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Abstract. Let P(D) be an hypoelliptic operator with constant coefficients, having a

fundamental solution that is locally integrablein B*. Let u be a distribution defined on

an open set  in B" such that Pu = f. It’s proved that if f € Lj,.() then u € L} ()

loc

and if f is in C™(Q) so is u.

1. Introduction.

Let Q be a domain in B*, n > 1. Let A= )_ aa(z)D" be a differential operator

loe|<m
of order m with ae € C™(). Let A* denote the adjoint operator of A. Let 1 <p < oo
1 1 .
and » 4+ = =1. If f € LP(Q), it is proved in [1], there exists a weak solution of
: q

Au = f,u € LP(Q) and |lull, < cif and only if | < f,¢ > | < c||A*¢||; for all

¢ € C°(Q). In this note we discuss the possibility of finding an L} () solution u for

loc

the equation Au = f, if it is known that f € L}, ().

Now it is known that if P = Z a,D? is a hypoelliptic differential operator of

lee|<m

order m with constant coefficients and § is a convex open set of B", then for any

T € D'(Q), there exists a distribution u € D'(2) such that Pu = T (see [2]). If

we suppose moreover that P is elliptic, then the above result is true even if {2 is
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assumed to be just open in B”. Consequently, for such operators P, given f € L} (Q)

there always exists a distribution solution u € D’(€). Our interest here is to find out

whether u also is in L}, (£2). It turns out that this is true if the fundamental solution

of P is locally integrable. As for this condition, it’s known (see (see [3]) that if P

is an elliptic differential operator with constant coefficients in R", then there exists a

locally integrable function E such that PE = §. Also for some of the non-elliptic but
o 0?

hypoelliptic type operators (for example, the heat operator P = — — ——), we have

ot 0z?

fundamental solutions that are locally integrable.

Our main result is that if P is an hypoelliptic differential operator with constant
coeflicients in B, having a fundamental solution that is locally integrable, and if for a
given f € L,.(£2), 2 an open set, Pu = f has a solution u € D'(f2), then u should also

be in Lj,.(2). Moreover in the special case when f € C™(f), we prove that u € c™(Q)

for any m > 0.
2. Locally integrable solutions

Lemma 2.1. Let P be an hypoelliptic differential operator with constant coefficients
having a fundamental solution that is locally integrable. Let  and 2 be open sets
of B™ such that Qo C Q. If f € L1 () and u € D'(Q) is a solution of Pu = f then
u € Lj,e(Q).

Proof. Let dist (0€Q0,90Q) = n > 0 and E be a locally integrable fundamental solution
of P. We suppose that o € Q for the convenience of writing. We choose u > 0 such
that 4 < n and ¢ € D(f) such that supp ¢ C B(0,x) and ¢ = 1 on B(0, £), where
B(0,p) = {z € Q;|z| < u} C Qo.

We'll prove that P(¢E) — 6 € D(R™). For, by using Leibnitz formula in D'() we
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have

=

©

=
I

) aaz< )Df’ D PE

lal<m BLa

ePE+ Y. aaz< )D%Da PE

ja|<m BLa
p#0

Since PE = 6§, pPE = pé = p(0)6 = 6,

Let p = P(pE)— 6= . aaZ( )D%Da-ﬂE

|a|<m p<a
A#0

In Q\{0}, E is C* and ¥ € C=(&™\{0}); and since ¢ = 1 on B(0, %), DPp =0 in
B(0,£) for all 3 # 0. So ¢ =0on B(0, £), hence ¢ € C(B").

Since the supp % is contained in the supp ¢, ¥ € D(R"). Let u € D'(Q) be a
solution of Pu = f, we have then,
u=6*xu = [P(pE)—1]*u
= P(pE)*xu—v¢*u
= @pE*xPu—y*u
u = pExf—1¢Yxu (1)
©E is a function on © such that supp (pE) C B(0,u) and ¢E € Lj,(£); also since

fe L), oE*f € LL (D). As pxu € C°(N), ¥ *u € Lj,(0). Hence
u € Llloc(QO)-

Theorem 2.2. With the same hypotheses as in Lemma 2.1, if f € Lj, () and if
u € D'(Q) is a solution of Pu = f then u € L, ().

Proof. Let K be any compact set of Q. Let dist (K,22) = m > 0 and we take
Qo = |J B(z,71/2), so Qo C Q. By using the lemma 2.1, we have u € L} (Q0), hence

z€K
u € LY(K). Thus u € L},.(Q).
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Theorem 2.3. With the same hypotheses as in Lemma 2.1, if f is a continuous

function in 2 and u € D'() is a solution of Pu = f, then u also is continuous.

Proof. From the equation (1) in the proof of lemma 2.1, we have u = eEx f—1*u.
Since supp (¢FE) C B(0, 1) and f is continuous on 2, ¢E * f is continuous on Q. For,

if z¢ € 9, we have

$E* f(z) = pE* f(z0) = [ (PE)w)(f(x —y) ~ f(z0 — y))dy.

B(o,l‘)
We put

M= B0 (0 E)(y)ldy.

Let y; € B(O,/.t), so o — Y1 € (L.

Given € > 0, since f is continuous at xo — y; there exists an open neighbourhood
W1 C Q of o and an open neighbourhood U, of y, such that: |f(z—y)—f(zo—11)| < A7
for all z € V4, and all y € U;. Since such neigbourhoods U; cover the compact set

B(0, 1), there exists Uy, Us, ..., U, s.t. B(0,u) C JU:. LetV = () Vi. Then we have
=1 i=1

|f(z —y) = f(zo—y)| < i forallz € V and all y € B(0, u).

Hence,
B * f(2) = B x f(z)l < [ HeE)XWIf(@—v) = f(zo—v)ldy
M Joo, (PEY@dy = ¢

for all z € V. So ¢F * f is continuous at any point zo € Q. As Ppru e C°(Q), we

deduce from (1) that u is continuous on o, and hence u is continuous on €.

Corollary 2.4. With the same hypotheses as in lemma 2.1, if u is a distribution such

that Pu= f € C™(Q), m > 0, then u also belongs to C™(0).
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Proof. From the equation (1) in lemma 2.1 Dou = @E + D*f — D*(¢ * u). This

proves the corollary.
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