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1 Introduction

Let $E$ be a Baliach space and let $C$ be a nonempty closed convex subset of $E$ . A mapping
$T$ from $C$ into $E$ is called nonexpansive if 11 $ Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . For a
given $u\in C$ alld each $t\in(O, 1)$ , we define a contraction $T_{t}$ : $C\rightarrow E$ by

$T_{\ell}x=tTx+(1-t)u$ for all $x\in C$ . (1)

If $T(C)\subset C$ , then $T_{\ell}(C)\subset C$ . Thus, by Banach’s contraction principle , there exists a
unique fixed point $x_{\ell}$ of $T_{\ell}$ in $C$ , that is, we have

$x_{\ell}=tTx_{t}+(1-t)u$ . (2)

A question naturally arises to whether $\{x_{\ell}\}$ converges strongly as $t\rightarrow 1$ to a fixed point of
$T$ . This question has been investigated by several authors; see, for example, Browder[l],

Halpern[4], Singh and Watson[8], Marino and $n\cdot ombetta[6]$ , and others. Recently, Xu

and Yin[10] proved that if $C$ is a nonempty closed convex subset of a Hilbert space $H$ ,

if $T$ : $C\rightarrow H$ is a nonexpansive nonself-mapping, and if $\{x_{\ell}\}$ is the sequence defined by

(2) which is bounded, then $\{x_{\ell}\}$ converges strongly as $t\rightarrow 1$ to a fixed point of $T$ . Next,

consider a $sunny\backslash $ nonexpansive retraction $P$ from $E$ onto $C$ . Then, following Malino alid

$rn\cdot ombetta[6]$ , for a given $e\iota\in C$ and each $t\in(O, 1)$ , we define contractions $S_{\ell}$ and $U_{\ell}$ from
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$C$ into itself by

$S\backslash \iota:=tPT’\iota\cdot+(1-t)u$ for all $x\in C$

and

$U_{\ell}x=P(tTx+(1-t)u)$ for all $x\in C$ .

By Banach’s contraction principle, there exists a unique fixed point $x_{\ell}$ (resp. $y_{t}$ ) of $S_{t}$

(resp. $U_{\ell}$ ) in $C$ , i.e.,

$x_{\ell}=tPTx_{\ell}+(1-t)u$ (3)

alld

$y_{\ell}=P(tTy_{t}+(1-t)u)$ . (4)

Xu and Yin[10] also proved that if $C$ is a nonempty closed convex subset of a Hilbert

space $H$ , if $T:C\rightarrow H$ is a nonexpansive nonself-mapping satisfying the weak inwardness

condition, and if $P$ is the nearest projection from $H$ onto $C$ , then the sequence $\{x_{t}\}(resp$ .

$\{y_{t}\})$ defined by (3) (resp. (4)) which is bounded converges strongly as $t\rightarrow 1$ to a fixed

point of $T$ .

In this paper, we extend Xu and Yin’s results[10] to Banach spaces, that is, we prove

that the sequence defined by (2)(resp. (3), (4)) which is bounded in a smooth and reflexive

Banach space converges strongly as $t\rightarrow 1$ to a fixed point of $T$ .

2 Preliminaries

Throughout this paper we denote by $E$ and $E^{*}$ a Banach space and the dual space of $E$ ,

respectively. The vaJue of $x^{*}\in E^{*}$ at $x\in E$ will be denoted by ( $x,$ $ x^{*}\rangle$ . We also denote

by $F(T)$ the set of all fixed points of $T$ , i.e., $F(T)=\{x\in C : Tx=x\}$ and by $R$ and $R^{+}$

the sets of all real numbers and all nonnegative real nulnbers, respectively. When $\{x_{\mathfrak{n}}\}$

is a sequence in $E$ , then $x_{\mathfrak{n}}\rightarrow x$ (resp. $x_{n}-x,$ $x_{1}*\rightarrow x$ ) will denote strong (resp. weak,

weak’) convergence of the sequence $\{x_{n}\}$ to $x$ . Let $C$ be a nonempty closed convex subset

of $E$ , let $D$ be a subset of $C$ and let $P$ be a mapping of $C$ into $D$ . Then $P$ is said to be
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sunny if

$P(Px+t(’\iota\cdot-Px))=Px$

whenever $Px+t(x-Px)\in C$ for $x\in C$ and $t\geq 0$ . A mapping $P$ of $C$ into $C$ is said to
be a retraction if $P^{2}=P$ . If a mapping $P$ of $C$ into $C$ is a retraction, then $Pz=z$ for
every $z\in R(P)$ , where $R(P)$ is the range of $P$ . A subset $D$ of $C$ is said to be a sunny
nonexpallsive retract of $C$ if there exists a sunny nonexpansive retraction of $C$ onto $D$ ;
for more details, see[5]. For every $\epsilon$ with $0\leq\epsilon\leq 2$ , the modulus $\delta(\epsilon)$ of convexity of $E$ is
defined by

$\delta(\epsilon)=\inf$ { $1-||\frac{x+y}{2}$ Il : $||x||\leq 1$ , ilyll $\leq 1$ , $||x-y\Vert\geq\epsilon$ }.

$E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for every $\epsilon>0$ . If $E$ is uniformly convex,
then $E$ is reflexive. Let $S(E)=\{x\in E : ||x||=1\}$ . Then the norm of $E$ is said to be
G\^ateaux differentiable (and $E$ is said to be smooth) if

$\lim_{t\rightarrow 0}\frac{||x+ty\Vert-\Vert x\Vert}{t}$ (5)

exists for each $x$ and $y$ in $S(E)$ . It is also said to be uniformly R$\cdot$\’echet differentiable (and
$E$ is said to be uniformly slnooth) if the limit (5) is attained uniformly for $x,$ $y$ in $S(E)$ .
With each $x\in E$ , we associate the set

$J_{\phi}(x)=$ { $x^{*}\in E^{*};$ $\langle x,$ $x^{*})=||x||||x’||$ and $||x^{*}||=\phi(||x||)$ },

where $\phi$ : $R^{+}\rightarrow R^{+}$ is a continuous and strictly increasing function with $\phi(0)=0$ and
$\phi(\infty)=\infty$ . Then $J_{\phi}$ : $E\rightarrow 2^{E}$

‘ is said to be the duality mapping. Suppose that $J_{\phi}$ is
single-valued. Then $J_{\phi}$ is said to be weakly sequentially continuous if for each $\{x_{\mathfrak{n}}\}\in E$

with $x_{n}-x,$ $J_{\phi}(x_{n})\rightarrow*J_{\phi}(x)$ . For abbreviation, we set $J$ $:=J_{\phi}$ . In all our proofs we
assume, without loss of generality, that $J$ is normalized. It is well known if $E$ is smooth,
then the duality mapping $J$ is single-valued and $strong- weak^{*}$ continuous. It is also known
that $E$ is uniformly smooth if and only if $E$ ’ is uniformly convex; for more details, see
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Dieste1[2]. A Banach space $E$ is said to satisfy Opial’s condition[7] if for any sequence

$\{x_{n}\}$ in $E,$ $x_{\iota}-x$ implies that

$\lim_{n\rightarrow}\sup_{\infty}\Vert x_{\mathfrak{n}}-x||<\lim_{n\rightarrow}\sup_{\infty}||x_{l}-y||$

for all $y\in E$ with $y\neq x$ . We know that if $E$ admits a weakly sequentially continuous

duality mapping, then $E$ satisfies Opial’s condition; see[3].

3 Strong convergence Theorems

In this section, we first prove a strong convergence theorem for nonexpansive nonself-

mappings in a Banach space which generalizes Xu and Yin’s result[10].

Theorem 1 Let $E$ be a smooth and reflexive Banach space with a weakly sequentially

continuous duality mapping $J$ : $E\rightarrow E^{*}$ , let $C$ be a nonempty closed convex subset of $E$ ,

and let $T$ : $C\rightarrow E$ be a noneepansive nonsef-mapping. Suppose that for some $u\in C$

and each $t\in(0,1)$ , the contraction $T_{\ell}$ defined by (1) has a (unique) fixed point $x_{t}\in C$ .

Then $T$ has a fixed point if and only if $\{x_{t}\}$ remains bounded as $t\rightarrow 1$ . In this case, $\{x_{t}\}$

converges strongly as $t\rightarrow 1$ to a fixed point of $T$ .

Proof. Let $x$ be a fixed point of $T$ . Then we have

$||x-x_{\ell}||$ $=$ $||x$ -tTx$t-(1-t)u||$

$\leq$ $t||x-Tx_{\ell}||+(1-t)||x-u||$

$\leq$ $t||x-x_{t}||+(1-t)||x-u||$

and hence $||x-x_{t}||\leq||x-u||$ . So, $\{x_{t}\}$ is bounded. Conversely, suppose that $\{x_{\ell}\}$

is bounded when $t$ is closed enough to 1. Then there exist a subsequence $\{x_{\ell}.\}$ of the

sequence $\{x_{t}\}$ and a point $y\in C$ such that $x_{l_{\mathfrak{n}}}\rightarrow y$ . By (2), we have

$||x_{\ell_{*}}-Tx_{\ell_{*}}||=(1-t_{\mathfrak{n}})||u-Tx_{\ell}.||\rightarrow 0$ as $ n\rightarrow\infty$ .
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So, we have

$ 1inl\sup_{n\rightarrow\infty}\Vert x_{\ell_{1}},-Ty\Vert$
$\leq$

$1in1\sup_{n\rightarrow\infty}\{\Vert x_{\ell_{1}},-Tx_{t_{1}},\Vert+\Vert Tx_{\ell_{l}},-Ty\Vert\}$

$\leq$

$ 1in1\sup_{\infty\iota\rightarrow}\Vert x_{t_{u}}-y\Vert$ .

If $Ty\neq y$ , from Theorem 1 in [3], we have

$1inu\sup_{n\rightarrow\infty}||x_{t,},-y||$ $<$
$\lim_{\mathfrak{n}\rightarrow}\sup_{\infty}||x_{t,},-Ty||$

$\leq$
$1inu\sup_{\mathfrak{n}\rightarrow\infty}||x_{t},$. $-y\Vert$ .

This is a contradiction. Hence we have $y\in F(T)$ . Since, for any $u\in F(T)$ ,

$\langle\frac{1}{t_{n}}x_{t_{\mathfrak{n}}}-(\frac{1}{t_{n}}-1)u-w, J(w-x_{\ell_{n}})\rangle$
$=$ ( $Tx_{\ell},$. $-Tw,$ $ J(w-x_{t_{\mathfrak{n}}})\rangle$

$\geq$ $-||Tx_{t,},-Tw||\Vert J(w-x_{\ell_{*}})||$

$\geq-||w-x_{\ell_{n}}||^{2}$

$=$ $\langle x_{\ell_{n}}-w, J(w-x_{\ell_{n}})\rangle$ ,

we have $\langle(\frac{l}{t_{n}}-1)(x_{\ell_{\mathfrak{n}}}-u), J(w-x_{\ell_{\mathfrak{n}}})\rangle\geq 0$ . So, we have

\langle $x_{t_{\iota}},-u,$ $J(w-x_{\ell},, ))\geq 0$ . (6)

Thus putting $w=y$ ,

$\langle y-u, J(y-x_{t_{\mathfrak{n}}})\rangle$ $=$ $(y-x_{t_{*}}, J(y-x_{t_{n}})\rangle$ $+(x_{t_{*}}-u, J(y-x_{\ell_{*}})\rangle$

$\geq||y-x_{t}.||^{2}$ .

Since $x_{t_{*}}\rightarrow y$ and $J$ is weakly sequentially continuous, we have $x_{\ell_{*}}\rightarrow y$ . By using the
argument above again, we obtain a subsequence $\{x_{\ell_{m}}\}$ of $\{x_{\ell}\}$ converging weakly to some
$z\in C$ such that $z=Tz$ alid $x_{\ell_{m}}\rightarrow z$ . From (6), we have

$\langle y-u, J(w-y)\rangle\geq 0$ and $\langle z-u, J(w-z)\rangle\geq 0$

for any $w\in F(T)$ and hence

$\langle y-u, J(z-y)\rangle\geq 0$ and $\langle z-u, J(y-z)\rangle\geq 0$ .
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This implies $ y=\approx$ . Therefore we have $ x_{\iota}\rightarrow\approx$ .

Next, we consider two strong convergence theorems which generalize Xu and Yin’s

results[10], using a sunny nonexpaiisive retraction $P$ from $E$ onto $C$ . Let $E$ be a Banach

space and let $C$ be a nonempty convex subset of $E$ . Then for $x\in C$ we define the inward

set $I_{C}(x)$ as follows:

$I_{C}(x)=$ {$y\in E:y=x+a(z-x)$ for some $z\in C$ and $a\geq 0$ }.

A mapping $T:C\rightarrow E$ is said to be inwald if $Tx\in I_{C}(x)$ for all $x\in C$ . $T$ is also said to

be weakly inward if for each $x\in C,$ $Tx$ belongs to the closure of $I_{C}(x)$ .

Theorem 2 Let $E$ be a smooth and $r^{\backslash }eflexive$ Banach space with a weakly sequentially

continuous duality mapping $J$ : $E\rightarrow E^{*}$ , let $C$ be a nonempty closed convex subset of
$E$ , and let $T:C\rightarrow E$ be a $none\varphi ansive$ nonseif-mapping satisfying the weak inwardness

condition. Suppose that $C$ is a sunny nonempansive retract of $E$ and for some $u\in C$ and

each $t\in(O, 1),$ $x_{\ell}\in C$ is a (unique) fixed point of the contraction $S_{\ell}$ defined by (3), where

$P$ is a sunny noneepansive retraction of $E$ onto C. Then $T$ has a fixed poin$t$ if and only

if $\{x_{\ell}\}$ remains bounded as $t\rightarrow 1$ . In this case, $\{x_{t}\}$ converges strongly as $t\rightarrow 1$ to a

fised point of $T$ .

Proof. Let $x$ be a fixed point of $T$ . Then $\{x_{t}\}$ is bounded. Conversely, suppose that

$\{x_{\ell}\}$ is bounded when $t$ is closed enough to 1. Applying Theorem 1, we obtain that $\{x_{\ell}\}$

converges strongly as $t\rightarrow l$ to a fixed point $z$ of $PT$ . Next, let us show $z\in F(T)$ . Since

$z=PTz$ and $P$ is a sunny nonexpansive retraction of $E$ onto $C$ , we have

(Tz–z, $ J(z-v)\rangle$ $\geq 0$

for all $v\in C;see[9]$ . On the other hand, $Tz$ belongs to the closure of $I_{C}(z)$ by the weak

inwaldness condition. Hence there exist, for each integer $n\geq 1,$ $z_{\mathfrak{n}}\in C$ and $a_{\mathfrak{n}}\geq 0$ such

that the sequence

$y_{\mathfrak{n}}$
$:=z+a_{n}(z_{\mathfrak{n}}-z)\rightarrow Tz$ .

–68–



Since

$0$ $\leq$ $ a_{n}\langle Tz-z, J(\approx-z_{\iota})\rangle$

$=$ $\langle Tz-z, J(a_{n}(\approx-\sim\sim,’))\rangle$

$=$ $\langle Tz-z, J(z-y_{n})\rangle$

and $J$ is weakly sequentially continuous, we have

$0\leq\langle Tz-z, J(\sim\sim-Tz)\rangle=-||Tz-z\Vert^{2}$

and hence $Tz=z$ .

Theorem 3 Let $E$ be a smooth and $\dagger eflexive$ Banach space with a weakly sequentially
continuous duality mapping $J$ : $E\rightarrow E^{*}$ , let $C$ be a nonempty closed convex subset of
$E,$ . and let $T:C\rightarrow E$ be a nonexpansive nonsef-mapping satisfying the weak inwardness
condition. Suppose that $C$ is a sunny nonexpansive retract of $E$ and for some $u\in C$ and
each $t\in(O, 1),$ $y_{\ell}\in C$ is a (unique) fixed point of the contmction $U_{\ell}$ defined by (4), whet $e$

$P$ is a sunny nonexpansive $\dagger et\dagger^{\backslash }action$ of $E$ onto C. Then $T$ has a fixed point if and only

if $\{y_{\ell}\}$ remains bounded as $t\rightarrow 1$ . In this case, $\{y_{t}\}$ converges $st\dagger^{\backslash }ongly$ as $t\rightarrow 1$ to a fixed
point of $T$ .

Proof. Let $x$ be a fixed point of $T$ . Then we have

$||x-y_{t}||$ $=$ $||Px-P(tTy_{t}+(1-t)u)||$

$\leq t||x-Ty_{\ell}||+(1-t)||x-u||$

$\leq$ $ t\Vert x-y_{\ell}||+(1-t)||x-u\Vert$

and henoe $||x-y_{\ell}||\leq||x-u\Vert$ . So, $\{y_{t}\}$ is bounded. Conversely, suppose that $\{y_{t}\}$

is bounded when $t$ is closed enough to 1. Then there exist a subsequence $\{y_{\ell_{\hslash}}\}$ of the
sequence $\{y_{\ell}\}$ and a point $y\in C$ such tllat $y_{\ell_{l}},\rightarrow y$ . Since $\{Ty_{\ell},.\}$ is bounded and

$\Vert y_{\ell_{n}}-PTy_{t_{*}}||$ $\leq$ $||t_{n}Ty_{\ell_{\mathfrak{n}}}+(1-t_{n})u-Ty_{\ell_{*}}||$

$=$ $(1-t_{n})||u-Ty_{\ell_{n}}\Vert$ ,
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we have $y_{t_{1}},-PTy_{\ell_{1}},\rightarrow 0$ . So, we have

$1in1\sup_{\mathfrak{n}-\infty}11y_{t},,$
$-PTy\Vert$ $\leq$

$1in1\sup_{n\rightarrow\infty}\{\Vert y_{\iota},, -PTy_{\ell_{\mathfrak{n}}}\Vert+\Vert PTy_{t_{n}}-PTy\Vert\}$

$\leq$ lim sup 11 $ y_{t_{\mathfrak{n}}}-y\Vert$ .

If $PTy\neq y$ , from Theorem 1 in [3], we have

$1inu\sup_{n\rightarrow\infty}||y_{\ell_{*}}-y||$
$<$

$\lim_{\mathfrak{n}\rightarrow}\sup_{\infty}||y_{t_{*}}-PTy||$

$\leq$
$\lim_{n\rightarrow}\sup_{\infty}||y_{t_{\mathfrak{n}}}-y||$ .

This is a contradiction. Hence $y=PTy$ . So, from [9],

\langle Ty--y, $J(y-v))\geq 0$

for all $v\in C$ . On the other hand, $Ty$ belongs to the closure of $I_{C}(y)$ by the weak

inwardness condition. Hence there exist, for each integer $n\geq 1,$ $z_{\mathfrak{n}}\in C$ and $a_{\mathfrak{n}}\geq 0$ such

that the sequence

$y_{\mathfrak{n}}$ $:=y+a_{n}(z_{\mathfrak{n}}-y)\rightarrow Ty$ .

As in the proof of Theorem 2, we have $Ty=y$ . For any $w\in F(T)$ , we have

$t(w-u)+u=tw+(1-t)u=P(tw+(1-t)u)$

alld hence

$||(y_{\ell}-u)-t(w-u)||^{2}$ $=$ $||P(tTy_{t}+(1-t)u)-u-t(w-u)||^{2}$

$=$ $||P(t(Ty_{t}-u)+u)-u-t(w-u)||^{2}$

$=$ $||P(t(Ty_{\ell}-u)+u)-u-P(t(w-u)+u)+u||^{2}$

$\leq$ $||t(Ty_{\ell}-u)-t(w-u)||^{2}$

$\leq t^{2}||y_{\ell}-w||^{2}$

$=$ $t^{2}||(y_{\ell}-u)-(w-u)||^{2}$ .
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So, we have

$0$ $\geq$ $||(y_{t}-u)-t(w-u)\Vert^{2}-\Vert t(y_{t}-u)-t(w-u)\Vert^{2}$

$\geq$ $ 2\langle(1-t)(y_{t}-u), J(t(y_{t}-u’))\rangle$

$=$ $ 2(1-t)t\langle y_{t}-u, J(y_{t}-w)\rangle$

and hence

$\langle y_{t}-u, J(y_{\ell}-w)\rangle\leq 0$ .

Thus putting $w=y$ ,

$\langle y-u, J(y-y_{\ell},.)\rangle$ $=$ $\langle y-y_{\ell_{l}},, J(y-y_{t},.)\rangle+\langle y_{\ell,},-u, J(y-y_{\ell_{*}})\rangle$

$\geq||y-y_{t_{n}}||^{2}$ .

Since $y_{\ell},,$ $-y$ and $J$ is weakly sequentially continuous, we have $y_{\ell},,$ $\rightarrow y$ . As in the proof

of Theorem 1, we have $y_{t}\rightarrow z$ .

References

[1] F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear

mappings in Banach spaces, Archs. Ration. Mech. Anal., 24 (1967), 82-90.

[2] J. Diestel, Geometry of Banach spaces-sekcted topics, Lecture Notes in Math., Vol.

485, Springer-Verlag, Berlin, Heidelberg, and New York, 1975.

[3] J.P. Gossez and E.L. Dozo, Some geometric properties related to the fixed point $ theo\eta$

for none zpansive mappings, Pacific J. Math., 40(3) (1972), 565-573.

[4] B. Halpern, Fixed points of nonexpanding maps, Bull. Am. Math. Soc., 73 (1967),

957-961.

[5] S. Kitaliara and W. Takahashi, Image recovery by convex combinations of sunny

nonexpansive Retractions, Topol. Methods Nonlinear Anal., 2 (1993), 333-342.

–71 –



[6] G. Marino and G. $n\cdot ombetta$ , On approximating fixed points for nonexpansive maps,

Indian J. Math., 34 (1992), 91-98. .

[7] Z. Opial, Weak convergence of the seqttence of successive approximations for nonex-

pansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.

[8] S.P. Singh alld B. Watson, On approximating fixed points, Proc. Symp. Pure Math.,

45 (1986), 393-395.

[9] W. TakaJlashi, Nonlinear Ibnctional Analysis (Japanese), Kindaikagaku, Tokyo,

1988.

[10] H.K. Xu and X.M. Yin, Strong convergence theorems for nonexpansive nonseif-
mappings, Nonlinear Analysis., 24 (1995), 223-228.

(G.E. Kim) DEPARTMENT OF INFORMATION SCIENCES, TOKYO INSTITUTE OF
TECHNOLOGY, OHOKAYAMA, MEGURO-KU, TOKYO 152, JAPAN
E-mail address, G.E. Kim: kim@is.titech.ac.jp

(W. Takahashi) DEPARTMENT OF INFORMATION SCIENCES, TOKYO INSTITUTE
OF TECHNOLOGY, OHOKAYAMA, MEGURO-KU, TOKYO 152, JAPAN
E-mail address, W.Takahashi: wataru@is.titech.ac.jp

$\infty iMRm\triangleright \mathfrak{B},$ $195$

–72–


