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Abstract

Some convergence theorems for multifunctions are established. Egorov type

theorem in Hausdorff limit is proved. The convergenoe theorems between

$L^{p}$-integrably bounded multifunctions and $L^{p}$-selection families are also

established. The result for generalized selection theorem is applied to solve a

one-stage decision problem.

1. Introduction

In recent years the multifunction theory has been developed extensively by many

authors with applications to mathematical economics, optimization and optimal control.

(See for example, [1-5, 10-12]). The analysis of multifunction theory is based on the

concepts of convergence of sets, the measurability, continuity and integrability for

multifunctions. In this paper we will give some fundamental theorems for KuratoWski and

Hausdorff limits of sets and for convergent sequenoe of measurable selections as well as
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$L^{p}$-selection families for multifunctions. Finally we apply the measurable theorem

selections to a decision problem.

We mention in section 2 for some basic properties of Hau $s$dorff and Kuratowski

convergences on sets. Some representations for convergences and some counter examples

are discussed. Sections 3 and 4 are the main parts of the paper. In section 3 we establish a

generalized selection theorem as well as some results in real analysis. It is proved that a

sequence of multifunctions convergent in Hausdorff limit is convergent in measure, Egorov

type theorem is extended to the case of multifunctions in Hausdorff limit. In Section 4 we

disucss the $L^{p}$-selections for Banach valued multifunctions. It is proved that if a sequence

of $L^{p}-i$ntegrably bounded multifunctons converges in Hausdorff limit, then the
$L^{p}$-selections will converge in Hausdorff limit. While for the case of the Kuratowski limit,

one can consult Aubin and Frankowska [2]. Finally in section 5 we give an application of

measurable selection for multifunctions to optimization problem of a decision system. In

Lai and Tanaka [8] (cf also [9]), they considered an infinite-stage Markovian decision

system for vector-valued payoff function, and showed the existence of optimal strategy of

average criterion in a vector-valued decision system under discrete average-time. For the

average-time of one-stage decision problem in the determinestic case, one can consult

Schal [12].

2. Hausdorff convergence and Kuratowski convergence for sets.

Throughout the paper let $(T, \Sigma, \mu)$ , or simply $T$ , be a complete $\sigma$-finite measure
space, and let X be a separable Banach space. Denote by $P_{f}(X)$ the collection of all

nonempty closed subsets of X.

The Hausdorff distanoe between $E$ and $F$ in $PdX$) is defined by

(2.1) $h(E, F)=\max$ { $\sup d(y,$ $F)$ , $supd(z,$ $E)$ }
$y\in E$ $z\in F$

Alternatively, it can be easily characterized by:
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(2.2) $h(E, F)=$ $sup|d(x, E)-d(x, F)|=\inf$ { $r:E\subset F_{r}$ and $F\subseteq E_{r}$ }
$x\in X$

where $d(x, A)=\inf\{||x-a\Vert;a\in A\}$ for any nonempty subset A of X, and

$A_{r}=\{x;d(x, A)<r\}$ . $(P_{f}(X), h)$ is ametric space. As X is complete,

$(P_{f}(X), h)$ is also complete. Let $P_{k}(X)$ be the set of all nonempty compact subsets of X.

Then $P_{k}(X)$ is a closed and separable subset in $(P\mu x),$
$h$) provided X is separable.

A sequence $\{E_{n}\}$ of elements in $P_{f}(X)$ is said to be Hausdorff convergent to $E$ in

$P_{f}(X)$ , and is written by

(2.3) $E=h$ -$\lim E_{n}$ or $E_{n}E\underline{h}$

if $h(E_{n}, E)\rightarrow 0(n\dashv+m)$ .

We have that, if $E_{n}E\underline{h}$ then

co $m$

(2.4) $E=\cap$ cl { $\cup$

$E_{k}$].
$n=1$ $k=n$

For $E,$ $E_{n}cX(n=1,2, \cdots)$ , the sequence $\{E_{n}\}$ is said to be Kuratowski convergent

(or K-convergent) to $E$ if

(2.5) $\tau$-lim $supE_{n}\subseteq E\subset\tau$-lim $infE_{n}$

where $\tau$ stands for the norm-topology of X,

(2.6) $\tau$-lim $supE$ $=\cap$ cl $[\cup E_{k}]$
$n$

$I\in \mathfrak{R}$ $k\in I$

and

(2.7) $\tau$-lim $infE$ $=$ $\cap$ cl $[\cup E_{k}]$ .
$n$

$J\in\dot{9}\dot{l}$ $k\in J$

Here $\mathfrak{R}$ is the Frechet filter $(at+m)$ defined by

(2.8) $\mathfrak{R}=$ {I $c1N|\{k\in D\dagger:k\underline{\rangle}n\}c$ I for some $n\in M$ }

where IN is the set of all natural numbers; and $\ddot{\mathfrak{R}}$ is the gnill of $\mathfrak{R}$ , defined by
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(2.9) $\ddot{\mathfrak{R}}=$ { $JcM|J\cap I\neq\emptyset$ for all I $\epsilon \mathfrak{R}$}.

Evidently DZ $c\ddot{\mathfrak{R}}$ . It follows that $\tau$-lim $infE_{n}\subseteq\tau$-lim $supE_{n}$ and that $E_{n}E\underline{k}$ if

and only if $\tau$-lim $infE_{n}=E=\tau$-lim $supE_{n}$ .

Some characterizations of (2.6) and (2.7) are given by:

Proposition 2.1. (cf. Aubin and Frankowska [2])

(a) $\tau$-lim $supE_{n}=n1m\bigcap_{=}$ cl $[\bigcup_{=kn}E_{k}]m$

$m$ $\varpi$ $m$

(b) $\tau$-lim $infE_{n}=$ $\cap$ $U$ $\cap$

$(E_{k})m^{-1}$ ,
$m=1n=1k=n$

where $(E_{k_{m}-1})=\{x;d(x, E_{k})<m^{-1}\}$ .

Attouch showed in [1, p.92, Prop 1.32] that $\tau-\lim$ $infE_{n}=cl$ [$\cup n=1mknm\bigcap_{=}$ cl $E_{k}$].

But thi $s$ is not true. For examples,

(1) If $X=IR,$ $\tau=theusual$ topology on $R$ , and $E_{n}=\{\frac{1}{n}\},$ $n=1,2,$ $\cdots$ , then

$\tau$-lim $infE_{n}=\{0\}\neq\emptyset=c1$ [$\bigcup_{=}\bigcap_{=n1kn}mm$ cl $E_{k}$]

(2) If $X=R^{2},$ $\tau=the$ usual topology on $m^{2}$ , and $E_{n}=\{(x, y)\in R^{2} : y=(\frac{1}{n})x\}$ ,

$n=1,2,$ $\cdots$ , then

$m$ $m$

cl [ $\cup$ $\cap$ cl $E_{k}$] $=\{(0,0)\}$ .
$n=1k=n$

But $\tau$-lim $infE_{n}$ is the whole x-axis, and hence

$\tau$-lim
$infE_{n}\neq\supset$

cl [ $m\cup$ $m\cap$

cl $E_{k}$]. $0$

$n=1k=n$

For monotone sequenoe of subsets in X, we have
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Proposition 2.2. (cf. Aubin and Frankowska [2])

Let $\{E_{n}\}$ beasequence of subsets in X.

co
(a) If $E_{n}\subseteq E_{n+1}(n=1,2, \cdots)$ and $E=c1$ $[ \cup E_{n}]$ , then $E=K$ - $\lim E_{n}$ .

$n=1$

co
(b) If $E_{n}\supset E_{n+1}(n=1,2, \cdots)$ and $E=$ $\cap$ cl $E_{n}$ , then $E=K$ - $\lim E_{n}$ .

$k=1$

However a sequenoe of sets convergent in Hausdorff metric is also convergent in

Kuratowski limit but not the converse. For example,

(1) (Finite dimensional case). If $X=R^{2}$ with usual Euclidean metric and

$E_{n}=\{(x, y)\in R^{2_{;y}}\underline{\rangle}\frac{1}{n}x\underline{\rangle}0\}$ ,

then $E_{n}\subset E_{n+1},$ $n=1,2,$ $\cdots$ . It follows from Proposition 2.2 (a) that

$E_{n}E=\underline{k}c1$ $[ m\cup E_{n}]=\{(x, y)\in R^{2}|x\underline{\rangle}0, y\underline{\rangle}0\}$ .
$n=1$

But $h(E_{n}, E)=+m$ for each $n\in IN$ , so that $\{E_{n}\}$ is not convergent in Hausdorff limit.

(2) (Infinite dimensional case). If X $=c_{0}(R)$ , the space of all continuous functions

on $R$ vanishing at infinity with the norm $\Vert f||_{m}=$ $sup|f(x)|$ , and define $f_{n}$ : $R\rightarrow R$ by
$x\in R$

$f_{n}(x)=\left\{\begin{array}{ll}x-n+1 & if n- l <x^{\underline{\langle}}n\\-x+n+1 & if n<x^{\underline{\langle}}n+1\\0 & otherwise ,\end{array}\right.$

then the sequence of subsets $E_{n}=\{0, f_{n}\},$ $n=1,2,$ $\cdots$ converges to $\{0\}$ in Kuratowski

sense. But $h(\{E_{n}\}, \{0\})=$ I $f_{n}||_{m}=1$ for all $n\in M$ . Hence

$E_{n}E\underline{k}\Rightarrow E_{n}E\underline{h}$ with $E=\{0\}$ . $0$

3. Sequences ofmeasurable multifunctions.

Recall that $(T, \Sigma, \mu)$ is a complete $\sigma$-finite measure space, and that X is a
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separable Banach space. Let $\Gamma$ : $T\rightarrow P_{f}(X)$ be a multifunction. Denote by

Grp $\Gamma=\{(t, x)\in TxX|x\in\Gamma(t)\}$ and $\Gamma^{-1}(x)=\{t\in T|x\in\Gamma(t)\}$ .
For a subset A $cX$ we denote by

$\Gamma^{-1}(A)=\bigcup_{X\in A}\Gamma^{-1}(x)=\{t\in T;\Gamma(x)\cap A\neq\emptyset\}$ .

A mapping $\sigma:T\rightarrow X$ is said to be a selection for a multifunction $\Gamma$ on $T$ if,

$\sigma(t)\in\Gamma(t)$ for all $t\in$ T.

The following characterization is known (cf. Castaing and Valadier [3]).

Proposition 3.1. Let $\Gamma$ : $T-P_{f}(X)$ be a multifunction. Then the following

statements are equivalent:

(i) $\Gamma^{-1}(B)\in\Sigma$ for any Borel set $B$ in X.

(ii) $\Gamma^{-1}(F)\in\Sigma$ for any closed set $F$ in X.

(iii) $\Gamma^{-1}(U)\in\Sigma$ for any open set $U$ in X.

(iv) For each $x\in X$ , the mapping $t\rightarrow d(x, \Gamma(t))$ is $\Sigma$ -measurable.

(v) The mapping ( $t$ , x) $\rightarrow d(x, \Gamma(t))$ is $\Sigma\otimes \mathfrak{B}(X)-$ measurable,

where $\mathfrak{B}(X)$ stands for the Borel $\sigma$-algebra of X.

(vi) There is a sequence $\{\sigma_{n}\}$ of measurable selections for $\Gamma$ such that

$\Gamma(t)=cl\{\sigma_{n}(t)|n\in M\}$ for all $t\in T$ .

(vii) Grp $\Gamma\in\Sigma\otimes \mathfrak{B}(X)$ .

A multifunction $\Gamma$ : $T\rightarrow P_{f}(X)$ is said to be measurable if any one of $(i)\sim$ (vii) in

Proposition 3.1 holds. We denote by $M(T, X)$ the set of all measurable multifunctions
from $T$ into $P_{f}(X)$ .

Assume that $f:T*X\rightarrow R$ is a function satisfying:

(A1) for each $x\in X,$ $t\rightarrow f(t, x)$ is measurable,

(A2) for each $t\in T,$ $x\rightarrow f(t, x)$ is l.s. $c.$ .
Then it follows that if $\sigma$ : $T\rightarrow X$ is measurable, the mapping $t\rightarrow f(t, \sigma(t))$ is also
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measurable. For any compact set $BcX$ Ekeland and Temam [4] proved that there is a

measurable mapping $\sigma$ : $T\rightarrow B$ such that

$f(t, \sigma(t))=\min\{f(t, x)|x\in B\}$ .

The following measurable selection theorem is a slight genralization of Ekeland-Teman’s

result. In section 5, we shall apply this selection theorem to a decision problem.

Theorem 3.2 (generalized selection theorem). Let $B$ : $T\rightarrow P_{k}(X)$ be a measurable

multifunction on $T$ to the family of all nonempty compact subsets of X. If $f:TxX\rightarrow$

$R$ satisfies (A1) and (A2), then there exists a measurable $s$election $\sigma$ for $B$ such that

$f(t, \sigma(t))=\min\{f(t, x)|x\in B(t)\}$ .

Proof. For any $t\in T$ , the set: $\Gamma(t)=\{x\in B(t)|f(t, x)= min f(t, y)\}$ is a
$y\in B(t\cdot)$

nonempty closed subset of X since $B(t)$ is compact, $f(t, y)$ Ls.c. in $y$ . By Proposition

3.1 (vi), there is a measurable sequence $\{\sigma_{n}\}$ for the measurable multifunction $B$ such

that

$B(t)=cl\{\sigma_{n}(t)|n\in M\}$ for all $t\in T$ .

It follows that $t-f(t, \sigma_{n}(t))$ is measurable, and the graph of $\Gamma$ :

Grp $\Gamma$ $=\{(t, x)\in TxX x\in\Gamma(t)\}$

$=\{(t, x)|f(t, x)=inff(t, y)\}y\in B(t)$

$=$ { $(t,$ $x)|f(t,$ $x)=i$ nf $f(t,$ $\sigma_{n}(t))$ }
$n\in IN$

is $\Sigma\otimes \mathfrak{B}(X)$ –measurable. Therefore from Proposition 3.1 (vii), $\Gamma$ is measurable and,

hence, it admits a measurable selection $\sigma$ . $0$

Now we turn to the convergence sequence of multifunctions. At first we see that if

$\Gamma_{n}$ : $T\rightarrow P_{f}(X)(n=1,2, \cdots)$ are measurable multifunctions such that either

(1) $\Gamma_{n}(t)\Gamma(t)\underline{h}$ or (2) $\Gamma_{n}(t)\Gamma(t)\underline{k}$ then $\Gamma\in \mathfrak{M}(T, X)$ .
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We mainly consider the Hausdorff limit in the rest part of this section.

Like single-valued functions, we say that a sequence of measurable multifunctions
$r_{n}(n=1,2, \cdots)$ is convergent in measure to $\Gamma$ if for any $\epsilon>0$ ,

$\mu\{t\in T|h(\Gamma_{n}(t), \Gamma(t))>\epsilon\}\rightarrow 0$ as $n\rightarrow m$ .

$\{\Gamma_{n}\}$ is called convergent to $\Gamma$ almost uniformly if for every $\epsilon>0$ , there exi $st8$ a
measurable set $T_{0}cT$ such that $\mu(T\backslash T_{0})<\epsilon$ and

$\Gamma_{n}(t)\Gamma(t)\underline{h}$ uniformly on $T_{0}$ .

Like in real analysis, we will prove the following theorems for multifunctions.

Theorem 3.3. Assume that $\mu(T)<+m$ and let $\{\Gamma_{n}\}$ be a sequenoe in $\mathfrak{M}(T, X)$

such that $\Gamma_{n}(t)\Gamma(t)\underline{h}$ a.e.. Then $\{\Gamma_{n}\}$ converges to $\Gamma$ in measure.
Proof. Note that $\Gamma\in \mathfrak{M}(T, X)$ and the mapping $t\rightarrow h(\Gamma_{n}(t), \Gamma(t))$ is

measurable. If $\Gamma_{n}$ was not convergent to $\Gamma$ in measure, then there is an $\epsilon>0$ such

that

$\mu\{t\in T|h(\Gamma_{n}(t), \Gamma(t))>\epsilon\}\rightarrow 0$ (as $n\rightarrow m$).

Thus there exist $\delta>0,$
$n_{1}<n_{2}<\cdots$ such that

$\mu\{t\in T|h(\Gamma_{n_{k}}(t), \Gamma(t))>\epsilon\}>\delta$ for $k=1,2,$ $\cdots$ .

co $m$ co
Let $T_{n}=\{t\in T|h(\Gamma_{n}(t), \Gamma(t))>\epsilon\}$ and $T_{0}=$ $\cap$ $\cup$ $T$ Sinoe

$t_{k}\bigcup_{=p}T_{n_{k}}$ },
$p=lk=p$ $n_{k}$

$p=1,2,$ $\cdots$ , is a decreasing sequence and tends to $T_{0}$ , we have

co

$\mu(T_{0})=\lim_{p\prec m}\mu(\bigcup_{=kp}T_{n_{k}})$ sinoe $\mu(T)<+m$ .

Since $\mu(\bigcup_{=kp}\infty T_{n_{k}})\underline{\rangle}\mu(T_{n_{p}})>\delta$ , $\mu(T_{0})\underline{\rangle}\delta$ . But $\Gamma_{n}(t)\Gamma(t)\underline{h}$ a.e., there exists a

$\iota_{1}\in T_{0}$ such that

$\Gamma_{n}(t_{1})-\Gamma(t_{1})$ .
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As $t_{1}\in T_{0}$ , we can find a subsequence
$\{n_{k_{\ell}}\}$

of $\{n_{k}\}$ such that $t_{1}\in T$ , $\ell=1,2,$ $\cdots$ .
$n_{k_{\ell}}$

Hence

$h(\Gamma_{n_{k_{\ell}}}(t_{1}), \Gamma(t_{1}))>\epsilon$
.

Thi $s$ contradicts to $\Gamma_{n}(t_{1})\Gamma(t_{1})\underline{h}$ . $0$

It seems never to be seen the Egorov Theorem for multifunctions so that the

following theorem represented here in new.

Theorem 3.4 (Egorov type theorem). Let $\mu(T)<+m$ and $\{\Gamma_{n}\}cM(T, X)$ such

that $\Gamma_{n}(t)\Gamma(t)\underline{h}$ a.e.. Then $\Gamma_{n}$ converges to $\Gamma$ almost uniformly.

Proof. Without loss of generality, we may assume that $\Gamma_{n}(t)\Gamma(t)\underline{h}$ for all $t\in$

T. Then $\Gamma\in \mathfrak{M}(T, X)$ and for fixed $m\in IN$ ,

$T_{n}(m)=$
$m\cup$

$\{t\in T : h(\Gamma_{k}(t), \Gamma(t))\underline{\rangle}\frac{1}{m}\},$ $n=1,2,$ $\cdots$ ,
$k=n$

is a decreasing sequence of sets. Since $\Gamma_{n}(t)\Gamma(t)\underline{h}$ there is a $k_{0}\in M$ such that

$h(\Gamma_{k}(t), \Gamma(t))<\frac{1}{m}$ for $k\underline{\rangle}k_{O}$ ,

that is,
$t\in T_{k_{O}}(m)$ . This shows that

$m$

$\cap$

$T_{n}(m)=\emptyset$ and $T_{n}(m)\downarrow\emptyset$ , as $n\rightarrow m$ .
$n=1$

It follows that $\mu(T_{n}(m))-0$ as $n\rightarrow m$ . Hence for any $\epsilon>0$ and $m\in M$ , there is an

$n(m)\in$ IN such that

$\mu(T_{n(m)}(m))<\epsilon/2m$ .

co
Let $T_{0}=T\backslash $ $\cup$

$T_{n(m)}(m)$ . Then
$m=1$

$\mu(T\backslash T_{0})=\mu( m\cup T_{n(m)}(m))\underline{\langle}$
$\Sigma^{m}$

$\mu(T_{n(m)}(m))<$
$\Sigma^{m}$

$\frac{\epsilon}{m}=\epsilon$ .
$m=1$ $m=1$ $m=12$
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For any $\lambda>0$ , let $M$ be a positive integer such that $W1<\lambda$ , we write $n(M)=N$ . Since

$T_{0}=T\backslash m1m\bigcup_{=}T_{n(m)}(m)=$
$m\cap$

$[T_{n(m)}(m)]^{C}$ ,
$m=1$

and

$[T_{n(m)}(m)]^{C}=($
$m\cup$

$\{t\in T|h(\Gamma_{k}(t), \Gamma(t)\underline{\rangle}\frac{1}{m}\})^{C}$

$k=n(m)$

$m$

$=k=n(m)\cap$
$\{t\in T|h(\Gamma_{k}(t), \Gamma(t))<\frac{1}{m}\}$

where $A^{C}=T\backslash A$ stands the complement of $A$ , it follows that

$m$ $m$

$T_{0}=\bigcap_{=}\cap m1k=n(m)$
$\{t\in T|h(\Gamma_{k}(t), \Gamma(t))<\frac{1}{m}\}$

$m$

$c$ $\cap$ $\{t\in T|h(\Gamma_{k}(t), \Gamma(t))<\lambda\}$ .
$k=N$

Thi $s$ inclusion shows that for any $t\in T_{0}$ , the inequality $h(\Gamma_{k}(t), \Gamma(t))<\lambda$ holds for all

$k\underline{\rangle}$ N. Sinoe $\lambda$ is arbitrary, $\Gamma_{n}(t)\Gamma(t)\underline{h}$ is uniformly on $T_{0}$ . $0$

It is known that if a sequence of measurable multifunctions is convergent either in

Hausdorff limit or in Kuratowski limit, the limit multifunction is measurable. The

question arises that whether we can find a convergent measurable $s$elections from a

convergent measurable multifunctions. The following theorem will be a key to this

question. The following result is similar to a theorem given in Salinati and Wets [10].

Theorem 3.5. Let $\{\Gamma_{n}\}\subset$ SE)Z(T, X) be a sequence satisfying $\tau$-lim $inf\Gamma_{n}(t)=$

$\Gamma(t)\in M(T, X)$ for each $t\in$ T. If $\sigma$ is a measurable selection for $\Gamma$ , then there exists a

sequence of measurable selections $\sigma_{n}$ for $\Gamma_{n}(n=1,2, \cdots)$ such that

$\lim\sigma_{n}(t)=\sigma(t)$ for each $t\in T$ .

Proof. Since $\sigma(t)\in\Gamma(t)=\tau$-lim $inf\Gamma_{n}(t)$ , there are $\rho_{n}(t)\in\Gamma_{n}(t),$ $n=1,2,$ $\cdots$ ,
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such that $\rho_{n}(t)-\sigma(t)$ . It follows that

$d(\sigma(t), \Gamma_{n}(t))-0$ as $n\rightarrow m$ for each $t\in$ T.

Define

$\Lambda_{n}(t)=\{x\in\Gamma_{n}(t)|d(x, \sigma(t))\underline{\langle}d(\sigma(t), \Gamma_{n}(t))+\frac{1}{n}\}$ , $n=1,2,$ $\cdots$ .

Clearly, $\Lambda_{n}(t)$ is a nonempty closed subset of X. Since the function $d(x, \sigma(t))$ is

continuous in $x$ and measurable in $t$ , it follows that $(t, x)\rightarrow d(x, \sigma(t))$ is $\Sigma\otimes \mathfrak{B}(X)-$

measurable. Since $\Gamma_{n}\in M(T, X)$ , the mapping $(t, x)\rightarrow d(x, \Gamma_{n}(t))$ is a Caratheodory

function so that $(t, x)\rightarrow d(x, \sigma(t))-d(x, \Gamma_{n}(t))$ is $\Sigma\otimes \mathfrak{B}(X)$ –measurable. It follows

that

Grp $\Lambda_{n}=$ { $(t,$ $x)\in TxX$ I $d(x,$ $\sigma(t)\underline{\langle}d(\sigma(t),$ $\Gamma_{n}(t))+\frac{1}{n}$} $\cap Grp\Gamma_{n}$

is also $\Sigma\otimes \mathfrak{B}(X)$ –measurable. Hence $\Lambda_{n}\in M(T, X)$ . By Proposition 3.1 (vi), $\Lambda_{n}(t)c$

$\Gamma_{n}(t)$ has a measurable selection $\sigma_{n}(t)$ such that $d(\sigma(t), \sigma_{n}(t))\rightarrow 0$ . $0$

From Theorem 3.5, we easily get the following theorem.

Theorem 3.6. Let $\{\Gamma_{n}\}cM(T, X)$ be a sequence such that for each $t\in T,$ $\Gamma_{n}(t)$

$\underline{k}\Gamma(t)\neq\emptyset$ or $\Gamma_{n}(t)\underline{h}\Gamma(t)$ . If $\sigma$ is a measurable $s$election for $\Gamma$ , then there exists a

sequence $\{\sigma_{n}\}$ of measurable selections for $\{\Gamma_{n}\}$ such that $\sigma_{n}(t)\rightarrow\sigma(t)(n\rightarrow m)$ for

each $t\in T$ .

4. Convergence Theorems for $L^{p}$-selections

For $\Gamma\in M(T, X)$ , we define

(4.1) $\mathcal{A}p=\{f\in L^{p}(T, X)|f(t)\in\Gamma(t)a.e.\},$
$1\underline{\langle}p\underline{\langle}+m$

$\Gamma$

namely the family of $L^{p}$-selections for $\Gamma$ . Here $L^{p}(T, X)$ stands for the Bochner integral

space of measurable functions $f:T\rightarrow X$ such that $\Vert f(\cdot)\Vert_{x}\in L^{p}(T, R)=L^{p}(T)$ .
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Then
$\mathcal{A}p$

is a closed subset of $L^{p}(T, X)$ (See Hiai and Umegaki [5, Theorem 1.4]).
$\Gamma$

For $\Gamma\in M(T, X),$ $t\in T$ we define

(4.2) 1 $\Gamma(t)|=\sup\{||x|||x\in\Gamma(t)\}$ .

In thi $s$ section we will study the relationship between the sequenoe $\{\Gamma_{n}\}$ in $M(T, X)$ and

the sequenoe $\{\mathcal{A}\}pr_{n}$ for $L^{p}$-selections. Papageorgiou [9] proved that:

(i) if $r_{n}\rightarrow^{h}\Gamma$ with convex condition on $\Gamma_{n}$ , then $\mathcal{A}_{\Gamma_{n}}p\underline{h}\mathcal{A};\Gamma p$

(ii) if $\Gamma_{n}\Gamma\underline{k}$ then the inclusion $\lim \mathcal{A}cr_{n}p\mathcal{A}\Gamma p$ holds.

(See [10] Theorem 4.2 for weak topology on $L^{p}(T,$ $X)$ and Theorem 4.1 for $p=1$ ). For

(i), we shall delete the convex $\omega nditionon\Gamma_{n}$ and establish the same result. For (ii) the

equality instead of the inclusion for Kuratowski convergence is given by Aubin and

Frankowska [2, Theorem 8.4.1]. Although the following result can be reduced form [2,

Theorem 8.4.1], we will give a direct proof for Hausdorff convergence by no medium of

using Kuratowski convergence.

Theorem 4.1. Let $\{\Gamma_{n}\}$ be a sequence of multifunctions in $M(T, X)$ such that

$\Gamma(t)=h$-$\lim\Gamma_{n}(t)$ , for $t\in T$ .

Suppose that there is a nonnegative function $\rho\in L^{p}(T),$ $1$ \langle $p<+m$ such that

(4.2) 1 $\Gamma_{n}(t)|$ \langle $\rho(t)$ for $t\in T$ and $n\in M$ .

Then

$\mathcal{A}p=h-\lim$ $\mathcal{A}p$

$\Gamma$

$\Gamma_{n}$

To prove this theorem we need the following lemma.
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Lemma. Let $r_{1}$ and $\Gamma_{2}$ in $j\sim \mathfrak{m}(T, X)$ be such that

$|\Gamma_{j}(t)|\underline{\langle}\rho(t)$ for some $\rho\in L^{p}(T)$ .
Then

(4.3) $h(\mathcal{A}\Gamma_{1’}p\mathcal{A})\underline{\langle}\Gamma_{2}p\{\int_{T}[h(\Gamma_{1}(t), \Gamma_{2}(t)]^{p}d\mu\}^{1/p},$ 1 $\underline{\langle}p<m$ .

Proof of Lemma. We claim that

(c) $supd(f_{1}, \mathcal{A}p)\underline{\langle}\{\int_{T}[h(\Gamma_{1}(t), \Gamma_{2}(t)]^{p}d\mu\}^{1/p}$

$r_{2}$

$f_{1}\in \mathcal{A}_{\Gamma_{1}}^{p}$

as well as

(d) $supd(f_{2}, \mathcal{A}p)\underline{\langle}\{\int_{T}[h(\Gamma_{1}(t), \Gamma_{2}(t)]^{p}d\mu\}^{1/p}$

$f\in \mathcal{A}^{p}$
$\Gamma_{1}$

2 $\Gamma_{2}$

Let $f_{1}\in \mathcal{A}_{\Gamma_{1}}^{p}$ Then for any positive function $\alpha$ on $T$ there exists an $x\in\Gamma_{2}(t)$ such

that

$d(f_{1}(t), \Gamma_{2}(t))=\inf_{y\in\Gamma_{2^{(t)}}}||f_{1}(t)-y\Vert\underline{\rangle}\Vert f_{1}(t)-x\Vert-\alpha(t)$
.

Without loss of generality, we let $\alpha\in L^{p}(T)$ . Then the multifunction

$\Gamma(t)=\{x\in\Gamma_{2}(t)|\Vert f_{1}(t)-x\Vert\underline{\langle}d(f_{1}(t), \Gamma_{2}(t))+\alpha(t)\}$

has closed ranges in $P_{f}(X)$ and

Grp $\Gamma=Grp\Gamma_{2}\cap\{(t, x)\in T*X|\Vert f_{1}(t)-x||\underline{\langle}d(f_{1}(t), \Gamma_{2}(t))+\alpha(i)\}$

is $\Sigma\otimes \mathfrak{B}(X)$ –measurable. From Proposition 3.1 (vii), we see that $\Gamma\in M(T, X)$ . So

there is a measurable selection $\gamma$ for $\Gamma$ as well as for $\Gamma_{2}$ such that

$\Vert f_{1}(t)-\gamma(t)||\underline{\langle}d(f_{1}(t), \Gamma_{2}(t))+\alpha(t)$

$\underline{\langle}h(\Gamma_{1}(t), \Gamma_{2}(t)+\alpha(t)$

or $||\gamma(t)||\underline{\langle}||f_{1}(t)||+|\Gamma_{1}(t)|+|\Gamma_{2}(t)$ I $+\alpha(t)$
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$\underline{\langle}||f_{1}(t)||+2\rho(t)+\alpha(t)\in L^{p}(T)$ .

Henoe $\gamma\in \mathcal{A}p$ and $||f_{1}-\gamma||_{p}<m$ . It follows from Heai and Umegaki [5, Theorem 2.2]
$\Gamma_{2}$

that

$i$ nf $\Vert f_{1}-g\Vert_{p}=(\int_{T} i nf \Vert f_{1}(t)-x\Vert^{p}d\mu)^{1/P}$

$g\in \mathcal{A}_{\Gamma_{2}}^{P}$
$x\in\Gamma_{2}(t)$

$=(\int_{T}[d(f_{1}(t), \Gamma_{2}(t))]^{p}d\mu)^{1/p}$

$\underline{\langle}(\int_{T}h[\Gamma_{1}(t), \Gamma_{2}(t)]^{p}d\mu)^{1/p}$

So $d(f_{1}, \mathcal{A}_{\Gamma_{2}})\underline{\langle}p(\int_{T}h[\Gamma_{1}(t), \Gamma_{2}(t)]^{p}d\mu)^{1/p}$ for all $f_{1}\in \mathcal{A}_{\Gamma_{1}}p$

By interchanging the roles of $\mathcal{A}_{\Gamma_{2}}p$ and $\mathcal{A}_{\Gamma_{1}’}p$ we then get (c) and (d). Hence (4.3) holds. $0$

Proof of Theorem 4.1. From the above Lemma we have

$h(\mathcal{A}p \mathcal{A}p )$ $=$ max ( $s$ up $d(f,$
$\mathcal{A})p$

$s$ up $d(f_{n},$ $\mathcal{A})$ )$\Gamma p$

$\Gamma$

$\Gamma_{n}$

$f\in \mathcal{A}_{\Gamma}^{p}$

$\Gamma_{n}$

$f_{n}\in \mathcal{A}_{\Gamma_{n}}^{p}$

$\underline{\langle}\{\int_{T}h[\Gamma(t), \Gamma_{n}(t)]^{p}d\mu\}^{1/p}$

As the condition 1 $\Gamma_{n}(t)|\underline{\langle}\rho(t)$ holds for $\rho\in L^{p}(T),$ $n=1,2,$ $\cdots$ , we have

I $\Gamma(t)|=h(\Gamma(t), \{0\})\underline{\langle}h(\Gamma(t), \Gamma_{n}(t))+|\Gamma_{n}(t)|$

$\underline{\langle}h(\Gamma(t), \Gamma_{n}(t))+\rho(t)$

$\rightarrow\rho(t)$ as $n\rightarrow m$ .

Hence

$h(\Gamma(t), \Gamma_{n}(t))\underline{\langle}|\Gamma(t)|+|\Gamma_{n}(t)|\underline{\langle}2\rho(t)(\in L^{p}(T))$ .

By Lebesgue dominated convergence theorem, we obtain
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$n\rightarrow\infty lim\int_{T}h(\Gamma(t), \Gamma_{n}(t)^{p}d\mu=\int_{T}$ $\lim h(\Gamma(t), \Gamma_{n}(t))^{p}d\mu=0$ .

Therefore $h(\mathcal{A}p , \mathcal{A})\Gamma p\rightarrow 0$ and the theorem is proved. $0$

$\Gamma_{n}$

Remark 4.1. Theorem 4.1 is not true for $p=+m$ . Even in Kuratowski limit, it is

also not true. For example,

(i) If $f_{n}$ : $R\rightarrow R$ is defined by $f_{n}(t)=\left\{\begin{array}{l}t>n\\0,t\underline{\langle}n\end{array}\right.$

then $f_{n}(t)\rightarrow 0(n\rightarrow m)$ for all $t\in R$ . But $||f_{n}-f\Vert_{m}=1-0$ . This shows that

$\mathcal{A}_{\Gamma}^{m}\neq k-\lim \mathcal{A}_{\Gamma_{n}}^{m}$

(ii) The limit $h(\Gamma(t), \Gamma_{n}(t))\rightarrow 0$ , for any $t\in T$ , can not imply that

ess $suph(\Gamma(t), \Gamma_{n}(t))\rightarrow 0$ .
$t\in T$

5. A Simple Application ofTheorem 3.2.

Consider a one-stage decision problem which we figure as the following four objects:

(i) $(T, \Sigma, \mu)$ represents the state spaoe which is a complete $\sigma$-finite measure

space.

(ii) (X, d) stands the action spaoe which is a complete separable metric space, in

particular X is a separable Banach space.

(iii) $\Gamma$ : $T\rightarrow P\oint X$ ) is specified as the set of admissible actions $\Gamma(t)$ if the system

is at the state $t$ .

(iv) $f:TxX-R$ is the payoff function.

Then an optimization problem will be formulated as the form:

(P) Minimize $f(t, x)$ .
$x\in\Gamma(t)$

A $plan/strategy\sigma$ in problem (P) is a measurable selection for $\Gamma$ . A plan $\sigma$ is
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said to be optimal if it is a minimizer to the payoff function at $t\in T$ . That is,

(5.1) $f(t, \sigma(t))=$ $i$ nf $f(t, x)$ for $t\in T$ .
$x\in\Gamma(t)$

From Theorem 3.2, the following theorem is immediate.

Theorem 5.1. For the problem (P), suppose that

(A1) $f(t, x)$ is measurable in $t$ and lower semicontinuous in $x$ .
(A2) $\Gamma\in M(T, X)$ and $\Gamma(t)$ is compact for each $t\in$ T.

Then problem (P) has a solution ( $=optimal$ plan).

Note that the compactness of $\Gamma(t)$ in (A2) was used only to ensure that the set

(5.2) $\Lambda(t)=$ {$x\in\Gamma(t):f(t,$ $x)=$ $i$ nf $f(t,$ $y)$ } $\neq\emptyset$ .
$y\epsilon\Gamma(t)$

If we relax the condition that $f(t, \cdot)$ attains its infimum on $\Gamma(t)$ , then we still have the

optimal solution for (P). That is,

Corolary 5.2. If $f$ satisfies (A1) in Theorem 5.1 and $\Gamma\in M(T, X)$ such that $f(t, \cdot)$

attains its infimum on $\Gamma(t)$ for $t\in T$ , then there is an optimal plan to problem (P).

Remark 5.1. Suppose that for each $t\in T$ , $\Gamma(t)$ is a closed $\omega nvex$ subset in a
reflexive Banach space X, and $f(t, \cdot)$ is a convex Ls. $c$ . function on X. If $\Gamma(t)$ is

bounded or $limf(t, x)=+m$ , then the set $\Lambda(t)\neq\emptyset$ in (5.2). So problem (P) still
$||x||\rightarrow m$

has an optimal plan.

If in (5.2), $\Lambda(t)=\emptyset$ , we introduce the $\epsilon$-optimal plan for problem (P) as follows:
For any measurable function $\epsilon$ : $T\rightarrow(0, +m)$ , a plan $\sigma$ is said to be $\epsilon$-optimal if

(5.3)
$f(t, \sigma(t))\underline{\langle}inff(t, x)+x\in\Gamma(t)\epsilon(t)$

.

Then we have the following theorem.
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Theorem 5.3. Suppose that the payoff function $f$ satisfies the condition (A1) in

Theorem 5.1 and the range set $\{f(t, x) ; t\in T, x\in X\}$ is bounded below. Then for $\Gamma\in$

$M(T, X))$ there exists an $\epsilon$-optimal plan to problem (P).

Proof. Let $\epsilon$ : $T\rightarrow(0, +m)$ be any measurable function, and let

$\Lambda(t)=$ {$x\in\Gamma(t)|f(t,$ $x)\underline{\langle}$ [ $i$ nf $f(t,$ $y)]+\epsilon(t)$ }.
$y\in\Gamma(t)$

By the assumption on $f$, the set $\Lambda(t)$ is nonempty and closed for each $t\in$ T. Since $\Gamma\in$

$M(T, X)$ , there is a sequence $\{\sigma_{n}\}$ of measurable selections for $\Gamma$ such that

$\Gamma(t)=cl\{\sigma_{n}(t)|n\in M\}$ $t\in T$ (Proposition 3.1 (vi)).

It follows that the graph

Grp $\Lambda=\{(t, x)\in TxX|f(t, x)\underline{\langle}\inf_{n\in M}f(t, \sigma_{n}(t))+\epsilon(t)\}\cap$
Grp $\Gamma$

is $\Sigma\otimes \mathfrak{B}(X)$ measurable. Therefore $\Lambda$ has a measurable selection $\sigma$ which is an

$\epsilon$-optimal plan. $0$
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