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Weyl Normal Connections of Weyl Submanifolds

Fumio Narita

Abstract

We study the Weyl normal connections of Weyl submanifolds. We show
that if the Weyl normal connection is flat, then the induced 1-form of a Weyl
submanifold is closed and the normal connection is also flat. Next, we investi-
gate a compact Weyl submanifold of an Einstein-Weyl manifold with flat Weyl
normal connéction.

1. Introduction

Let M™ be a manifold with a conformal structure [g] and a torsion-free affine con-
nection D. A triplet (M™,[g], D) is called a Weyl manifold if Dg = w ® g for a
1-form w. A Weyl manifold (M",[g], D)(n 2 3) is said to be Einstein-Weyl if the
symmetrized Ricci tensor of D is proportional to a representative metric g in [g]. A
compact Weyl manifold has a unique, up to homothety, metric g in the conformal
class such that the 1-form w is co-closed. We call this metric the Gauduchon metric.
If furthermore the manifold is Einstein-Weyl, then the corresponding vector field w
is Killing [11]. Compact Einstein-Weyl manifolds (M",[g], D)(n 2 3) with closed
1-form w are classified by Gauduchon in [5]. In [9], Pedersen, Poon and Swann stud-
ied Weyl submanifolds of Weyl manifolds. In the previous paper [8], we investigated
Weyl space forms and their Weyl submanifolds.

In this paper, we shall study the Weyl normal connections of Weyl submani-
folds. Let (M™,[g], D) be a Weyl submanifold of a Weyl manifold (M™,[g], D) and
@ and w be the corresponding 1-forms of § and g respectively. In Section 3, we give
the relation between the curvatures of the Weyl normal connection and the normal
connection. We show that if the Weyl normal connection is flat, then the induced
1-form w is closed and the normal connection is also flat. For a hypersurface (M™, g)
isometrically immersed in a Riemannian manifold (#M"*!, ) the normal connection
is flat, but for a Weyl hypersurface (M™,[g], D) of a Weyl manifold (M"+1,[g], D)
the Weyl normal connection is not necessarily flat. In co-dimension one, we show
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that the Weyl normal connection is flat if and only if the induced 1-form w is closed.
Next, we show that for a Weyl submanifold of a Weyl manifold with vanishing Weyl
conformal curvature, the Weyl normal connection is flat if and only if the induced
1-form w is closed and all of the Weyl second fundamental forms are simultaneously
diagonalizable. Let sP be the scalar curvature of D with respect to g. For a compact
Weyl submanifold of an Einstein-Weyl manifold with flat Weyl normal connection,
we get the following result.

Theorem. Let (M™,[g)], D) be an Einstein- Weyl manifold with vanishing Weyl con-
formal curvature, and let (M™,[g], D) be a compact Weyl submanifold of (M™,[g}, D)
with flat Weyl normal connection (m > n 2 2). Suppose that the induced 1-form w
of g is not ezact. Then we have

) If s >0 on M™, then (M™,[g], D) is not Weyl totally umbilical.

(ii) If s = 0 on M™ and (M™,[g], D) is Weyl totally umbilical, then (M™,[g], D) is
Weyl totally geodesic and Weyl flat.
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2. Weyl manifolds

Let (M™,[g], D) be a Weyl manifold with Dg = w ® g. Let V be the Levi-Civita
connection of g. We define a vector field B = w! by g(X, B) = w(X). Then

(1) DxY = VxY — %w(X)Y - %w(y)x + %g(X,Y)B,
where V denotes the Levi-Civita connection of g.
The curvature tensor R of V is defined by R(X,Y)Z = [Vx,Vy]|Z - V|xy}Z.
Let RP be the curvature tensor of D. Then we have '
(2) RP(X,Y)Z = R(X,Y)Z ~ _{[(Vxw)Z + (X )(Z)Y
~ [(Vyw)Z + 3e(Y W(Z)X + (Vxw)¥)Z ~ (Vyw)X)Z
- oY, 2)(Vx B + 50(X)B) + g(X, Z)(Vy B + 30(Y)B))
- Fl(e(Y, 2)X - o(X,2)Y),

where X,Y and Z are any vector fields on M™ (cf. [6]).

We set RP(V,Z,X,Y) = g(RP(X,Y)Z,V). Let Ric and s, be the Ricci tensor
and the scalar curvature of V respectively, and 5(Vw) be the symmetric part of Vw.
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For two 2—tensors p and [, we set

(p@®NDV,2,X,Y)=p(V,X)(Z,Y) + p(Z,Y IV, X)
- p(V,Y)l(Z,X) - p(ZvX)l(VaY)

Then, from (2) we have the following decomposition into irreducible components

1 . 1 1
(3) RP = W+[n_2cho+—2—So(Vw)+Zw Row] B g
]. n—2 2 1 *
+[2n(n ——'l)sg— 8n Il _Qnd “g @9
1
~[5(do D ) + 9@ do],

where W is the Weyl conformal curvature and Ricg, So,®¢ are trace-free parts and
2dw(X,Y) = Xw(Y)-Yw(X)~w([X,Y]) (cf. [9], [8]). There is no Weyl component
W, when n = 3.

A Weyl manifold (M™,[g], D) is called Weyl flat if RP = 0.

Let RicP be the Ricci tensor of D. Using (2), we obtain

4)  RiP(X,Y) = Ric(X,Y) + %(n — 1) (Vxw)Y — %(v,,@x
+ 7(n — 2(X)(¥) + [1divB — 2(n - 2|l lg(X,¥).

The conformal scalar curvature sP = tryRicP is the scalar curvature of D with
respect to g, whose sign is conformal invariant, and satisfies

sP=s, - W)w —(n—1)d*w.

A Weyl manifold (M™,[g], D)(n 2 3) is said to have an Einstein-Weyl structure
if there exists a function A on M™ such that

(5) RicP(X,Y) + RicP(Y, X) = Ag(X,Y).
From (3), we have the following

Lemma 1. Let (M™,[g],D) be an PEinstein-Weyl manifold with vanishing Weyl
conformal curvature. Then we have

RD(V7 Z1X7Y) = h[g(Y7 Z)g(X7V) - g(X1 Z)g(Y’V)]
- [3(d @ 9) + 9 ® du](V. Z, X, Y),

where h = ;ﬁ:;sD. '



3. Weyl submanifolds

Let (M™,[3], D)be a Weyl manifold with D§ = ©®g and i : M™ — M™ an immersed
submanifold. A torsion-free connection D on M is given by DxY = n(DxY), where
7 is the orthogonal projection from *TM™ to TM™ and X,Y are vector fields on
M™. Since Dg = & ® g, we obtain Dg = w ® g, where g = i*§ and w = i*@. The
second fundamental form 3 of the Weyl structure is defined by

(6) DxY = DxY + B(X,Y).

Let B be the vector field dual to @. The vector field B dual to w satisfies the
decomposition B = B+ B*, where B is normal component with respect to M". Let
a be the second fundamental form of the isometric immersion i : (M™, g) — (M™,3),
ie.,

(7) ?XY=VXY+a(X,Y),-

where V and V are the Levi-Civita connections of § and g respectively. From (1),
(6) and (7), we obtain 8 = a 4+ 1g ® Bt. Let £ be a normal vector field on M™ and
X be a tangent vector field on M™. We have the Weingarten equations

(8) Dx¢=-AZX + DY¢,

9) Vxé=-A2X + VY¢,

where —Ag X and —AZ X are the tangential components and D%f and V%f are the
normal components of Dx¢& and Vx¢ respectively. DV is called the Weyl normal
connection and A? the Weyl second fundamental form. From Dg = & ® g and (8),
we get §(B(X,Y),£) = g(AfX,Y) and DVgl = w ® g1, where gt is the induced
metric of the normal bundle T(M™)+.

The mean curvature vector H* of M™ is defined to be H* = ltrja, n =dimM™.
Since f = a + %g ® B2, the corresponding mean curvature vectors are related by
HP = H* + 1BL.

A Weyl submanifold (M™,[g], D) is said to be Weyl totally geodesic if 3 = 0.
For a normal section £ on (M™,[g], D), if A? = AI for some function A, then £ is
called a Weyl umbilical section on (M7, [g], D). If the Weyl submanifold (M™,[g], D)
is Weyl umbilical with respect to every local normal section of (M™",[g], D), then
(M™,[g], D) is said to be Weyl totally umbilical. A Weyl submanifold (M™,[g], D)
is said to be Weyl minimal if H? = 0. These notions are conformally invariant(cf.

[9D)-
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_Let (M™,[g],D) be a Weyl submanifold of a Weyl manifold (M™,[g),D). Let
RP and RP be curvature tensors of D and D respectively. Let @ and w be the
corresponding 1-forms of g and g respectively. Then we have the equation of Gauss

(10) RP(V,Z,X,Y) = RP(V,Z,X,Y) + §(B(X, Z),B(Y, V))

From (1), (8) and (9), we have
| . 1. 1.
~AX + D€ = —AZX + VXE - 20(X)E - 70()X.
Thus we have
o 1_ 1_
(11) APX = AZX + 50(6)X, DYe=vle- 5@(X)E.
Using (11), we give a relation between the curvatures of D"V and V. We define the
curvature RPL of the Weyl normal connection DV by
RPY(X,Y)¢ = DY DY¢ — DY DX¢ — Dix ),

where X,Y are any tangent vector fields and £ is anybnormal vector field on M™.
Then we have

RPL(X,Y)E = VEVYE - VIVRE - VX i€
= S(XB(E+ Z(YXE + 501X, Y1)
= R (X,Y)¢ — dw(X,Y)E.
Therefore we have

Lemma 2. Let (M",[g], D) be a Weyl submanifold of a Weyl manifold (M™,[g}, D)
and RPL and RL be the curvatures of DV and V'V respectively. Then we have

RPL(X,Y)t = RH(X,Y)E — dw(X,Y)E.

Theorem 1. Let (M™,[g], D) be a Weyl submanifold of a Weyl manifold (M™,[g), D).
If the Weyl normal connection DV is flat, then the induced 1-form w is closed and
the normal connection V¥ is also flat. In particular, when (M™,[g], D) is a Weyl
hypersurface of a Weyl manifold (M™*1,[g), D), the Weyl normal connection DN is
flat if and only if the induced 1-form w is closed.
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Proof. Since V¥ is a metric connection in the normal bundle T(M™)1 with respect
to the induced metric g+ on T(M™)t, we have

(12) R*(n,&,X,Y)+ R (&,7,X,Y) =0,

where X,Y are tangent vector fields and £,7 normal vector fields on M™. Thus,
from Lemma 2, we obtain

(13) RPL(n,&,X,Y) + RPL(¢,n, X,Y) = —2dw(X, Y)g(£, 7).

Thus if the Weyl normal connection DV is flat, then the induced 1-form w is closed.
Using Lemma 2 again, we obtain that the normal connection V¥ is flat.

Next, we assume that (M",[g], D) is a Weyl hypersurface of a Weyl manifold
(M™*1,[g],D). From (12), we obtain (RL(X,Y)¢)L = 0. Lemma 2 implies that
RPL(X,Y)¢ = —dw(X,Y)¢. Therefore we get that the Weyl normal connection
DV is flat if and only if the induced 1-form w is closed. ]

We recall the equation of Ricci
(14) RP(n,&,X,Y) = RPL(n,£,X,Y) + g((A%, A0|X,Y),

where X,Y are tangent vector fields and £,7 normal vector fields on M*(cf. [3]). Let
(M™,[g], D) be a Weyl manifold with vanishing Weyl conformal curvature. From
(3), we obtain

RP(n,£,X,Y) = —dw(X,Y)g(€,m).
So we have
(15) RPY(n,€,X,Y) = —dw(X,Y)3(€,n) + 9((4f, 481X, Y).
Therefore, from Theorem 1 and (15), we have the following result.

Theorem 2. Let (M™",|[g], D) be a Weyl submanifold of a Weyl manifold (M™, (9], D)
with vanishing Weyl conformal curvature. Then the Weyl normal connection DN
is flat if and only if the induced 1-form w is closed and all of the Weyl second
fundamental forms A? are simultaneously diagonalizable.

Corollary 1. Let (M",[g], D) be a Weyl totally umbilical submanifold of a Weyl

manifold (M™,[g), D) with vanishing Weyl conformal curvature. Then the Weyl
normal connection DV is flat if and only if the induced 1-form w is closed.
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Remark 1. Let (M", g) be a submanifold isometrically immersed in a Riemannian
manifold (M™,§). For a Riemannian manifold (M™, g), we have

1

(16) R=W+—

_ 1 _ _ 1 o -
[Ric — —s39] @ 9+ m(m = 1) 99 @3-

We assume that the Weyl conformal curvature W is zero. From the equation of
Ricci and (16), we have

(17) RY(n,6,X,Y) = g([AF, A7)X,Y).

Thus the normal connection V¥ is flat if and only if all of the second fundamental
forms A? are simultaneously diagonalizable.

We study a compact Weyl submanifold of an Einstein-Weyl manifold with flat
Weyl normal connection.

Theorem 3. Let (M™,[g], D) be an Einstein-Weyl manifold with vanishing Weyl
conformal curvature, and let (M™,[g], D) be a compact Weyl submanifold of (M™, [g], D)
with flat Weyl normal connection (m > n 2 2). Suppose that the induced 1-form w

of g is not exact. Then we have

(i) If s > 0 on M™, then (M",[g], D) is not Weyl totally umbilical.

(i) If sD =0 on M™ and (M™,[g], D) is Weyl totally umbilical, then (M",|g], D) is
Weyl totally geodesic and Weyl flat.

Proof. We assume that (M™",[g], D) is a Weyl totally umbilical submanifold. Then
we have B(X,Y) = g(X,Y)HP. From Lemma 1 and (10), we have

(18) RicP(X,Y) = (n - 1)(h + |HP)g(X,Y) + %dw(X,Y),

— 1 o m=2|~12 __ 1 gx~
where h = D)%~ o2 - S-d*@.

Since the Weyl normal connection is flat, dw = 0. Thus, from the Weitzenbock
formula we have

(19) Ric¢(B, B) = div(VgB) + (divB)? — |VB|>.

Since (M™, [g], D) is a compact Weyl manifold, if n 2 3 we have the Gauduchon
metric g such that divB = 0. When n = 2, a compact Weyl manifold has a unique,
up to homothety, a metric g in the conformal class such that divB = 0 (cf. [2]).

We use a metric such that divB = 0. From (19), we get

(20) Ric(B,B) = div(VgB) — |[VB|%.
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From (4) and (18), we have

n

(21) Rie(X,Y) = {(n - )(h + |H*P) + "2 el}o(X,¥) — 25 2u(X )u(¥)

- %(n _1)(Vxw)Y + %(Vyw)X.

In the case where n 2 3, it follows from (18) that (M™,[g], D) is an Einstein-
Weyl manifold. For a compact Einstein-Weyl manifold (M™,[g], D), since dw = 0,
we get VB = 0 with respect to the Gauduchon metric g. Thus, from (21) we have

n_

. 2 o(X)(Y).

-2
(22) Rie(X,Y) = {(n = 1)(h + |HPP?) + = lo[*}o(X,Y) -
In the case where n = 2, since dw = 0 from (21) we obtain

(23) Rie(X,Y) = (h + |[HP[P)g(X,Y) %(v XY + %(Vyw)X
= (h + |H°*)9(X,Y).
Thus, from (20), (22) and (23), we obtain

(24) = [ VPV, = (= 1) [ (wl’(h+ 1BV,

where dV, denotes the volume element with respect to g.

Now, we suppose that sP > 0. Then h > 0. This is a contradiction because the
induced 1-form w is not exact.

Next, we assume that s = 0 on M™ and (M™,[g], D) is a Weyl totally umbilical
submanifold. Since s? = 0, from (24) we obtain H? =0, i.e., (M",[g], D) is Weyl
totally geodesic. Since h = 0 and dw = 0, from Lemma 1 and (10), (M™",[g], D) is
Weyl flat. [ ]

Remark 2. (I). It is known that for an Einstein-Weyl manifold (M™, [g], D) with
vanishing Weyl conformal curvature, if m 2 4, then @ is closed(cf. [4]). In three
dimensions, the Weyl conformal curvature is zero, but the 1-form & of an Einstein-
Weyl manifold (M3, [g], D) is not necessarily closed (cf. [8]).

In the above theorem, we don’t need the assumption that the Weyl normal con-
nection is flat when n = dimM = 3.
(II). Let (M™, g, D)(m = 3) be a compact Einstein-Weyl manifold with the Gaudu-
chon metric § which has vanishing Weyl conformal curvature. If the 1-form & is
non-zero, then we obtain sP > 0. In particular, sP is constant sign for compact
Einstein-Weyl three-manifolds (cf. [10], [8])-



Examples. )
(I). Let (#,V,7n,5) be a Sasakian structure of a Sasakian manifold M?"*! with
constant ¢-sectional curvature k = 1. Then Ric(X,Y) = B¢(X,Y) + yn(X)n(Y),

where g = 2Lk + 3221 and 4y = —24L(k — 1). We define a 1-form @ by @ = fn,
where f2 = —2n4—_1'y. We set

DxY =VxY — —;—D(X)Y — %w(y)x + %g(x,y)w“,

where V denotes the Levi-Civita connection of . Then (M?"+!, g, D) is an Einstein-
Weyl manifold with s = 2n(2n 4+ 1) > 0 (cf. [7])-

Let M? be an anti-invariant submanifold of a Sasakian manifold M3 with con-
stant ¢-sectional curvature k¥ 2 1. Since §(X,¢Y) = dn(X,Y), for tangent vec-
tor fields X,Y on M?, dn(X,Y) = 0 (cf. [12]). Thus the induced 1-form w of
a Weyl hypersurface (M2, g, D) of the above Einstein-Weyl manifold (M3,g,D) is
closed. From Theorem 1, the Weyl normal connection is flat. Since M? is an
anti-invariant submanifold of M3, the structure vector field V is tangent to M2.
Thus we have ¢X = —VxV = —a(X,V) = -B(X,V) + %g(X,V)BJ', where X is
any tangent vector field on M2. We suppose that a Weyl hypersurface (M2, g, D)
of (M3,5,D) is Weyl totally umbilical. Since 8(X,V) = ¢(X,V)HP, we have
0=¢V =-B(V,V)+ 1g(V,V)B*, ie., H® = 1 BL. This contradicts to the fact
that $X = —8(X,V)+ 1¢(X,V)B* # 0. Therefore a Weyl hypersurface (M?,g, D)
of (M3,§, D) is not Weyl totally umbilical.

(I1). §* x §71 is a Weyl minimal submanifold of an Einstein-Weyl manifold $™+!
but not Weyl totally umbilical. The Weyl normal connection of S! x $7~! is flat
and S x §77! is tangent to the vector field @!(cf. [9]).

(IIT). The Weyl curvature RP of S x S™ is Weyl flat. S x §™~! is a Weyl totally
geodesic submanifold of §* x $™ with flat Weyl normal connection and S! x $™~1
is tangent to the vector field @(cf. [9]).
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