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From number systems to shift radix systems

Shigeki Akiyama*and Klaus Scheicher\dagger

Abstract

Shift radix systems provide a unified notion to study two important
types of number systems. In this paper, we briefly review the origin of this
notion.

1. Introduction

Let $r=(r_{1}, \ldots, r_{d})\in R^{d}$ . Consider a mapping $\tau_{r}$ : $\mathbb{Z}^{d}\rightarrow Z^{d}$ , which maps each
element $(z_{1}, \ldots , z_{d})$ to $(z_{2}, \ldots, z_{d+1})$ , provided that

$0\leq r_{1}z_{1}+r_{2}z_{2}+\cdots+r_{d}z_{d}+z_{d+1}<1$ .

Obviously, $\tau_{r}$ is defined by

$\tau_{r}$ $((z_{1}, \ldots , z_{d}))=(z_{2}, -- , z_{d}, -\lfloor r_{1}z_{1}+\cdots+r_{d}z_{d}\rfloor)$ . (1.1)

We say that $\tau_{r}$ has the finiteness property if for every $z\in Z^{d}$ there exists a $k$ ,
such that $\tau_{r}^{k}(z)=0$ .

This concept unffies notions for two important number systems, namely canon-
ical number systems and $\beta$-expansions. For these number systems, the finiteness
property means that all numbers of a certain set admit finite expansions. This
property also plays an important role for constructing tilings giving the Markoff
partitions of dynamical systems associated to these number systems.

If $\tau_{r}$ has the finiteness property, then $(\mathbb{Z}, \tau_{r})$ is called a shift radix system (for
short $SRS$) (cf. [2, 3]). It turned out to be a hard problem to characterize all
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$r\in R^{d}$ which give rise to a SRS and currently, a complete solution seems to be out
of range. However, in the last years, several partial results have been established.

For an introduction to SRS, we do not aim to give an exact account. For
detailed information, we refer to original papeis. Emphasis will be put on re-
sults of Gilbert and Hollander who developed the essential structure of the SRS
algorithm.

2. Canonical number systems

As an example, we consider Knuth’s number system. He proposed a way to
express Gaussian integers by digits from $\mathcal{A}=\{0,1\}$ with base $\alpha=-1+\sqrt{-1}$:

1 $=\alpha^{0}=(1)_{\alpha}$

2 $=a^{3}+\alpha^{2}=(1100)_{\alpha}$

3 $=\alpha^{3}+\alpha^{2}+1=(1101)_{\alpha}$

4 $=\alpha^{8}+\alpha^{7}+\alpha^{6}+\alpha^{4}=(111010000)_{\alpha}$

5 $=$ $\alpha^{8}+\alpha^{7}+\alpha^{6}+\alpha^{4}+1=(111010001)_{\alpha}$

How do we find such expressions ? This is done by so called residual algorithm.
Take for example the expansion of 3 in base $\alpha$ : As $A$ forms a complete system of
representatives modulo $\alpha$ , and $3\equiv 1(mod \alpha)$ , the lowest digit is 1. We subtract
1 and then divide by $\alpha$ . Then we restart this process from $(3-1)/\alpha=-1-\sqrt{-1}$ .
Iterating this, we generate the expansion in base $\alpha$ . After four steps, we terminate
this process since we run into the trivial cycle $0\rightarrow 0$ which generates infinitely
many leading zeros.

Generally, we may start with an algebraic integer $\alpha$ of degree $d$ and a complete
residue system $\mathcal{A}$ modulo $\alpha$ in $Z[\alpha]$ . If all algebraic conjugates of $\alpha$ have modulus
greater than 1, then the residual algorithm can be viewed as a contractive map
on $\mathbb{Z}[\alpha]$ , which is isomorphic to $Z^{d}$ as an additive group. This means that each
orbit must be eventually periodic. However, it is not trivial that this process must
terminate in finitely many steps. In fact, it is possible that the residual algorithm
runs into a non trivial cycle. For e.g., let $\alpha^{\prime}=1+\sqrt{-1}$ and $\mathcal{A}=\{0,1\}$ . If we
try to expand $\sqrt{-1}$, we find that $\sqrt{-1}\equiv 1(mod a^{\prime})$ and $(\sqrt{-1}-1)/\alpha^{\prime}=\sqrt{-1}$ .
Thus,

$\sqrt{-1}=(\cdots 111)_{\alpha^{\prime}}$ .
For Knuth’s number system, it is proved that the process terminates for every
starting value. This is exactly the above mentioned finiteness property. In this
case, the pair $(\alpha, \mathcal{A})$ is called a canonical number system (CNS for short).
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Before explaining Gilbert’s idea, we summarize known results on the charac-
terization of CNS. A first systematic treatment was given in K\’atai-Szabo [18],
where all CNS bases for Gaussian integers have been characterized. This result
was generalized to quadratic integers in K\’atai-Kovacs $[16, 17]$ and independently
in Gilbert [13]. K\"ormendi [19] dealt with a special class of cubic integers and re-
cently Brunotte $[8, 9]$ characterized all CNS whose bases are roots of trinomials.
In the general case Kov\’acs [20] proved that an algebraic integer $\alpha$ gives rise to a
CNS if its minimal polynomial

$P(x)=x^{n}+b_{n-1}x^{n-1}+\ldots+b_{1}x+b_{0}$

satisfies
$1\leq b_{n-1}\leq b_{n-2}\leq\cdots\leq b_{1}\leq b_{0}$ , $b_{0}\geq 2$ .

However, this characterization is far from complete. Examples not contained in
this class are given in Kov\’acs-Peth\’o [21], where also an algorithm is established
to decides whether a given $\alpha$ is a CNS base or not. Akiyama-Peth\’o’ [4] developed
a much faster algorithm than the one in [21]. Akiyama-Rao [5] and Scheicher-
Thuswaldner [26] studied CNS under a so called Dominant Condition

$|b_{1}|+\ldots+|b_{n}|<b_{0}$ .

In particular, all CNS up to degree five with this additional property have been
characterized. Finally, we mention that Brunotte $[8, 9]$ provided the fastest known
algorithm to determine if an arbitrary polynomial gives a CNS or not.

3. Gilbert’s Clearing Algorithm

In [13], W. J. Gilbert introduced his Clearing Algorithm which is one of the origins
of the SRS setting. We explain his idea by using Knuth’s number system.

Let $\alpha=-1+\sqrt{-1}$ . Then $Z[\alpha]=\mathbb{Z}[\cap-1$ . As a satisfies $x^{2}+2x+2=0$ ,
we have an isomorphism $\mathbb{Z}[\alpha]\simeq \mathbb{Z}[x]/(x^{2}+2x+2)$ . The residual algorithm is
interpreted by division algorithm on $\mathbb{Z}[x]$ . A polynomial $Q(x)=\sum_{i}q_{i}x^{i}\in \mathbb{Z}[x]$

will be called cleared if $q_{i}\in\{0,1\}$ . For a given $A(x)\in Z[x]$ , we wish to find $B(x)$

and $Q(x)$ with
$A(x)=(x^{2}+2x+2)B(x)+Q(x)$ ,

such that $Q(x)=\sum_{i}q_{i}x^{i}$ is cleared. If this holds, then $Q(\alpha)=\sum_{i}q_{i}\alpha^{i}$ is the
desired expression.

This process is visualized for $A(x)=5$ in the Table 1. The first line contains
coefficients of $A(x)=5$ . The last line gives coefficients of the cleared polynomial
$Q(x)$ and each intermediate horizontal line contains a multiple of $x^{2}+2x+2$ .
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$4$

$-2$

$-4$

$4$

$-4$

$1$ $1$ $1$ $0$ $1$ $0$ $0$ $0$ $1$

Table 1: Gilbert’s Clearing Algorithm

Now we come to the main point. We only keep track of a sequence

$-2,2,$ $-1,0,1,$ $-1,1$

appeared in the upper diagonal of the matrix in Table 1. This is nothing but
the sequence of coefficients of $B(x)$ . Denote this sequence by $z_{1},$ $z_{2},$ $z_{3},$ $\cdots$ . The
key step is to switch to this sequence instead of observing the output reminders
1, $0,0,0,1,0,1,1,1$ . Then $z_{i}$ are determined by the inequality

$0\leq z_{i}+2z_{i+1}+2z_{i+2}<2$ .

Dividing by 2, we get
$0\leq\frac{1}{2}z_{i}+z_{i+1}+z_{i+2}<1$ .

Thus $r=(\frac{1}{2},1)$ . If $r$ gives a SRS, then Knuth’s number system has the expected
finiteness property. A straightforward generalization yields

Theorem 3.1 The polynomid $P(x)=x^{d}+b_{d-1}x^{d-1}+\cdots+b_{1}x+b_{0}$ gives a
canonical number system if and only if ( $\frac{1}{b_{0}},$

$\frac{b_{d-1}}{b_{0}}$ , , $\lrcorner bb_{0}$ ) gives a d-dimensional
$SRS$.

The clearing algorithm was reformulated by a suitable base change of $\mathbb{Z}[\alpha]$

into a SRS. An important idea, the set of witnesses, was invented independently
by Brunotte $[8, 9]$ and Scheicher-Thuswaldner $[25, 26]$ under this base change.
This method gives the easiest and fastest algorithm to determine whether $\alpha$ gives
a CNS or not. Consult [2] to see how this idea works in SRS framework.
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4. $\beta$-expansions

A second type of number system, so called $\beta$ -expansions, are related to SRS as
well. Given $\beta>1$ , we wish to express a positive real number $x$ in a form

$ x=x_{-m}\beta^{m}+x_{-m+1}\beta^{m-1}+\ldots$ (4.1)

with $ x_{i}\in \mathcal{A}=[0, \beta$) $\cap \mathbb{Z}$ . A sum of form (4.1) is called a $\beta$ -representation of
$x$ . A special $\beta$-representation, which is called the $\beta$ -expansion can be obtained
as follows. Find the largest integer $m$ such that $\beta^{m}\leq x<\beta^{m+1}$ . Compute
$x-x_{-m}\beta^{m}$ with

$x_{-m}=\max\{a\in \mathcal{A}:x-a\beta^{m}\geq 0\}$ . (4.2)

Iterating this process will lead to an expansion of form (4.1). This setting is also
a natural generalization of the decimal expansions.

Since $x_{-m}$ is the largest possible digit such that $\beta^{m}\leq x_{-m}\beta^{m}<\beta^{m+1}$ , this
algorithm is called greedy algorithm. In general, there exist infinitely many $\beta-$

representations apart from the $\beta$-expansion. For example, so called lazy expan-
sions (cf. [10]) are defined by taking

$x_{-m}=\min\{a\in \mathcal{A}:x-a\beta^{m}<\beta^{m}\}$

in place of (4.2). For $x\in[0,1$ ), the greedy algorithm is equivalent to the following
setting: Define the $\beta$-transformation $ T:x\rightarrow\beta x-\lfloor\beta x\rfloor$ . By iterating this map
and considering its trajectory

$x\frac{x_{1_{c}}}{r}T(x)\underline{x_{2_{t}}}T^{2}(x)\frac{x_{3_{t}}}{r}$

with $ x_{j}=\lfloor\beta T^{j-1}x\rfloor$ , we obtain

$ x=\frac{x_{1}}{\beta}+\frac{x_{2}}{\beta^{2}}+\frac{x_{3}}{\beta^{3}}+\ldots$ .

We say that $d_{\beta}(x)$ is finite when $x_{i}=0$ for all sufficiently large $i$ . This is the case
when there in an integer $i\geq 0$ such that $T^{i}(x)=0$ . For an arbitrary $x\geq 1$ , there
is a maximal integer $m$ such that $\beta^{-m}x\in[0,1$ ) with $ d_{\beta}(\beta^{-m}x)=.x_{-m}x_{-m+1}\cdots$ .
By shifting, we obtain

$ d_{\beta}(x)=x_{-m}x_{-m+1}\cdots x_{-1}x_{0}.x_{1}x_{2}\cdots$

Formally, by applying $T$ , one can expand 1 and obtains $ d_{\beta}(1)=c_{1}c_{2}\ldots$ .
In contrast to CNS, in $\beta$-expansions some subwords of $\mathcal{A}^{*}$ never appear. For
example, a subword $w=c_{1}(c_{2}+1)$ can not appear even if $c_{1}(c_{2}+1)\in \mathcal{A}^{2}$ . This
is because $w$ is too large and we should have already removed it earlier by the
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greedy algorithm. Thus, a word of $\mathcal{A}^{*}$ appears as a subword of a $\beta$-expansion if
and only if all its suffices are less than $d_{\beta}(1)$ in natural lexicographic order (cf.
$[22, 15])$ . For e.g., take a real root $\beta\approx 3.104$ of $x^{3}-3x^{2}-1$ with $\mathcal{A}=\{0,1,2,3\}$ .
Since $d_{\beta}(1)=.301$ , we see that six words {33, 32, 31, 303, 302, 301} are forbidden.
In other words, the letter 3 must be followed by two $O’ s$ in a $\beta$-expansion.

$\beta$-expansions were introduced by R\’enyi [23], who proved that the $\beta$-transformation
is ergodic. An invariant measure has been computed independently by Gelfond
and Parry $[12, 22]$ . As a non-trivial example for a dynamical system where the
invariant measure is explicitly known, its arithmetic, diophantine and ergodic
properties have been extensively studied. Let

Per $(\beta)$ $=$ {$x\in R+$ : $d_{\beta}(x)$ is eventually periodic} and
Fin $(\beta)$ $=$ {$x\in R_{+}$ : $d_{\beta}(x)$ is finite}.

Recall that a Pisot number is an algebraic integer $\beta>1$ for which all algebraic
conjugates $\gamma\neq\beta$ satisfy $|\gamma|<1$ .

If $\beta$ is a Pisot number, then Per $(\beta)=\mathbb{Q}(\beta)\cap R+(cf$. Bertrand and Schmidt
$[7, 27])$ , which is a generalization of the fact that decimal expansions of rational
numbers are eventually periodic.

We say that a number $\beta>1$ has the finiteness property or property (F), if

Fin $(\beta)=Z[\beta^{-1}]\cap R_{+}$ . (F)

The inclusion Fin $(\beta)\subset Z[\beta^{-1}]\cap R_{+}$ is trivial. Obviously a rational number
with a denominator $10^{n}$ has a finite decimal expansion. Therefore we are just
expecting to have finite expansions for all reasonable candidates. The notion of
the property (F) was introduced in [11]. If $\beta$ has property (F) then $\beta$ is a Pisot
number (cf. [11]). Even a weaker condition $Z_{+}\subset$ $Fin(\beta)$ implies that $\beta$ is a
Pisot number (cf. [1]). On the other hand, there exist Pisot numbers which do
not have property (F).

In [2] it is proved, that the problem of characterizing bases $\beta$ with property (F)
and the problem of characterizing CNS are both special cases of the SRS finiteness
problem. Before this, the following partial results have been established: Let
$x^{d}-a_{d-1}x^{d-1}-\ldots-a_{0}$ be the minimal polynomial of $\beta$ . Frougny and Solomyak
[11] proved that

$a_{d-1}\geq a_{d-2}\geq\cdots\geq a_{0}>0$

is a sufficient condition for (F). Hollander proved that

$a_{d-1}\geq a_{d-2}+\cdots+a_{0}$ , $a_{i}\geq 0$ ,
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is also sufficient. Akiyama [1] classified all cubic Pisot units with (F). Akiyama-
Rao-Steiner [6] includes further progress. However, the problem of characterizing
all cubic Pisot numbers with property (F) is still open.

5. Hollander’s Carry Sequence

The second originator of SRS is M. Holander who was a student of B. Solomyak.
As his thesis [14] did not yet appear in publication, we emphasize that the idea
of SRS is basically due to him. Start from a relation:

$\beta^{d}=a_{d-1}\beta^{d-1}+a_{d-2}\beta^{d-2}+\cdots+a_{0}$

which is not necessary irreducible. Let

$r_{1}$ $=$ $\frac{a_{0}}{\beta}$

$r_{2}$ $=$ $\frac{a_{1}}{\beta}+\frac{a_{0}}{\beta^{2}}$

.

$r_{d}$ $=$ $\frac{a_{d-1}}{\beta}+\frac{a_{d-2}}{\beta^{2}}+\ldots+\frac{a_{0}}{\beta^{d}}$ .

Then $r_{d}=1$ and $\{r_{1}, \ldots , r_{d}\}$ generates $\mathbb{Z}[\beta]$ as a Z-module and gives a basis
if the relation is irreducible. Therefore, each $\gamma\in Z[\beta]$ has a representation
$\gamma=\sum_{i=1}^{d}z_{i}r_{i}$ with $z_{i}\in \mathbb{Z}$ . Let $\gamma\in \mathbb{Z}[\beta]\cap[0,1$ ), i.e.,

$0\leq z_{1}r_{1}+z_{2}r_{2}+\ldots+z_{d}r_{d}<1$ .

Then the $\beta$-transform of $\gamma$ can be written as

$T(\gamma)=\sum_{i=1}^{d}z_{i+1}r_{i}$

with $z_{d+1}$ satisfying

$0\leq z_{2}r_{1}+z_{3}r_{2}+\ldots+z_{d+1}r_{d}<1$ .
Note that $z_{d+1}$ is uniquely determined by this inequality, i.e.

$ z_{d+1}=-\lfloor z_{2}r_{1}+z_{3}r_{2}+\ldots+z_{d}r_{d-1}\rfloor$ .

Hollander called this sequence $z_{1},$ $ z_{2}\ldots$ a Carry Sequence. We clearly have

Theorem 5.1 $\beta$ has property $(F)$ if and only if $(r_{1}, r_{2}, \ldots , r_{d-1})$ gives a $(d-1)$ -dimensional
$SRS$.
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Table 2: Hollander’s Carry Sequence

Let us come back to the example $\beta^{3}=3\beta^{2}+0\beta+1$ with $\beta\approx 3.104$ . In Table
2, we expand $5\beta^{-2}+5\beta^{-3}\approx 0.2010$ . The reader will see that Hollander’s idea is
similar to Gilbert’s clearing algorithm. In this case, we keep track of a sequence
$-2,$ $-1,1,1$ in the upper diagonal in Table 2. For example, by considering the
second line to 4-th, the sequence-2, $-1,1$ appears because

$(-2)r_{1}-r_{2}+r_{3}=-2(\frac{1}{\beta})-(\frac{0}{\beta}+\frac{1}{\beta^{2}})+(\frac{3}{\beta}+\frac{0}{\beta^{2}}+\frac{1}{\beta^{3}})\in[0,1)$

gives the fractional part, the image by $T$ . From the third to 5-th, we have

$(-1)r_{1}+r_{2}+r_{3}=-(\frac{1}{\beta})+(\frac{0}{\beta}+\frac{1}{\beta^{2}})+(\frac{3}{\beta}+\frac{0}{\beta^{2}}+\frac{1}{\beta^{3}})\in[0,1)$ .

The key idea of Gilbert and Hollander is simply summarized:

Observe quotients instead of reminders.

Since the algorithms of CNS and $\beta$-expansions seemingly have not much to
do with each other, it is surprising that both systems could be unified to the SRS
setting.

6. Recent developments

For $r=$ $(r_{1}, \ldots , r_{d})\in R^{d}$ , let $\rho(r)$ be the maximum absolute value of all roots of
the polynomial $x^{d}+r_{d}x^{d-1}+\ldots+r_{1}$ . Let

$\mathcal{D}_{d}^{0}$ $=$ $\{r\in R^{d}|\forall a\in \mathbb{Z}^{d}\exists k>0:\tau_{r}^{k}(a)=0\}$

$\mathcal{D}_{d}$ $=$ { $r\in R^{d}|\forall a\in Z^{d}$ the sequence $\{\tau_{r}^{k}(a)\}_{k\geq 0}$ is ultimately periodic}
$\mathcal{E}_{d}$ $=$ $\{r\in R^{d}|\rho(r)<1\}$ .

Thus, $\mathcal{D}_{d}^{0}$ is the set of al vectors $r\in R^{d}$ , such that $(Z, \tau_{r})$ is a SRS. Note that $\mathcal{E}_{d}$

is a bounded subset of $R^{d}$ which can be explicitly described by certain polynomial
inequalities. Fhrthermore, $\mathcal{E}_{d}\subset \mathcal{D}_{d}\subset\overline{\mathcal{E}}_{d}$ holds (see [2]).
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Let $H$ be a compact subset of $\mathcal{E}_{d}$ . In [2], an algorithm to determine $\mathcal{D}_{d}^{0}\cap H$

was derived. The set $\mathcal{D}_{d}^{0}\cap H$ can be constructed efficiently from $H$ by cutting
out finitely many convex polyhedra. However this algorithm does not work if $H$

intersects $\partial(E_{d})$ . The closer $H$ is to $\partial(E_{d})$ , the harder becomes the computation.
We have $\mathcal{E}_{2}=\{(x, y)\in \mathbb{R}^{2} : x<1, |y|<x+1\}$ . Figure 1 shows an approxima-
tion of $\mathcal{D}_{2}^{0}$ . In $[2, 3]$ , several parts of the shaded (resp. white) areas are proved
to be in (resp. not in) $\mathcal{D}_{2}^{0}$ . For example,

$S:=\{(r_{1}, r_{2})\in R^{2}|-r_{1}\leq r_{2}<r_{1}+1, 0\leq r_{1}\leq\frac{2}{3}\}\subset D_{2}^{0}$ ,

which contains the point (1/2, 1) for Knuth’s number system. Furthermore the
point $(r_{1}, r_{2})\approx(0.322, 0.104)$ for $x^{3}-3x^{2}-1$ belongs to $S$ which means that the
root $\beta\approx 3.104$ has property (F).

The characterization of $\mathcal{D}_{2}^{0}$ is a hard problem. The main difficulties occur
near the line $L=\{(1, y):-1\leq y\leq 2\}$ .

A symmetric version of SRS can be defined by shifting by 1/2:

$-\frac{1}{2}\leq r_{1}z_{1}+r_{2}z_{2}+\cdots+r_{d}z_{d}+z_{d+1}<\frac{1}{2}$ .

This change gives rise to other number systems. They are symmetric canonical
number systems and symmetric $\beta$-expansions. Imagine a ternary expression using
digits $\{-1,0,1\}$ instead of $\{0,1,2\}$ . Symmetric $\beta$-expansions of real numbers are
generated by a transformation $\tau_{r}^{\prime}$ : $ x\rightarrow\beta x-\lfloor\beta x+\frac{1}{2}\rfloor$ on $[-\frac{1}{2}, \frac{1}{2}$ ). Let

$\mathcal{D}_{d}^{\prime 0}=\{r\in R^{d}|\forall a\in \mathbb{Z}^{d}\exists k>0$ : $\tau_{r}^{\prime k}(a)=0\}$ .

In [24], $\mathcal{D}_{2}^{\prime 0}$ was completely characterized in this case since the regions near $\partial(E_{2})$

were already cut out! A picture of $\mathcal{D}_{2}^{\prime 0}$ is given in Figure 2. The outcome of this
slight shift should be compared with Figure 1.
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Figure 1: The sets $D_{2}^{0}$ and $\mathcal{E}_{2}$ .

Figure 2: The sets $\mathcal{D}_{2}^{\prime 0}$ and $\mathcal{E}_{2}$ .
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