A NOTE ON UNIQUENESS IN AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION

SHIN-ICHI NAKAMURA

ABSTRACT. Consider the mixed problem for a semilinear parabolic equation $u_t - \Delta u + a(u) = 0$. Isakov proved the uniqueness result of the function a by prescribing any initial and lateral Dirichlet data and measuring lateral Neumann data and final data under the condition a(0) = 0. In this note we shall study the case $a(0) \neq 0$.

1. Introduction. Let Ω be a bounded domain in \mathbb{R}^n $(n \geq 2)$ with a C^2 -boundary $\partial \Omega$ and set $Q_T \equiv \Omega \times (0,T)$ in \mathbb{R}^{n+1} . Let H be the subspace of function g on $\partial Q_T \setminus \{t = T\}$ which belongs to $C^{2,1}(\partial \Omega \times [0,T]) \cap C^1(\bar{\Omega} \times \{0\})$ and which have $C^{\lambda,\lambda/2}(\bar{Q}_T)$ extensions. We now consider the mixed problem:

$$(1.1) u_t - \Delta u + a(u) = 0 in Q_T,$$

$$(1.2) u = g \in H on \partial Q_T \setminus \{t = T\},$$

where $a(s) \in C^2(\mathbb{R})$ satisfies the conditions:

(1.3a)
$$a(s)$$
 and $a_{ss}(s)$ are bounded on \mathbb{R} ,

$$(1.3b) 0 < a_s < M,$$

where M is a positive constant.

Under the condition (1.3b), there is a unique solution $u \in H^{2,1}(Q_T) \cap C(\bar{Q}_T)$ to the problem (1.1)-(1.2)(Theorem 6.1 in [3, p. 452] and [2]). (The norms and the properties of the function spaces can be found in [2] or [3].) So we may define

$$h = u$$
 on $\Omega \times \{T\}$, $h = \partial_{\nu} u$ on $\partial \Omega \times (0, T)$,

here ν denotes the unit exterior normal to $\partial\Omega$. We are interested in uniqueness results of the function a from the map:

$$\Lambda(a): g \longmapsto h.$$

Let $\Lambda_j = \Lambda(a^j)$ (j = 1, 2). The following theorem can be derived from Theorem 1 in [2].

Theorem I. Assume that, for $a = a^{j}$ (j = 1, 2),

$$a^{j}(0) = 0.$$

If $\Lambda_1 = \Lambda_2$ on H, then $a^1 = a^2$.

In this note we shall study the assumption (1.4). Define u^j as a solution to the problem (1.1)-(1.2) with $a = a^j$ (j = 1, 2). The following lemma will be proved in section 2 by modyfying the methods for a semilinear elliptic equation in [4]:

Lemma. If $\Lambda_1 = \Lambda_2$ on H, then

$$a^1(0) = a^2(0).$$

Combining this lemma with the above theorem I, we can remove the assumption (1.4) to derive the following theorem:

Theorem. If $\Lambda_1 = \Lambda_2$ on H, then $a^1 = a^2$.

2. Proof of Lemma. Denote by $Q_{\tau} \equiv \Omega \times (0, \tau)$ for any τ $(0 < \tau \le T)$. It is easily seen that for any $\phi \in H^{2,1}(Q_{\tau})$ we have

$$\begin{split} 0 &= \int_{Q_{\tau}} (u_t - \Delta u + a(u)) \phi \, dx dt \\ &= \int_{\Omega} [u\phi]_0^{\tau} \, dx - \int_{\partial \Omega \times (0,\tau)} (\phi \partial_{\nu} u - u \partial_{\nu} \phi) \, dS dt - \int_{Q_{\tau}} u(\phi_t + \Delta \phi) \, dx dt \\ &+ \int_{Q_{\tau}} a(u) \phi \, dx dt. \end{split}$$

This implies

(2.1)

$$\begin{split} \int_{Q_{\tau}} a^{j}(u^{j})\phi \, dx dt &= -\int_{\Omega} [u^{j}\phi]_{0}^{\tau} \, dx + \int_{\partial \Omega \times (0,\tau)} \left(\phi \partial_{\nu} u^{j} - u^{j} \partial_{\nu} \phi\right) \, dS dt \\ &+ \int_{Q_{\tau}} u^{j}(\phi_{t} + \Delta \phi) \, dx dt, \end{split}$$

where u^j is a solution to the problem (1.1)-(1.2) with $a = a^j$ (j = 1, 2). By using (2.1), if $\Lambda_1 = \Lambda_2$ and $\phi(x, \tau) = 0$ then we obtain

$$\begin{split} \int_{Q_{\tau}} \left(a^{1}(u^{1}) - a^{2}(u^{1}) \right) \phi \, dx dt \\ &= \int_{Q_{\tau}} \left(a^{1}(u^{1}) - a^{2}(u^{2}) \right) \phi \, dx dt + \int_{Q_{\tau}} \left(a^{2}(u^{2}) - a^{2}(u^{1}) \right) \phi \, dx dt \\ &= - \int_{Q_{\tau}} \left[(u^{1} - u^{2}) \phi \right]_{0}^{\tau} \, dx + \int_{\partial \Omega \times (0, \tau)} \left(\partial_{\nu} (u^{1} - u^{2}) \phi - (u^{1} - u^{2}) \partial_{\nu} \phi \right) \, dS dt \\ &+ \int_{Q_{\tau}} (u^{1} - u^{2}) (\phi_{t} + \Delta \phi) \, dx dt + \int_{Q_{\tau}} \left(a^{2}(u^{2}) - a^{2}(u^{1}) \right) \phi \, dx dt \\ &= \int_{Q_{\tau}} \left\{ (u^{1} - u^{2}) (\phi_{t} + \Delta \phi) - (a^{2}(u^{1}) - a^{2}(u^{2})) \phi \right\} \, dx dt \\ &= \int_{Q_{\tau}} (u^{1} - u^{2}) (\phi_{t} + \Delta \phi - p(x, t) \phi) \, dx dt, \end{split}$$

here we have set

$$p(x,t) = \int_0^1 a_s^2 (u^2 + \theta(u^1 - u^2)) d\theta.$$

Let us consider the following mixed problem to derive (1.5) from (2.2).

(2.3)
$$\psi_t + \Delta \psi - p(x,t)\psi = 0 \quad \text{in } Q_\tau,$$

$$\psi(x,\tau) = 0 \qquad \text{on } \Omega,$$

(2.5)
$$\psi(x,t) = h(x,t) \quad \text{on } \partial\Omega \times (0,\tau),$$

where $h(x,t) \in C^2(\partial\Omega \times [0,\tau])$ satisfies the condition $h(x,\tau) = 0$. From the assumptions (1.3a) and (1.3b), we see that $p(x,t) \geq 0$ is Lipschitz with respect to x and t. Hence there exists a unique solution $\psi \in H^{2,1}(Q_\tau)$ to the problem (2.3)-(2.5) (Theorem 9.1 in [3], p.341).

Substituting $\phi = \psi$ into (2.2), we obtain

(2.6)
$$I_{\tau} \equiv \int_{Q_{\tau}} \left(a^{1}(u^{1}) - a^{2}(u^{1}) \right) \psi \, dx dt = 0.$$

If $a^1(0) \neq a^2(0)$, then then there exist ϵ_0 , $\epsilon_1 > 0$ such that $a^1(s) - a^2(s) > \epsilon_0$ or $a^2(s) - a^1(s) > \epsilon_0$ for $|s| \leq \epsilon_1$. We can choose h(x,t) so that $\psi > 0$ in Q_τ by the maximum principle. From (1.3a) and Lemma 1.1 in [1], we can easily seen that

(2.7)
$$\max_{Q_{\tau}} |u^1| \le \max_{Q_{\tau}} |v| + C\tau,$$

where C is a positive constant and v is a solution to the problem:

$$v_t - \Delta v = 0$$
 in Q_τ ,
 $v = g \in H$ on $\partial Q_\tau \setminus \{t = \tau\}$.

By (2.7) and the maximum principle, we will be able to take g and τ such that $|u^1| \leq \epsilon_1$ on Q_{τ} . Hence we have $I_{\tau} > 0$. This contradicts (2.6). Thus we may conclude that $a^1(0) = a^2(0)$. The proof is completed.

2. Proof of theorem. In the proof of Theorem I stated in Introduction, it was proved that $a_s^1(s) = a_s^2(s)$ if $\Lambda_1 = \Lambda_2$ on H ((1.13) in [2]). By integrating this equality from 0 to s and using $a^1(0) = a^2(0)$, we obtain $a^1 = a^2$.

REFERENCES

- 1. P. DuChateau and W. Rundell, Unicity in an inverse problem for an unknown reaction term in a reaction-diffusion equation, Journal of Differential Equations 59 (1985), 155-164.
- 2. V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rat. Mech. Anal. 124 (1993), 1-12.
- 3. O. A. Ladyzhenskaja, V. A. Solonikov, and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, A. M. S., 1968.
- S. Nakamura, An inverse problem for a semilinear elliptic equation, Comm. in P. D. E. 24 (1999), 743-748.

DEPARTMENT OF MATHEMATICS, TOUA UNIVERSITY. 2-1 ICHINOMIYA SHIMONOSEKI YAMAGUCHI, 751-0807, JAPAN

Received December 1, 2000