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ABSTRACT. A simple proof of the Kantorovich inequality is presented, and con-
sequently an extension of the inequality is proposed which seems neat.

1. In this note an operator means a bounded linear operator acting on a Hilbert
space. For a positive invertible operator A, the interval I = [m, M] is the convex
hull of the spectrum of A. Let f be a (real-valued) continuous function defined
on I and p a probability measure on I, then the expectation value is defined by

E[f] = / f(t)du(t). For the convenience, by the spectral theorem, an operator A

I

is identified with the function ¢, f(A) with f(¢), and the scalars are identified with
the scalar multiples of the identity operator.

In these circumstances, the celebrated Kantorovich inequality is written as follows:

M 2
(1) (Az,z) (A 'z, ) < (—Z—F—m), for a unit vector z € H.
m

There are a lot of proofs of the inequality [10], [14], [16] - [18], etc. Among them,

the proof in [14] presents the following equivalent inequality:

(M +m)?
2 E <
©) Bie(/q < T
Let us cite the proof of (2) in [14]. Put
M+m—t
=3

then 1/t <, so that E[1/t] < E[l], and
E[E[1/4] < E[E[] = E[f] - (E[]) = M—lm- (M + m)E[t] — Et)?) .

Since the last term is a quadratic polynomial in E[t] and approaches its maximum
at Eft] = (M + m)/2, the desired (2) is proved.

Observing the above proof, we see that the essential tools are linearity and mono-
tonicity of the expectation.

There are a large number of authors who have presented extensions of the Kan-
torovich inequality [2] - [6], [8] - [12], [14] - [18], etc..

In this note we shall modify the above proof in [14] to show an extension of
Kantorovich inequality.
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2. For a continuous function f on I = [m, M|, we define a linear function

© L(®) = af(t—m) + f(m), a; = {EDZT)

which corresponds to the line tying two points (m, f(m)) and (M, f(M)) on the
curve y = f(t) in a coordinate plane. For an extension of Kantorovich inequality
we take general positive functions f(¢) and h(t) = 1/g(t) (not g(t) for simplicity of
the later computation) in place of 1/t and ¢, respectively. Then we have a lemma,
partially extended fact of [11, Theorem 6.

Lemma 1. Let f and g be positive continuous functions on I, and assume that f <1
for a linear function l. Then for a positive operator A with its spectrum in I and for
a unit vector t € H,

(fA)z,z) _  Ut)

“ o((As,2)) = " 9ty
In particular, if f is convez then f < ly and

(f(A)z, z) o Ls(t)
(5) mSK(ﬁg) = I{lgf{m

Proof. Convexity of f implies f < lf. Hence it suffices to prove the general case,
that is, the inequality

E(f] 1)
© oD = 9@
From f <1 we see E[f] < E[l], so that
Elfl _ EWl _ UEH)
g(E[]) ~ g(ER])  g(ER])
Since m < E[t] < M, the desired inequality (6) is obtained. O

Now if we put g = f in the particular case of Lemma 1, then we have an inequality
which is equivalent to Mond-Pe€ari¢ convex inequality [12]:

Theorem 2. (cf. [12, Corollary 1], [11, Corollary 4].) Let f be a positive continuous
convez function, and assume A and z as in Lemma 1. Then

(f(A)z,2) O _
¢ PEED < k() —max B (K() = K1),
If f is continuously differentiable, ay # 0 and _
(8) f'(m) < ay < f'(M),
or f is strictly convez, then there is a point t(= t*) € (m, M), at which l;((tt)) attains

its mazimum, i.e.,
Le(t* a
©) k(=48 _ o

f&)  f@)




Proof. For (9), put h(t) = li(f—) Then

ON
10) WO = 2o ©) ~ Or @) = 7= (o - 0L
Note that a5 = (A]{/} : m(m) = f'(r) for some 7 € (m, M) by the mean-value the-
orem, so that from (8) or strict convexity of f, we have
K (m) = 91‘%(%—”7’—) >0 and K(M)= “—f%(-f]\;—()@ <.

Hence A/(t) = 0 for a point (denoted by t*) in (m, M), at which h(t) attains its
maximum. Since aysf(t) — I;(t)f'(t) = 0 for t = t* (from the first identity of (10)),

we have ()
(&) _ _ay
mteM h(t) =h) = 5y = Fley

As an application of the above theorem we have:
Corollary 3. (cf. [1, Theorem (F‘uruta)] )
(e4z, )

e(dz2) ~ e log k

Proof. Since f(t) = €' is strlctly convex, the condition (8) is satisfied and for the

L (k= M),

corresponding function h(t) = Le ( ) 4 in the proof of the theorem, we see that h'(¢) = 0
if

a—{at—m)+e"}=0 (a=ae).
a-+am—e™

The solution is then ¢ = t* = — € (m, M), so that by (9),
atam—e k - 1 1_5_ k —_ 1
K t = a = _—j-—a—_— = ==
(¢) et” ae elog ke elogk =

O

The constant K (e?) is called Specht ratio and its property has been studied in [1],
2], [4] - [6], [8], etc.

Specializing as g(t) = t? in Lemma 1, we have the following theorem which is due
to T. Furuta.
Theorem 4. (cf. [7, p.189].) Let 0 < m < M and p ¢ [0,1]. Then with the same
assumptions for f, A and x as before

(11) (Az,z)?(f(A)z,z) < K(f,#).

If
(12) —[—(T—n@lp <ay < i(—jérﬂp



holds, then

(13) K(f,t*) = f(M) — f(m) {(p—l)(f(M)_f(m)}p— |

p(M —m) | p(mf(M)— Mf(m))

Proof. It suffices to show (13) with the assumption (12). Let g(t) = t” and h(t) =
t7Pls(t) (t > 0). Then since

(t) = 77 Calye) 4 ogt) = 07 (=52 +ay )
plagm — f(m))

(p—1)ay
in (0,00), and that h'(m) > 0, h'(M) < 0 if (12) is satisfied. Hence the solution ¢*
is a point in (m, M), at which h(t) attains its maximum. We then obtain

(p~1ay }p—l

plagm — f(m))

_ f(M) — f(m) {(P— 1)(f(M) — f(m) }p_l
p(M —m) | p(mf(M) — M f(m)) ’

we see that the equation h'(t) = 0 has a unique solution ¢ = t* =

K1) = h(e) = & {

as desired.

The following result is an application of the above theorem.
Corollary 5. (cf. [7, p.191], [9, Theorem 3].) If p & [0, 1], then

(14) (APz,x) < K(t?)(Az, z)?,
where v

(b7 (MP — mP)P >1
(15) K(t*) = (_p‘;_p (M - TA)/_[(;{W_an'zp}%mp)p—l (p ),
: (p < 0).

@ =p)-> (M—m)(Mpm — Mm?)~»

Proof. Let f(t) = tP. Then since f is strictly convex, the inequality (12) in Theorem
4 holds. Hence from (13) we can obtain the desired K (t?).
a

The constant K(p) = K(t?) is called (generalized) Kantorovich constant. Its
interesting properties and relations with Specht ratio have been presented in [2] -

[6], [8]7 [9], etc..
By a similar argument as in Theorem 4 we can show the following:

Theorem 6. Let 0 < m < M, p & [0,1], and let g be a positive, continuously
differentiable function on I. Then with the same assumptions for A and x as before,
(APz, x)

o((Az,2)) = K(#:9)-

(16)



if

g'(m) g'(M)

17 mPEa— < app < MP=——=
i gm) <% <M gan)
holds, then the equation
(18) awg(t) — o (H)g'(£) = 0
has a solution (denoted by t*) in (m, M), at which l;p((tt)) attains its mazimum, so
that

ltp(t*) Qtp 1 MP — mP
19 K(tP,g) = = = : :
9) OO T @ Mo

An application of the above theorem is the following fact which is considered as
a special case of a general result in [11].
Corollary 7. (cf. [11, Corollary 9].) If1 <m < p < M, then
(20) (APz,z) < K(t, e")elA>™),
where K(t, e') = A]{; : Z" e =
Proof. Put g(t) = et. Then (17) in the above theorem is satisfied, and (18) has a

—mP P —mP
a+am —m? (a g = u) in (m, M). Hence from
a M —m

unique solution t* =

(19) we obtain

P P —_mpP +1)MP—(M+1)m?
K(tp, et) — a :ae_a-f-a'n;_-tm . M m e_(m )MP—SnP ym

et” M—-m

3. An extension of Kantorovich inequality due to Schopf [18] is:
n+1 n—1 (M + m)2
(21) (A" 'z, 2) (A" 'z, z) < i
Here A is a positive operator with (0 <) m < A < M and z € H is a unit vector.

A state ¢ is a positive linear functional on a C*-algebra A of operators acting on
H such that ||¢|| = #(1) = 1. Now we show a generalization related to a state of the
above inequality (21) by using an idea due to [17]:

Theorem 8. Let ¢ be a state on a C*-algebra A. Then for all positive operators A
n A with0 <m < A< M and for all real numbers r

(M +m)? 2

——p(A")".

(A"z,z)* for all integers n.

(22) AT P(A™) <

Proof. Since m < A < M, we see
A Y A-M)(A-m)<0

or
AT 4 MmA™ < (M +m)A",



so that
(A1) + Mmp(A™™') < (M +m)p(AT).

Then by the arithmetic-geometric mean inequality, we have
2 (Mmg(A™)$(A™1))Y? < $(A™) + Mmp(A™™Y),
from which we obtain the desired (22). a
The inequality (22) can be rewritten as follows:
HA)HA™Y) _ M+ m)?
d(A™)? - 4Mm ’
where the left-hand side inequality is the well-known inequality of Liapounoff. Hence
we can deduce by (23) the following:

(23) 1<

Corollary 9. The Kantorovich inequality is a reverse of Liapounoff’s inequality.

For two nonnegative operators A and B, the geometric mean AfB is defined [13]
by
AﬁB — A1/2(A—1/2BA—1/2)1/2A1/2.

(If A is not invertible, then A§B is defined as the limit of (A + €)iB for (> 0) | 0.)
It is well known that the arithmetic-geometric mean inequality holds;

AfB < %(A+ B).

A unital positive map ® between two C*-algebras is defined as a linear map such
that ®(1) = 1 and ®(A) > 0 for A > 0. Then a Kantorovich type inequality with
respect to a unital positive map, slight extension of {15, Theorem 1] is given similarly
as before, in the following: ‘

Theorem 10. Let ® be a unital positive map between two C*-algebras. Then for all
positive operators A with 0 <m < A < M and for all real numbers r

MA™) 5 0ar),

e < ST
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