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0. Introduction.

One of the most classical examples among minimal surfaces in R3? is a
catenoid, and it is the only non-flat rotational minimal surface. Levitt and
Rosenberg [4] gave a characterization of the catenoid (i.e, minimal rotational
hypersurface) in a hyperbolic space as follows: Let M be a connected minimal
hypersurface immersed in H™ and regular at oo (cf. §1). Suppose the asymp-
totic boundary of M is the union of disjoint round hyperspheres 5’1 and S,.
Then M is a catenoid.

The orthogonal group O(n) acts on H™ (= the interior of the unit ball in
R™) as a matrix multiplication, so the subgroup O(p) X O(q) (»p + ¢ = n)
also acts on H™. In this paper, we consider a hypersurface in H™ which is
invariant under the action of O(p) x O(q) (p, g > 2) (say O(p) x O(q)-invariant
hypersurface). A hypersurface M in H™ is O(p) X O(qg)-invariant if and only
if there is a codimension 1 foliation of M such that each leaf is congruent to
the product of round spheres SP~1(d;) x §971(dz) C S*~!(d) C H". Note
that the catenoid is O(1) x O(n —1)-invariant hypersurface (O(1) = Z;). In
82, we will construct complete minimal embeddings of M diffeomorphic to
SP~! x R into H™ such that M is O(p) x O(q) -invariant and its asymptotic
boundary = SP~!(¢;) x §971(cz) (modulo conformal transformation of S*~1 =
the asymptotic boundary of H™). The method of construction is due to Ferus
and Karcher [3]. In §3, we will give a characterization of O(p) x O(g)-invariant
complete minimal hypersurfaces in H™ in terms of the asymptotic boundary.

The author would like to thank the referee for valuable suggestions and
comments. '

1. Notations and preliminaries.

In this paper, we denote by H™(—c) a hyperbolic space with constant cur-
vature —c, H™ = H™(—1) and by S™(c) a round sphere of constant curvature
¢ > 0. According to [4], we refer to plane, distance, line, etc. as the hyper-
bolic object in H™. First we work with Poincaré model of H™ (the interior of
the unit ball in R™?). The asymptotic boundary of H™ is identified with the
boundary of the unit ball and denoted by S(o0). Given A C H", we denote by
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0 A the set of accumulation points of A in S(0o) and call it the asymptotic
boundary of A.

We shall use the latitude-longitude system as the coordinate of H™. Fix a
hyperplane Py in H". Choose coordinates in Py and let v be the geodesic
orthogonal to Py at a origin o € Fy. Let ; be the l-parameter group of
isometries of H™ which along + is translation by a distance ¢ and such that the
curves t — ~;(z) are orthogonal to P, for each =z € P, (a positive sense along
7 is chosen once and for all). Then each point of H™ has coordinates (z,t)
where z € Py and v:(z) = (=, 1).

Denote by P, the plane v;(Py). We refer to P; as a holizontal plane and the
curve t — ~;(x) as the vertical curve through z. Notice that for each s the
reflection of H™ through the plane P, is given by the formula (z,t) — (z,2s—1).

Let S; = 0o P;. Then the coordinate system (x,t) extends to a coordinate
system on S(oo) where each point (except the two limits points of v) has a
unique coordinate (z,t), ¢ € Sp, t € R. By a M&bius transformation we can
send v to the north pole-south pole geodesic and Py to the equatorial plane.
Then the coordinates on S(o0) are the usual latitude-longitude coordinates.

We say that A C H™ is a graph over P, if the vertical projection of A to
P, is injective, and A has locally bounded slope if the vertical field v = (0,1) is
not tangent to A at any interior point of A.

We say that A is above B, A > B, if whenever a vertical curve meets both
A and B, then every point of A (on this vertical) is above every point of B.
These notations extend directly to S(oco) with respect to the horizontals S,
and the vertical curves.

For AC H"U §(o0) and s € R, let A,+ = {(z.t) € A;t > s} and similarly
let A,- be the set of points of A below P,. Let A}, = {(z,2s—1);(z,t) € A,+}.
Also let H,+ (resp. H,-) be the set of all points above P, (resp. below P,).

Let M be a complete hypersurface of H". We say that M is regular at co
if the asymptotic boundary B of M is a C? cod1mens1on one submanifold of
S(co0) and M = M U B is of class C! on B.

We also use polar coordinates [0,00) x S*~1(1) of H™ given by

g = dr? + sinh? r . dw?

where dw? denotes the standard metric of $”~!(1). Then natural correspon-
dence between [0, 00) X S"~!(1) and H™ is the following:

[0,00) x 8™~ 3 (r,£) — (tanh )¢ € H™.

When we consider the Poincaré model, the orthogonal group O(n) and its
subgroup O(p) X O(q) (p+¢g = n) act on H™ and S(c0) = S™~! naturally. The
orbit space of the action of O(p) x O(q) on H™ (resp. S(o0)) is identified with
the subset of H? given by {(r,¢) € [0,00) x [0,7/2]} (resp. the subset of S?

given by {¢ € [0,7/2]}.
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2. Construction.

In this section, we construct minimal embeddings of M diffeomorphic to
SP~1 x RY (p+ ¢ = n and p,q > 2) into a hyperbolic space H™ such that M
is complete, O(p) x O(q)-invariant and its asymptotic boundary dec M is the
product of round spheres SP~1(¢;) x $971(cz) (modulo conformal transforma-
tion of S(c0)). The construction is essentially due to Ferus and Karcher, so
see [3] for more detailed description.

Let F be a quadratic polynomial on R? x R? = R", defined by F(x,y) =
(z,z) — (y,y) where z € R? and y € R?9. We restrict F' to unit sphere Sm—1(1)
in R®. Then the levels F~1({cos2¢}) N S*71(1) (0 < ¢ < 7/2) form an
isoparametric family

(2.1) cosp - SP71(1) x singp - ST71(1) C S"—l(l)

with 2 distinct constant principal curvatures.

We consider all distance spheres {r} x S*~! in H™ admit the isoparametric
family (2.1). Let (r(s), ¢(s)), s € J, be a differential curve in H? with 0 <
r(s), 0 < ¢(s) < w/2, where J is an open interval of R and s is an arc
length parameter (i.e. 7/(s)? + sinh® r(s) - ¢’(s)? = 1). Then we obtained a
hypersurface M in H™ given by the mapping f : J x SP~! x §¢~1 — H™

(2.2) f(s,u,v) = (tanh -;—r(s) - cos p(s) - u,tanh %—r(s) - sin (s) - v),

for s € J, u € SP~1, v € S971. We note that M is O(p) x O(g)-invariant.
Topological type of M is the following: M is immersed except that it may have
conical singularities over the focal manifold ¢ = 0, ¢ = w/2. It is immersed, if
@(J) C (0,7/2), or if

(2.3)  r(so—3)=r(so+s),p(s0—s)=—p(so+s)for0 <s<K1
whenever 7(sg) > 0,7'(s¢) = 0 and ¢(sg) = 0 for so € J.

It is embedded, if moreover the curve (r,¢) is injective. M is diffeomorphic
to SP~! x RY (resp. RP x S971), if just one end of the curve reaches ¢ = 0
(resp ¢ = w/2) with »' = 0. M is diffeomorphic to sP—1 x §9-1 x R, if
¢(J) C (0,7/2). |

Note that when (2.3) is satisfied, the regularity of the hypersurface M yields
that M admits a reparametrization: (u,y) € SP~! x B%(§) — (k(|y|?®) - u,y) at
a sufficiently small neighborhood SP~! x B%(§) of the point f(so,u,v), where
B9(6) denotes an open disk of radius § in R? and |y| is a norm of y. Outline
of the proof is as follows: Let I(s) := tanh ir(so + s) - sinp(so + s), and
k(s) := tanh $r(so + s) - cos p(so + s). Then I(s) is odd, k(s) is even and
I'(0) = tanh 37(so)/{*sinhr(so)} # 0. Hence 3¢ > 0, 36 > 0 such that
l:(—¢€) — (=6,6) is a diffeomorphism. Let s = h(o) be the inverse function
of o = I(s). Then the function k(h(c)) is even. By Whitney’ theorem [4], there
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exists a C*°-function p such that k(h(c)) = p(a?), for |o| < 8. From this, the
above statement holds (cf. [2, pp.269-270]).

By curvature computations, any solution of the following 3-dimensional first-
order differential equation produces an O(p) x O(q)-invariant minimal hyper-
surface in H™:

v’ =sina
(2.4) ¢' = cosa/sinhr
o' = (n —1)cosa/ sinhr + h(yp)sin a/ sinh r

where h(p) = (p — 1) tanp — (g — 1) cot ¢.

As in §4 of [3], we can find solutions of the differential equation (2.4), for
which 7' — 0 as ¢ — 0 or 7/2. By studying qualitative description of the
solution curves of

7 = sinasinhrsin 2y,
(2.5) ¢ = cosasin2yp, ‘
& = (n—1)cosasin2p + 2sina((p — 1)sin? ¢ — (g — 1) cos? p),

instead of (2.4), and of the cylindrical levels of
L(p,a) =sin? ! p-cosP! ¢ -sina,

we obtain complete minimal hypersurfaces M which are embeddings of S~ x
R? (or R? x §971) into H™ (cf. §5 and §6 of [3]). Note that if a solution of
(2.5) satisfies r(tg) > 0, 7'(t9) = 0 and (o) = 0 at a point tg, then we can see
that the solution also satisfies r(to —t) = r(to +t), p(to — t) = —(to +t) and
a(to —t) = —a(te +t) + 7 for 0 < s < 1 by the uniqueness of the solution of
ODE. Since r(s) increases monotonically to +co as s — oo [3, p.258], ¢'(s) — 0
as s — 00. So ¢(s) converges to some constant ¢ with 0 < ¢ < 7/2 [3, §5,
(g)] and the curve (r(s),¢(s)) meets the orbit space of S(co) at one point
c € (0,m/2). Consequently the asymptotic boundary of M is the product
of round spheres $P~!(¢;) x S97!(c3) (modulo conformal transformation of
S(00)).

Remark. Similarly we can construct complete minimal immersions of M dif-
feomorphic to $P~! x 97! x R into H™ such that M is O(p) x O(q)-invariant.
Note that O(p) x O(g)-invariant complete minimal hypersurface in H™ is either
(a) embedded SP~! x RY, or (b) (immersed) SP~! x §9-1 x R. In fact, by [3,
§5, (a)] we can see that the solution curves of (2.5) satisfy {{s € J;p(s) = 0
or m/2} =1 (case (a)) or 0 (case (b)), when M obtained by (2.2) and (2.4) is
complete.

3. Characterization.
In this section we prove the following
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Theorem 3.1. Let M be a connected complete immersed minimal hypersur-
face in H™ such that M is regular at oo and its asymptotic boundary 0o M is
the product of round spheres SP~*(c;) x S97!(cy) wherep+q =mn and p,q > 2
(modulo conformal transformation of S(o0)). Then M is O(p) x O(q)-invariant.

For the proof, we use the following result of Levitt and Rosenberg.

Proposition 3.2. [4] Let B C S(co) be a C? codimension one immersed
boundary, not necessarily connected. Assume By is a graph of locally bounded
slope and B > By . Let M be a minimal hypersurface immersed in H™ with
doM = B and regular at co. Then My is a graph of locally bounded slope
and Mgt > M; .

Proof of Theorem 3.1. We can assume that ., M = SP~1(c1) x S971(cz) C
RP xR?. Let P be a hyperplane of H™ defined by (R?~! x R9)NH™, where RP~!
is a hyperplane through the origin of S?~!(¢;) in RP. Then B = SP~!(¢;) X
S§971(cy) satisfies the hypothesis of Proposition 3.2 from above and below P
so M is invariant by reflection through P. By replacing R? and R?, we can see
that M is O(p) x O(g)-invariant. O

It seems to worthwhile to consider the following problem: Under the same
situation as Theorem 8.1, if the asymptotic boundary 8o M is an isoparametric
hypersurface in S(oo) with 3,4 or 6 distinct principal curvatures, then does M
admits codimension 1 foliation such that each leaf is an isoparametric hyper-
surface of some round hypersphere of H™ ?

With respect to the asymptotic boundary of minimal varieties in H™, An-
derson [1] showed the following theorem: If BP~! is a closed submanifold of
S(00), then there exists a complete absolutely area-minimizing locally integral
p-current ¥ in H™ and B is the asymptotic boundary of . More over, if p < 6,
then ¥ is smooth.

So if p > 6, then ¥ may have a singularity. Theorem 3.1 implies that if
B = 8P~1(1/ cos? §) x $91(1/ sin? 8), then T with 8o M = B is smooth if and
only if there is a solution of (2.4) such that ¢(s) — 6 as s — oo provided that
¥ is regular at infinity. So if the above problem is true, then the regularity of
minimal varieties £ in H™ with 8., M ="isoparametric hypersurface” can be
seen by studying the behavior of solutions of the corresponding ODE (cf. §2)
at infinity.

Finally we see that O(p) x O(q)-invariant hypersurface is a generalization of
tubes of constant radius over totally geodesic H? (2 < p < n —2) in H™. Let
u be a non-negative smooth function on @ C HP and suppose that u depends
only on the distance from some point in H?. Let M = {exp, u(z)éz;z €
Q and &, is a unit normal vector at z}. Then M is O(p) x O(q)-invariant.
Moreover if u is a positive constant, then M is a tube of radius u over H?
and M is a Riemannian product of HP(—1/ cosh? u) and §™~P~1(1/sinh?® u).

Theorem 3.1 states that some ”converse” of the above fact holds as: Fix
a totally geodesic submanifold H? of H™, and choose coordinates in H?. Let
v¢ be the geodesic of H™ through the origin o € HP with the initial vector
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£ € UN,H? = {unit normal vectors at o € H? in H"} = S"~P~1 Denote by
7Ye,s the 1-parameter group of isometries of H™ which along ~¢(s) (s > 0) is a
translation by a distance s and such that the curves ¢t i ¢ ¢(z) are orthogonal
to H? for each z € HP. Let M = {vu(z); = € H?, £ € UN,HP}, where
v = u(z,€§) € C°(HP x S*P7!) and u > 0. Suppose M is a connected
complete minimal hypersurface immersed in H™ such that M is regular at oo
and its asymptotic boundary 9o M = {7¢,(r); = € 8oHP, ¢ € UN,H?} for
some 7 > 0 (hence do M = SP~! x §S*~P~1), Then u(z,§) = u(z) (i.e., M is
O(n — p)-invariant), and moreover u depends only on the distance from some
point of H? (i.e., M is O(p)-invariant).
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