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1. Introduction

If a Riemannian manifold is locally symmetric, then its curvature tensor R
satisfies

(*) R(X, Y)+R=0

for all tangent vectors X and Y, where the endomorphism R(X, Y) operates on R
as a derivation of tensor algebra at a point-of M.

Conversely, does this algebraic condition l(*) on the curvature tensor field R
imply that M is locally symmetric (i. e. VR=0)? In fact, if M is a compact
Einstein space, then the statement above is affirmativeD).

K. Nomizu has conjectured that the answer is affirmative in the case where M
is irreducible and complete and dim. M =3. And recently he [2] gived an affir-
mative answer in the case where M is a complete hypersurfac in a Enclidean
space.

In this paper, we shall consider a complex hypersurface of C*+! such that its
curvature tensor R satisfies (*) and we shall see that the type number at any point
of this manifold is 0 or 2. This result will lead directly to the main theorem by
virtue of the result by B. Smith [3]. In §2, we shall state some properties of a
complex hypersurface of a Kihler manifold and then we shall confine our attention
to a complex hypersurface of complex n-+1-dimensional Euclidean space C*+1!
endowed with the usual flat Kihler structure.

§3 will be devoted to the proof of our main theorem.

1) see for example [1]
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2. Couiplex hypersurface

Let M be a Kihler manifold of complex dimension »+1. The Kihler structure
and Kihler metric of M is denoted by J and g respectively. And M will be a
complex manifold of complex dimension » which is a complex hypersurface of M,
i.e. there exists a complex analytic mapping ¢: M — M whose differential ¢, is 1-1
at each point of M.

It is well known that the complex structure J of M is a Kihler structure with
g=¢*g.

In order simplify the presentation, we identify for each point xEM, the tangent
space Tx(M) with ¢ (T«(M))CTyxy(M) by means of ¢,. A vector in Tuxy(M)
which is orthogonal, with respect to g, to the subspace ¢,(T:(M)) is said to be
normal to M at x.

If we denote the Riemannian covariant differentiation on M by V and by X,
Y and Z, vector fields on a coordinate neighborhood U(x) of M, or vector fields
tangent to M, we may write

VxY=VxY+h(X, Y)N+k(X, Y)JN
where Vx Y denotes the component of Vx Y tangent to M, and N a unit vector
field normal to M at each point of U(x) Then, we can see that V is the Rieman-

nian covariant differentiation with respect to g, and # and k are symmetric covariant
tensor fields of degree 2 on U(x) satisfying

Q.1 X, JY)=—k(X, Y)
KX, JY)=hX,Y)

for any pair of vectors X and Y tangent to M at a point of U(x).
Moreover, the identity g(N, N)=1 implies g( VxN, N)=0 for any vector
field X on U(x). We may therefore write

2.2 VxN=—AX)+s(X)JN

where A(X) is tangent to M. In this case, A and s are tensor fields on U(x) of
type (1.1) and (0.1) respectively. Furthermore they satisfy

A]=-JA
(2.3) kX, Y)=g(AX, Y)
k(X, Y)=g(JAX, Y)

for any pair of vectors X, Y tangent to M at a point of U(x).
The following lemma will be useful in this paper.
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LEMMA 2.1.20 Let V be a 2n-dimensional real vector space with a complex structure
and a positive definite inner product g which satisfiee g(JX, JY)=g(X, Y) for all X,
Y&V. If A is symmetric (i.e. g(AX,Y)=g(X, AY) for all X,YEV) and A]=—]A,

there exists an orthogonal basis {ey,...... yeny Jey e , Jen} of V with respect to which the
matrix of A is diagonal of the from

A1 A

(4 ' 0

An
— 21
0 .
\ —2n

In particular Trace A=Trace JA=0.
Now, the following proposition is well known.

PropoSITION 2.2, If R and R denote the Riemannian curvature tensors of M and
M respectively, then for any vector fields X, Y, Z and W on U(x), we have

R(X, Y)W=R(X, Y)W—{g(AY, W)AX—g(AX, W)AY)

—{g(JAY, W)JAX—g(JAX, W)JAY}
+g((VxAY —(VyADX—s(XDJAY +s(Y)JAX, W)N
+g((VxUA)Y —(Vy(JANX+s(XDAY —s(¥)AX, W)H]N,

Q.9 R(X, Y, Z, W)=g(R(X, Y)W, Z)
=R(X, Y, Z, W) |
— (8(AX, Z)gCAY, W)—g(AX, W)g(AY, 2)
—(g(JAX, 2)g(JAY, W)—g(JAX, W)g(JAY, Z))

If M is flat i.e. R=0, then from (2.4), we have

@.5) RCX, ¥, Z, W)=g(AX, Z)g(AY, W)—g(AX, W)g(AY, Z)
+2(JAX, Zg(JAY, W)—g(JAX, W)g(JAY, Z)

and hence

2.6) R(X, Y)W =g(AY, W)AY —g(AX, W)AY
+g(JAY, WHJAX—g(JAX, WOJAY

for any vectors X, Y, Z and W tangent to M at a point of U(x).
Moreover, by S we denote the Ricci tensor of M. Then S(¥, W) at a point

2) see for example (3)
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yEU(x) is the trace of the linear endomorphism of Ty(M) determined by X—R(X,
Y)W. Hence by using JA=—A]J, Trace A=Trace JA=0 and the general fact that,
for any 1-from w the trace of the linear mapping X — «(X)Y is equal to «(Y), we
have

@.D SY, W)=-2g(A%Y, W)

on U(x). :
For further computation, we derive the complexification Ty,<(M) of the tangent
space Ty(M) where y 1s any point of U(x), and we denote the basis by( 361 ) y oees
( P ) ( a5 ) ( po ) where (2}, ..., 2#%) are local complex coordinates of M.

Now, we shall express the components of the foregoing tensors with respect to
this basis. From now on, the indices i, j, %,... take the value 1, 2, 3,..., n
We put

Rijih=ghaRzjia, Rji=S ( agj ’ 66x" )'

hji=giah;;, hii=gibgiahy, and etc.
Then, we have
ki =hji, ki=h;i and etc.
And from (2.3), we get

A(_Gizi_)=h";_£7— and A( 0z ) =hil 0z

Moreover, the well known fact that ](—6%,—) =V =1 aazi , J (—aaET)——V ——1_——2—
and (2.1) imply that

vV —1kji=hji and —+/—71kii=hj.
Thus, from (2.6) and (2.7), we get

2.3) Rrjin=—2hxihiji
and
2.9 Rji =—2hjohia

respectively.
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3. Complex hypersurfaces of C"*! satisfying the condition (*)

In this section, we consider a complex hypersurface M of complex n-+1-dimen-
sional Euclidean space C”*1 endowed with the usual flat Kihler structure such that
its curvature tensor R satisfies the condition (*).

In this case, we have, of course,

(3.1) R(X, Y)+S=0

for all tangent vectors X and Y of M.
The condition (*) is equivalent to

—Ruurs Rijis— Rmiis Rijsh
— Rm15* Risih— Rmiz® Rsiin=0

where the components of R are the same things at the end of the last section.
Substituting (2.8) in the last equation, we have

3.2 P;,fkj;;,d;fh;.;—, his his hji—hms hii hig his
— s hij BRR hsi — ik hi® Bish b
=0,
Transvecting the last equation with gk, we have
3.3) Qi i W5 I i — B 1 i i
— bim® K% Bk hsi + Bk W% ha hji
=0.
On the other hand, (3.1) is equivalent to
— Rpu® Rjs — Ri® Rsi=0,

ie.
€XY T;,z;-f s b k38 hsa — him his Bs® hia =0.
By long but straighforward computation of
;;f gm/ gle gkd gic gib gha Proik i Pradiha
Q= gmr gie gib ghe Qi Qsita

def _. . - -
T=gmfgle gic git T3 Tfech »

we get

P=4(a?p+ad—27)
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Q=a+28a2—36a+2p2—27

T=2(a6—fp2)
where we have put
a=hii hj;
B=h*i hj; hik hns
S=hmh hni hi! his hs® hem
T=hmh hhy h*s hsi b hij bt hem.
Hence, by virtue of (3.2), (3.3) and (3.4), we have three equations

a?+ad—2r=0

ot +2B8a%—36a+282—27 =0

ad— 2=0.
From these equations, we get |
a?=p
ie.
(3.5 hii hji h*% hpn="Hh*5 hji bk hhk .

On the other hand, taking account of the property of the tensor h,
we see that

Trace A?=2hi hji
Trace A4=2h*i hji h'h hie.
Hence, from (3.5), we can deduce
(Trace A2)2=2 Trace A4

‘ Lemma 3.1. If M is a complex hypersurface of C** such that its curvature tensor
R satisfies

R(X, Y)*R=0,
then the equality
@G3.6) (Trace A%2)2=2(Trace AY)
is valid, where A is given by (2. 2).

Now, we shall express the equality (3.6) with respect to the basis of lemma
2.1,

At any fixed point %o if we take the basis of lemma 2 1, then A2 and A* are repre-
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sented by the matrices

0 ) (214 0)

and

L0 "2n2) 0
respectively and hence we have
Trace A2=2(22+...... + 22
Trace A*=2(4*+...... + 9 .
Therefore (3.6) is given by
{2032+ 4 2D} 2=2{2Q4+ ...+ 245}
ie.
M2A2+ 2222+ oo+ An2 A2 =0.

This means that the set {1, ...... , n} contains at most one non-zero element. Con-
sepuently, we have the following lemma.

Lemma 3.2. If M is complex hypersurface of C"*} such that its curvature temsor
R satisfies

R(X, Y)-R=0,

then at each point of M, the type number i.e. the rank of A is 0 or 2, that is, at any
point xEM, Ax is represented by the matrix

(0 0)

0

—i(x) )

with respect to the basis of lemma 2. 1, where A2(x) is zero or not.

If 2(x)=0 at any point of M, then the curvature tensor R=0 on M by virtue
of (2.6). As a result, M is, of course, symmetric.

Next, using (2.7) and the property of the basis of lemma (2.1), the Ricci tensor
Sz and the metric tensor g at x&M are represented by the matrices
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(0 0 ( )

and

0
L 0 —222(x) 0 1)

respectively. Therefore, if n==2 (the complex dimension of M) and if there exists
a point x € M satisfying 2(x) 0, then M is not Einstein (A Riemannian manifold
M with the Riemannian metric g is called an Einstein space if the Ricci tensor S

satisfies S=pg where p is a certain scalar field.). As a result, by [3], M is not
symmetric.

If n=1, then

x=—222(x)gx

for any point ¥&M, that is, M is a Einstein space with non-positive scalar curve-
ture.

Thus, we have the following main theorem.

TreOREM 3.3, If M is a complex hypersurface of C*+! such that its curvature
tensor R satisfies R(X,Y)*R=0, then the rank of A is 0 or 2 at each point of M, and
then we can conclude that
(i) if the rank of A=0 over M, then M is locally flat,

(il) if there exists a point where the rank of A=2, then M is not symmetric (n=2)
(i) if n=1, then M is an Einstenin space with non-positive scalar curvature.
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