u) w.r.t.
n if there exists n(¢, z,u) with n(¢,z,z) = 0 such that

/ab f(t,z,4)dt < /ab F(t,u, w)dt

b
=>/ [n(t,z,u) fz(t, u,u) + (Dn(t, z,u)) fi (¢, u,v)]dt < (<)0.

Also we consider the following multiobjective nonfractional variational
problem:

(NFVP) Minimize v = (vy, -+ ,vp)
subject to z(a) = a, z(b) =

/b[f(t, z,3) - vg(t,z,3)|dt £0, h(t,z,4) L0,

where f —vg := (f! —vig%, -+, fP — vpgP).
We establish an equivalent relationship between (FV P) and (NFV P).

Lemma 1. If z* is an efficient solution of (FV P), then (z*,v*) is an effi-

b LR
cient solution of (NFV P), where v* = 5-} :E:::-:;;::

Proof. Suppose that (z*,v*) is not efficient for (NFV P). Then there
exists (z,v) such that

f f@t,z*,z*)dt
f g(t,z*, &*)dt’

/ [(t,2,4) - vg(t, z,8))dt SO, h(t,z,5) <0,

b f(t,z,i)d > f(t,z*,2*)d . - .
Thus kb ;E:,z,i))d: < ﬁ, ;é:,:*,i*;d:' Hence z* is not efficient for (FV P).

Lemma 2. If (z*,v*) is an efficient solution of (NFV P), then z* is an
efficient solution of (FV P).
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Proof. Suppose that z* is not efficient for (FV P). Then there exists z
such that

fa"f(t,w,a':)dt [P f(t, 2%, &%)dt
f:g(t,x,i)dt 1P g(t, 2%, 3%)dt’

By the feasibility of (z*,v*), we obtain

f f(t,z,z)dt b*.
f g(t,z,z)dt

. h(t,2,3) S0

(1)
Let v = % Then (z,v) is a feasible solution of (NFV P). Thus,
from (1), (z*,v*) is not efficient for (NFVP). O E

Remark 1. I By Lemma 1 and Lemma 2, (NFVP) is equivalent to
(FVP).
IL. If (z*,v*) is an efficient solution of (NFV P), then by the definition of

efficiency,

o — f f(t,z*,z*)dt
J; 9t 2=, &*)dt

Now, taking the Mond-Weir [11] type dual of (N FV P), we formulate our
dual problem of (F'V P) as follows:

(FVD) Maximize v = (vy,-:* ,Vp)
subject to u(a) = a,u(b) =B
TT{fr —vgz} + T he = D[rT{f: —vgs} + " hs],
b
[ 77 = voie 20,
pTh 20,

>0, p20,

where 7 € RP and u : I — R™ is a piecewise smooth function.
Let Y denote the set of all feasible solutions of (F'V D).
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3. Duality Theorems

In this section, we establish the weak, strong and converse duality theo-

rems for (FV P).

Lemma 3 ([3]). =z* is an efficient solution of (FV P) if and only if for all
k=1,---,p, z* solves (FV Py),where (FV P;) is the following problem:

I? fult,z, 3)dt

fab gi(t, z, z)dt

subject to z(a) = a, z(b) =

Jo fit,z, 8)dt _ [} filt 2, %)t
Jp git 2, 8)dt = [D gilt, 2%, d*)dt
for all : # k,

h(t,z,z) <0, k=1,---,p.

From Lemma 3, we can prove the following Kuhn-Tucker type necessary

optimality theorem for (F'V P) by the method similar to the proof in Theorem
3.4 of [6].

(FVPx) Minimize

Theorem 1. Let z* be an efficient solution of (FVP). Assume that z*
satisfies the Slater’s constraint qualification [9] for (FVP), k = 1,---,p.

Then there exist 7* € RP, v* € RP and a piecewise smooth function u*
I — R™ such that

(2 = v*g2) + wThy = DIr*T(f} — v*g}) + u*Th],
b
/ (f*—v*g")dt =0, p*Th*=0, r*>0, u*20.

Theorem 2 (Weak Duality). Let z € X and (u,7,u,v) € Y. Assume
tha.t

I f T(f — vg) is quasi-invex and f ,uTh is strictly pseudo-invex, or

II. f 7T(f — vg) is pseudo-invex and f pTh is strictly quasi-invex at (u, 1)
w.r.t. n. Then

I2 f(t,z,3)dt
[P g(t,z,3)dt

£ (v1,-- ,vp)
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Proof. 1. Suppose to the contrary that

[ f(t,z,&)dt
[P 9(t,z,&)dt

< (v1,°0- ,vp)-
Then for all 7 > 0,

b |
/ 7T{F (t2,8) — vg(t,z,4)}dt < 0

and from the feasible condition, we have

b b
| e ) —vattz, bt < [T ,0) — gt i)

By the quasi-invexity of fab T (f —vTg),

b A
[ otz )57 (£ — w023} + (Dt 2,0) 127 (£ —vgs))] de S 0.

By the feasibility of (u, 7, 4, v) and integration by parts, the above inequality
becomes

b . .
- [ nt,2,w){6"he ~ DuThe}at < 0 2)
Since f: pTh(t,z,z)dt < f: pTh(t,u,%)dt, by the strict pseudo-invexity of
fab pTh and integration by parts,
b
[ e,z u){uThe ~ DuThaYae <o,

which is contradiction to (2).
II. By the method similar to the proof in I, the result holds. O

Theorem 3 (Strong Duality). Let z* be an efficient solution of (F'V P).
Assume that z* satisfies a constraint qualification [9] for (FV ), k =
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1,---,p. If assumptions of Theorem 2 hold, then there exist 7* € RP, v* € RP
and a piecewise smooth function p* : I — R™ such that (z*,7*, u*,v*) is an
efficient solution of (F'V D)

Proof. By Theorem 1, there exist 7* € RP, v* € RP and a piecewise
smooth function p* : I — R™ such that (z*,7*,u*,v*) is an feasible solu-

b * ow
tion of (FV D) and v* = %& ;E:’:, ’:,;::. By Theorem 2, (z*,7*, u*,v*) is an

efficient solution of (FV D). O

For the converse duality, we make the assumption that Z denotes the space
of the piecewise differentiable function z : I — R™ for which z(a) = 0 = z(b)
equipped with the norm ||z|| = ||z]|loc + || DZ||co + || D*z||co- '

(FV D) may be rewritten in the following form :
Minimize —v
subject to u(a) = a, u(b) = p,
o(t,u,t,i,pu,7,v) =0,

b

/'rT(f—vg)dth,

a X
pThz0, >0, p20,

where 8 = 77 (f; —vgz)+uThe—D [T (f; — vg:) + uTh;] with ii = D?u(t).

Consider 6(-,u(-), u(-), u(:), u(-), 7, v) as defining a map ¥ : Z x W x RP x
RP — A, where W is the space of piecewise differentiable function u : I —
R™ and A is a Banach space.

Theorem 4 (Converse Duality). Let (u*,7*, u*, v*) be an efficient so-
lution of (FV D). Assume that
I. the Fréchet derivative ¢’ have a (weak*) closed range,
II. f, g and h are twice continuously differentiable,
III. fi—vigi —D(ff —vigl), ¢=1,---,p, is linearly independent, and
IV. (B(t)T0, — DB(t)T6: + D?B(t)76:) B(t) =0
= B(t)=0, tel. |
Then u* is an efficient solution of (F'V P).

Proof. Since (u*,7*, u*,v*), with u* € Z and 9’ having a (weak*) closed
range, is an efficient solution, there exist « € RP, vy € R, 6 € R, € € R?P,
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and piecewise smooth functions w : I — R™ and f : I — R" satisfying the
following Fritz John conditions

(676 — DBT6: + D*B76z) + 6 (u"hs — DpThs)

- +7T{(fs —v9:) — D (f: —vgz)} =0 (3)
ﬁT{(fz—vg,)—D(fi—vgi)}+7(f—vg)+e=0 . (4)
BT (hy — Dh:) + DBTh; + 6h+w =0 (5)
a; — BT (rigi — Drigi) —ymig' =0, i=1,---,p (6)
T (f —vTg) =0 (M)
uTh=0 ’_ |

efr=0 (8)
wip=0
(e, 8,7,6,6,w) 20 (9)

By feasibility of (u*,7*, u*,v*), from (3), we get

(v — )77 {(fz —v9z) — D(f: —vg:)} + (876. — DBT6; + D*BT6;) = 0.

Multiplying (4) by 7 and using (7) and (8), we have (19
[77{(fz —vgz) — D (f: —vg:)}] B=0.
Multiplying (10) by 8 and using the above equation, (10) becomes
(876 — DBT6: + D?pT6:) f =0,
which along with hypothesis IV gives |
=0, o

Equations (10) and (11) now yield

(v —96) TT{(fz —vgz) — D(fz —vg;)} =0,
which along with hypothesis III and 7 > 0 yields

v =4.



We claim that v = 6 > 0. If y = § = 0, then from (4), (5) and (6), we have
a=¢=w=0. Thus (a,B,7,6,€,w) = 0, which contradicts (9) Therefore
from (5) and (7), u* is feasible for (FV P) and by Theorem 2, u* is efficient
for (FV P). 0O

10.

11.
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