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ON CONFORMALLY FLAT LP-SASAKIAN
MANIFOLDS WITH A COEFFICIENT «
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Abstract

Recently, the notion of Lorentzian almost paracontact manifolds with
a coefficient o has been introduced and studied by De et al [3]. In the
present paper we investigate conformally flat LP-Sasakian manifolds with

a coefficient .

0. Introduction

In 1989, Matsumoto [1] introduced the notion of LP-Sasakian manifolds. Then
Mihai and Rosca [2] introduced the same notion independently and they obtained
several results in this manifold. In a recent paper, De, Shaikh and Sengupta [3]
introduced the notion of LP-Sasakian manifolds with a coefficient o which gener-
alizes the notion of LP-Sasakian manifolds. Recently, T.Ikawa and his coauthors
[4],[5] studied Sasakian manifolds with Lorentzian metric and obtained several re-
sults in this manifold. The object of the present paper is to study an LP-Sasakian

manifold with a coefficient a.
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After preliminaries, in section 2 we study conformally flat LP-Sasakian man-
ifold with a coefficient a and obtain several interesting results. We mainly prove
that in a conformally flat LP-Sasakian manifold with a coefficient a the charac-
teristic vector field £ is a concircular vector field if and only if the manifold is
7-Einstein and a conformally flat LP-Sasakian manifold with a constant coeffi-

cient « is a manifold of constant curvature if the scalar curvature r is a constant.
1. Preliminaries

Let M™ be an n-dimensional differentiable manifold endowed with a (1,1)
tensor field ¢, a contravariant vector field £, a covariant vector field  and a
Lorentzian metric g of type (0,2) such that for each point p € M, the tensor g, :
T,M x T,M — R is a non-degenerate inner product of signature (—, +,+,...+),
where T, M denotes the tangent vector space of M at p and R is the real number

space, which satisfies
n(€) = -1, ¢*X =X +n(X)¢, (1.1)

9(X, &) =n(X), g(¢X,9Y)=g(X,Y)+n(X)n(Y) (1.2)

for all vector fields X and Y. Then such a structure (¢,&,7,g) is termed as
Lorentzian almost paracontact structure and the manifold M™ with the structure
(¢,&,m, g) is called Lorentzian almost paracontact manifold [1]. In the Lorentzian

almost paracontact manifold M™, the following relations hold good [1] :
¢€ =0, n(¢X) =0, (1.3)
QX,Y) =QY, X), where Q(X,Y) = g(X, ¢Y). (1.4)

In the Lorentzian almost paracontact manifold M", if the relations

(Vz(X,Y) = al[{g(X,Z)+n(X)n(2)}n(Y)

(1.5)
+{9(Y, Z) + n(Y)n(2)} n(X)], (o #0)
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AX,Y) = —(Van)(¥), (1.6)

hold where V denotes the operator of covariant differentiation with respect to
the Lorentzian metric g, then M™ is called an LP-Sasakian manifold with a
coefficient a [3]. An LP-Sasakian manifold with coefficient 1 is an LP-Sasakian
manifold [1].

If a vector field V satisfies the equation of the following form :
VxV =X +T(X)V,

where 3 is a non-zero scalar function and T is a covariant vector field, then V is

called a torse-forming vector field [6].

In a Lorentzian manifold M™, if we assume that £ is a unit torse-forming

vector field, then we have the equation :

(Vxn)(Y) = a[g(X,¥) + n(X)n(Y)], @)

where « is a non-zero scalar function. Hence the manifold admitting a unit torse-
forming vector field satisfying (1.7) is an LP-Sasakian manifold with a coefficient

a. Especially, if n satisfies
(Vxn)(Y) = e[g(X,Y) +n(X)n(Y)],€® = 1 (1.8)

then M" is called an LSP-Sasakian manifold [1]. In particular, if « satisfies (1.7)

and the equation of the following form :
o(X) =pn(X), a(X) = Vxa, (1.9)

where p is a scalaf function, then £ is called a concircular vector field.
Let us consider an LP-Sasakian manifold M™(¢,£,n, g) with a coeflicient a.
Then we have the following relations [3] : |
n(R(X,Y)Z) = -a(X)QY,Z)+a(Y)UX, 2)

(1.10)
+a? {g(Y, Z)n(X) — 9(X, Z)n(Y)},
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S(X,€) = —ypa(X) + (n — 1)a?n(X) + a(dX), (1.11)

where R, S denote respectively the curvature tensor and the Ricci tensor of the
manifold and 3 = Trace(®).

We now state the following results which will be needed in the later section.

Lemma 1.1. ([3]) In an LP-Sasakian manifold M™ with a non-constant coeffi-

cient a, one of the following cases occur:
i) ¥? = (n —1)?
ii) a(Y) = —pn(Y’), where p = a(§).

Lemma 1.2. ([3]) In a Lorentzian almost paracontact manifold M™(¢,€,n,g)
with its structure (¢,€,7, g) satisfying QX,Y) = 2(Vxn)(Y), where o is a non-
zero scalar function, the vector field € is torse-forming if and only if the relation

¥? = (n — 1)? holds good.

2. Conformally flat LP-Sasakian manifold with a
coefficient o

Let us consider a conformally flat LP-Sasakian manifold M™(n > 3) with a
coefficient a. First we suppose that « is not constant. Then since the conformal

curvature tensor C vanishes, the curvature tensor 'R satisfies

RX,Y,2,W) = = [o(¥, )S(X, W) - ¢(X, 2)S(Y, W)

+S(Y, Z)9(X, W) — S(X, Z)g(Y, W)]
—3) [9(Y, 2)9(X, W) — g(X, Z)g(Y, W)],

_ r (2.1)
(n—-1)(n ’
where r is the scalar curvature of the manifold. Putting W = £ in (2.1) and then

using (1.10) and (1.11), we get
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—a(X)QY, Z) + a(Y)QX, Z) + o® [g(Y, Z)n(X) ~ g(X, Z)n(Y)]

= 5 [o0%:2) {~9a(X) + (n —~ Da?n(X) + a(¢X)}
~9(X, Z) {~va(Y) + (n = 1)a’n(Y) + a(4Y)}
+S(Y, 2)n(X) - S(X, Z)n(Y)

¥, Z)n(X) — 9(X, Z)n(Y)] .

(2.2)

- T [

(n=Dn-2)"

Again if we put X = £ in (2.2) and using (1.3) and (1.11) we obtain by
straightforward calculations

SW,2) =[5 -~ yp| 9v; 2) + [T — na?| n(¥)n(2)
+{¥a(2) — a(2)}n(Y) + {ya(Y) - (¢Y)}n(Z)  (23)

where p = a(§).

We now suppose that M™ is n-Einstein. If an LP-Sasakian manifold M" with

the coefficient « satisfies the relation
S(X,Y) = ag(X,Y) +bn(X)n(¥),

where a, b are the associated functions on the manifold, then the manifold M" is

called an 7-Finstein manifold. Then we have [3]

S(X,Y) = [ : —az—;zw—p]g(X,Y)

n—1 -1
(2.4) -
+ [;_—1 ~ na® - :—fﬁ] n(X)n(Y).
By virtue of (2.4) and (2.3) we get
(ﬁ,:—f);@y(Y, Z) - f—f—%n(Y)n(Z) - {¥a(2) ~a(¢2)}n(Y)  (25)

—{¥a(Y) - a(¢Y)}n(2) - p(n — 2)Q(Y, Z) = 0.
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Putting Z = £ in (2.5) we obtain
Ya(Y) — a(eY) = —ypn(Y), for all Y.

Using (2.6) in (2.5) we get by simplification

p{ L%, 2) + 20 m(@) - 2. D)} =0

(2.6)

(2.7)

If p = 0, then from (2.6) we have a(dY) = ya(Y). Thus since 9 is an
eigenvalue of the matrix (¢), ¥ is equal to 1. Hence, by virtue of Lemma 1.1,

we get a(Y) = 0 for all Y and hence a is constant, which contradicts to our

assumption.

Consequently, we have p # 0 and hence from (2.7) we get
Y

——[9(¥, 2) +n(¥)n(2)] - (Y, Z) = 0.

Putting Y = @Y in (2.8) we have by virtue of (1.3)
P

-1

QY, 2) - {9(Y, Z2) + n(Y)n(2)} = 0.
Combining (2.8) and (2.9) we get

{v? - (n = 1)2} (oY, 2) + n(Y)n(2)] = 0,
which gives by virtue of n > 3

¥ =(n—1)

Hence Lemma 1.2 proves that £ is torse-forming. We have that

(Vxn)(Y) =8 {9(X,Y) +n(X)n(Y)}.
Then from (1.6) we get
AXY) = S{exy) +n(m)}

=g (-g-(x + n(X)E, Y)
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and Q(X,Y) = g(¢X,Y).

Since g is non-singular, we have

8(%) = Z(x +n(x)8)

and
B\?
0= (£) e +n009).
It follows from (1.1) that (g)2 =1 and hence, @ = . Thus we have
B(X) = £(X +n(X)¢).
By virtue of (2.6) we see
a(Y) = —pn(Y),

where p = a(£). Thus, we conclude that £ is a concircular vector field.

Conversely, we suppose that ¢ is a concircular vector field. Then we have the

equation of the following form :

(Vxn)(Y) = B{g(X,Y) +n(X)n(Y)},

where [ is a certain function and Vx3 = ¢n(X) for a certain scalar function gq.

Hence by virtue of (1.6) we have o = 3. Thus
AUX,Y) =e{9(X,Y) +n(X)n(Y)}, € =1,

¥ =e(n—1),Vxa=o(X) =pn(X), p=eq.
Using these relations in (2.3) and (2.6), it can be easily seen that M" is n-Einstein.

Thus we can state the following :

Theorem 2.1. In a conformally flat LP-Sasakian manifold M™(n > 3) with a
non-constant coefficient a, the characteristic vector field € is a concircular vector

field if and only if M™ is n-FEinstein.
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For n = 3, it is clear that the following theorem holds good:

Theorem 2.2. In a 3-dimensional LP-Sasakian manifold with a non-constant
coefficient a, the characteristic vector field £ is a concircular vector field if and

only if the manifold is n-FEinstein.

Next we consider the case when the coefficient a is constant. In this case the

following relations hold good :
1(R(X,Y)Z) = o {g(Y, Z)n(X) — 9(X, Z)n(Y)}, (2.11)
S(X,€) = (n - 1)a’n(X). (2.12)

We now consider a conformally flat LP-Sasakian manifold M"(n > 3) with a
constant coefficient @. Then we have the relation (2.1). Putting W = £ in (2.1)
and then using (2.11) and (2.12), we get

o? [g(Y, Z)n(X) — g(X, Z)n(Y)]
= L[ e {s(¥; Zn(X) - o(X, Z)n(¥)}
+8(Y, Z)n(X) - S(X, Z)n(¥) (213)

“GoDm=2) [9(Y, Z)n(X) — 9(X, Z)n(Y)].

Again putting X = £ in (2.13) we get by virtue of (2.12) that
5,2 = {5 -} 9(¥,2) + {-T5 - na’} n¥)n(2).  (219)
n—1 n—1
Hence we can state the following :

Theorem 2.3. A conformally flat LP-Sasakian manifold M™(n > 3) with a

constant coefficient o is an n-FEinstein manifold.

Corollary. The 3-dimensional LP-Sasakian manifold M3 with a constant coeffi-

cient a is always an n-Einstein manifold.
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Now substituting (2.14) into (2.1) we get

REY.ZW) = 5 [(55 - 202) {o(¥; 2)9(X, W) - (X, 2)g(Y, W)}

+ (755 — na®) 0¥, XM + 9 (X, Win(V)n(2)
~9(X, Z)n(¥ (W) - 9(¥, Wn(On(2)}- (2.15)

Again differentiating (2.14) covariantly along X and making use of (1.6), we get

(vx$)(,2) = T iy(v, 2) 4 nyin(2) |
+a (=I5 = na?) [(X, Y)n(Z) + (X, Z)n(¥)]

where dr(X) = Vxr.
This implies that

(VxS)¥,2) - (W8)(%,2) = TX gy, 2) 4 n(v)n(2)

G0 5(x, 2) + (2] + @ (L o)
(20X, Z)n(Y) - Y, Zn(X)) (216

On the other hand, in our case , since we have (VwC)(X,Y)Z =0, we get
divC = 0 , where 'div’ denotes the divergence. So for n > 3 , divC = 0 gives

1
2(n—-1)

Remark.. When n = 3, the equation (2.17) is the condition for the manifold

(Vx8)(Y, 2) - (VyS)(X, Z) = l9(Y, Z2)dr(X) — 9(X, Z)dr(Y)]. (2.17)

to be conformally flat.
It follows from (2.16) and (2.17) that

1
n-—1

(Y, 2)dr(X) — g(X, Z)dr(Y)] + [dr (X)n(Y)

1
=)
~dr(¥)n(X)n(2) + a (== - na?) [AAX, 2)n(Y) - Y, Dn(X)] =0.  (218)

If r is constant, then from (2.18) we obtain

r=n(n—1)a’.
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Hence from (2.15) it follows that
'R(X,Y, Z,W) = o*[g(Y, Z)g(X, W) — g(X, Z)9(Y, W)],

which shows that the manifold is of constant curvature.
Thus we can state the following :

Theorem 2.4. In a conformally flat L P-Sasakian manifold M™ (n > 3) with a

constant coefficient a, if the scalar curvature r is constant, then M™ is of constant

curvature.
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