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Introduction

In this note, we shall consider the existence of geometries on 4-dimensional Seifert
fiber spaces. First we shall prove the followings.

THEOREM A. Let $M$ be a 4-dimensional Seifert fiber space with typical fiber a surface
F. Then $F$ is aspherical and the homomorphism $i_{*};$ $\pi_{1}(F)\rightarrow\pi_{1}(M)$ induced by the inclusion
is iniective.

THEOREM B. If $F$ is a toruse, then $M$ or its finite covering is an iniective Seifert fiber
space.

In section 1, we shall define an injective Seifert fiber space ([LR]). As in the 3-
dimensional case, R. P. Filipkiewicz has classified the geometries on 4-dimensional mani-
folds (see $[W_{1}],$ $[W_{2}]$ ).

The main results of this note are the followings.

THEOREM C. Let $M$ be an iniective Seifert fiber with typical fiber a torus. Suppose
that exact sequence

$1\rightarrow\pi_{1}(T^{2})\rightarrow\pi_{1}(M)\rightarrow Q\rightarrow 1$

is a central extension. Then $M$ adimits a geometry.

THEOREM D. Let $F$ be a surface except a torus. If $M$ admits a geometry, then $M$ is a
product manifold up a finite covering.

Throughout this note, we shall work in the smooth category and a manifold means
a closed connected manifold.
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1. Preliminaries

DEFINITION. A closed manifold $M$ is a Seifert fiber space if $M$ is a union of a collec-
tion $\{F_{a}\}$ of pairwise disjoint 2-dimensional manifold $F_{a}$ (called fibers) such that for each
$\alpha$ , there is a closed neighborhood $V$ of $F_{a}$ with a covering map $p$ : $D^{2}\times F\rightarrow V$ satisfying
(1) $p$ maps each $\{x\}\times F(x\in D^{2})$ to some $F_{\beta}$ ,

(2) $p^{-1}(F_{a})$ is connected, and
(3) the covering transformation group $G$ is a subgroup of $0(2)$ and $G$ acts on $F$ freely.
Here $F$ is called a typical fiber.

DEFINITION Let $X$ be a space, $G$ and $\pi$ subgroups of $H(X)(=the$ group of all homeo-
morphisms of $X$ ). Suppose the followings are satisfied,
(1) $G$ is a Lie group acting freely on $X$ as subgroup of $H(X)$ such that $(G, X)$ is equi-

variantly isomorphic to $(G, G\times W)$ , where $W=X/G$ and $G$ acts on $G\times W$ by the left
translation.
(2) $G$ is normalized by $\pi$ .
Put $\Gamma=G\cap\pi$ . Then $\Gamma$ is anormal subgroup in $\pi$ , and $ Q=\pi/\Gamma$ acts on $W$ naturally.
(3) $Q$ acts properly discontinuously on $W$.

It follows from (3) that $\pi$ acts on $X$ properly discontinously. Put $ B=W/\Gamma$ and $E$

$=X/\pi$ . $E$ is called an injective Seifert fiber space with typical fiber $G/\Gamma,$ $B$ is called the
base space and the natural map $E\rightarrow B$ is called the injective Seifert fibering.

Next we shall describe a construction of an injective Seifert fiber space.
(1) Give a pair $(W, Q)$ , where a discrete group $Q$ acts on $W$ properly discontinuously,

$W/Q$ is compact and $W$ is contractible.
(2) $X=G\times W$, where Lie group $G$ acts on $G\times W$ by the left translation. We denote this

action by $tc$ and also $tc(G)$ by $lc$ .
(3) $D=Maps(W, G)=$ { $f$ : $W\rightarrow G$ continuous}. Define a multiplication on $D$ by

$(f*f^{\prime})(w)=J^{\prime}(w)\cdot f(w)$.
(4) Define an action of Aut $(G)\times H(W)$ onDby $(g, h)f=g\cdot f\cdot h^{-1}$ .
(5) Construct a semidirect product $D\circ(Aut(G)\times H(W))$ . This group acts on $G\times W$ by

$(f, g, h)(x, w)=(g(x)fh(w), h(w))$ .
(6) $LetH^{F}(G\times W)bethenormalizeroflcinH(G\times W)$ .
Then the followings are proved.

THEOREM 1 ([LR]). $H^{F}(G\times W)=D\circ(Aut(G)\times H(W))$ .

THEOREM2 ([LR]). Assume G $=R^{n}$ . $ThenJoranyaxactsequece1\rightarrow\Gamma\rightarrow\pi\rightarrow Q\rightarrow 1$ ,

there exists a homomorphism $\phi$ : $\pi\rightarrow H^{F}(G\times W)$ such that the following diagram is commu-
tative;
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1 $\rightarrow$ $\Gamma$
$\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$

$\downarrow$ $\downarrow\Psi$
$\downarrow$

1 $\rightarrow$ $D\circ Inn(G)$ $\rightarrow$ $ H^{F}(G\times W)\rightarrow$ Out$(G)\times H(W)$ $\rightarrow$ 1

Then it is clear that $G/\Gamma\rightarrow(G\times W)/\pi\rightarrow W/Q$ is an injective Seifert fiber space.
We shall restrict ourselves to the case where $G=R^{n}$ and hence $\Gamma=Z^{n}$ . Let $U$ be a Lie
subgroup of $H^{p}(R^{n}\times W)$ such that $K=U\cap D$ contains $l_{R^{n}}$ . Let $S=U/K$ be the quotient.
Then the following diagram is commutative;

1 $\rightarrow$ $K$ $\rightarrow$ $U$ $\rightarrow$ $S$ $\rightarrow$ 1
$\cap$ $\cap$ $\cap$

1 $\rightarrow$ $D$ $\rightarrow H^{F}(R^{n}\times W)\rightarrow GL(n, R)\times H(W)\rightarrow$ 1.

Let $\rho$ : $Q\rightarrow S$ be a homomorphism defining a properly discotinuous action of $Q$ on $W$.
We have the following

THEOREM 3 ([LR]). The following statements are equivalent.
(1) There exists a homomorphism $\Psi$ : $\pi\rightarrow U$ such that the diagram

1 $\rightarrow$ $\underline{7}^{n}$
$\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1

$\downarrow\epsilon$ $\downarrow\Psi$ $\downarrow\rho$

1 $-$ $K$ $\rightarrow$ $U$ $\rightarrow$ $S$ $\rightarrow$ 1

is commutative, $ whe\gamma e\epsilon$ : $Z^{n}\rightarrow R^{n}\subset K$ is an inclusion.
(2) $\epsilon*[\pi]=\rho*[U]$ in $H^{2}(Q;K)$ .
NOTE (1). If $U=Iso_{o}(R^{n}\times W)$ ( $=the$ identity component of the isometry group of $R^{n}\times W$ ),
then $ R^{n}\times W/\pi$ admits a geometry modelled on $(R^{n}\times W, U)$ in the sense of Wall $([W_{1}])$ .
(2). $Wenotethattheextension1\rightarrow Z^{n}\rightarrow\pi\rightarrow Q\rightarrow liscentral$ .

DEFINITION. A Riemannian manifold $M$ is said to have a geometry modelled on (X,
$Gx)$ if $M$ is diffeomorphic to $\Gamma\backslash Gx/Kx$ .

We needs the following results on fundamental group of the Seifert fiber space.

THEOREM 4 ([V]). Let $M$ be a Seifert manifold with typical fiber a surface F. Then
$\pi_{1}(M)$ has one of the following two presentations

$(A)$ The spaceB of fibers is orientable oJ genus g;
Generators;
$(s_{1}, t1, \ldots, s_{g}, t_{g}, q_{1}, \ldots, q_{m}, e_{1}, \ldots, e_{m,C_{1}},1, \ldots, Cnm_{n+1})=E$

and generators of $\pi_{1}(F)$ .
Relations:
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$cgc^{-1}=A(c)(g),$ $g$ a generators $oJ\pi_{1}(F)$ , $c\in E$

$c_{i,J^{2}}=g_{j,j}$

$c_{i,1}e_{i}c_{t,mt+1}e_{i^{-1}}=f_{i,m;+1}$

$q_{i^{h_{i}}}=f_{i}$

$(c_{t,J}c_{i,j+1})^{h_{i’ j}}=f_{i,j},$ $i=1,$
$\ldots,$ $n,$ $i=1,$

$\ldots,$ $m_{i}$ .
$(*)=[s_{1}, t_{1}]\ldots[s_{g}, t_{g}]q_{1}\ldots q_{m}e_{1}\ldots e_{n}=f_{0}$ where the $f_{i},$ $f_{t,j},$ $g_{i,J}$ are all in $\pi_{1}(F)$ and
relations for $\pi_{1}(F)$ .

$(B)$ Bisnon orientable of genus g

Generators:
$(v_{1}, \ldots, v_{g}, q_{1}, \ldots, q_{m}, e_{1}, \ldots, e_{n}, c_{1,1}, \ldots, c_{n,m_{\hslash}+\iota})=E$

and generators of $\pi_{1}(F)$ .
Relations : $Asin(A)$ , one just has to replace $(*)$ by $v_{1}^{2}\ldots v_{g}^{2}q_{1}\ldots q_{m}e_{1}\ldots e_{n}$ .

2. Proofs of theorems

In this section, we shall prove the following theorems.

THEOREM A. Let $M$ be a 4-dimensional aspherical Seifert fiber space with typical fiber
a surface F. Then we have
(1) $F$ is aspherical
(2) $j_{*};$ $\pi_{1}(F)\rightarrow\pi_{1}(M)injective,$ $whe\gamma ej:F\rightarrow Misaninclusion$ .

PROOF. From results in [V], we have a presentation of $\pi_{1}(M)$ .
Put $\Gamma$ be the image of $j_{*}$ . Let $\overline{M}$ be the covering space of $M$ associated to $\Gamma$ . It is clear
that $\overline{M}$ is also a Seifrt fiber space with the components of the inverse images of the fibers
of $M$ as fibers. Let $\overline{B}$ be the space of fibers and $\overline{f}$ : $\overline{M}\rightarrow\overline{B}$ the natural projection. We
shall show that $\overline{f}is$ a fibration. In fact, let $F$; be a fiber in $M$ and $F_{i}^{\prime}$ a component of the
inverse image $F_{i}$ . Let $p$ denote the projection $p$ : $\overline{M}\rightarrow M$. It is clear that the map $i\circ q$

: $F\rightarrow M$, where $q$ : $E\rightarrow Fi$ is the natural map, lifts a map $q^{\prime}$ : $F\rightarrow\overline{M}$ and is factored by
$r:F\rightarrow F_{i}^{\prime}$ . Then we have the following commutative diagram;

$r\nearrow_{q^{\prime}}\nearrow F_{i}^{\prime}\subset\overline{M\downarrow}p\rightarrow\overline{f}$
$\overline{B\downarrow}$

$F$
$\rightarrow q$ $F;\subset M$

$\rightarrow f$

$B$

1

We note that
(1) any loop in the neighborhood $U$ of $F_{i}^{\prime}$ in $\overline{M}$ is homotopic to a loop $x,$ $q_{i}^{a}x$ or $c_{i,j}^{\beta}x$ ,

where $x$ is a loop in $F$.
(2) any loop inUisinthe kernel of $\pi_{1}(M)\rightarrow Q(=\pi_{1}(M)/\Gamma)$ .
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(3) any element of finite order in $Q$ is conjugate to $qt$ or ci, $j$ . It follows that $\alpha=\beta=0$ ,

which means $F_{i}^{\prime}=F$. Thus the fiber of $\overline{M}\rightarrow\overline{B}$ is all typical and hence $\overline{M}$ is a locally
trivial fiber space. So we have an injection $p_{*}\circ q_{*}^{\prime}$ : $\pi_{1}(F)\rightarrow\pi_{1}(M)$ .

Next we shall prove that $Q$ is an infinite group. Assume $Q$ is finite. Then $B$ is a
sphere $S^{2}$ or a real projective plane $P^{2}$ . We may assume that $B$ is $S^{2}$ . In fact, if not,

consider the fiber space $M^{\prime}\rightarrow S^{2}$ induced from $S^{2}\rightarrow P^{2}$ . Then $M^{\prime}$ is also a Seifert fiber
space and is aspherical. Let $\tilde{M}$ be the universal covering space of $M$. Then the natural
map $\tilde{M}\rightarrow S^{2}$ is a fiber space with $F$ as fibers. We have the following Wang exact se-
quence

. . . $\rightarrow H_{i}(\tilde{M})\rightarrow H_{i-2}(F)\rightarrow H_{i-1}(F)\rightarrow H;_{-1}(\overline{M})\rightarrow\ldots$

Since $\tilde{M}$ is contractible, we have a contradiction. Thus $Q$ is infinite and hence $B$ is
homeomorphic to R2. It is clear thatF is aspherical. QED.

REMARK 1. We have just obtained an exact sequence;

$1\rightarrow\pi_{1}(F)\rightarrow\pi_{1}(M)\rightarrow Q\rightarrow 1$ ,

where $Q=\pi_{1}(M)/\pi_{1}(F)$ is a planar discontinuous group in the sense of [ZVC]. It follows
from a result in [ZVC] (Theorem 4. 10. 1 in [ZVC]) that $Q$ contnins a torsionfree sub-
group $Q_{1}$ of finite index. Let $M_{1}$ be the finite covering of $M$ corresponding to the sub-
group of $\pi_{1}(M)$ which is the inverse image of $Q_{1}$ . It is clear that $M_{1}$ is a Seifert fiber
space which is locally product. Since the existence of a geometry is not changed by
taking a finte covering, we may assume that the structure of Seifert fiber space of $M$ is
locally product. Moreover we may assume the base space is orientable, if necessary, by
taking the oriented double covering. If $M$ is not orientable, then the oriented double of
$M$ is also a Seifert fiber space whose base space is orientable since it is a finte covering
of $B$. Thus we may assume $M$ is also orientable. Then typical fiber $F$ is also orientable
In fact, there is a relation of the $tangent\wedge$ bundles;

$\tau=\tau+p_{T*B}\wedge$ , $TF$ is a bundle along the fiber.
Then, considering the first Stiefel Whitney classes, we obtain $w_{1}(F)=0$ . Thus $F$ is

orientable.

THEOREM B. Let $MaudF$ be as in Thorem A. If $F$ is a torus, then $M$ is an iniective
Seifert fiber space up to a finite covering.

PRUUF. Let $B$ be the space of fibers ( $=$ base space). By the proof of Theorem $A$ , we
have the exact sequence

$1\rightarrow\pi_{1}(T^{2})\rightarrow\pi_{1}(M)\rightarrow Q\rightarrow 1$ .
$Q$ acts on $\overline{B}$ properly discontinuously and its quotient space is $B$. Then $Q$ contains a nor-
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mal subgroup $Q_{1}$ of finite index that is torsionfree $([Z])$ . Let $\pi$ be the inverse image of
$Q_{1}$ and $M_{1}$ the finite covering space of $M$ associated to $\pi$ . Then $M_{1}$ is an aspherical fiber
space with fiber $T^{2}$ , that is to say, $T^{2}\rightarrow M_{1}\rightarrow B_{1}$ . Since $Q_{1}$ is a finitely generated dis-
continuous group of the plane, we obtain an injective Seifert fiber space $M(\pi)$ by an in
jective Seifert fiber space construction.

Case 1. The base space $B_{1}$ is not a torus.
In this case, we can apply the classification Theorem in [V, (7. $i)$]. Since $2=rank\pi_{1}(T^{2})$

$<J(M_{1})$ , every isomorphism $\pi_{1}(M_{1})\rightarrow\pi_{1}(M(\pi))$ is induced by an Seifert fiber space iso-
morphism $M_{1}\rightarrow M(\pi)$ .

Case2. $ThebasespaceB_{1}$ isatorus.
In this case, we can apply the theorem in [SF]; the total spaces of two $T^{2}$-bundles over
$T^{2}$ are diffeomorphic if and only if their fundamental groups are isomorphic. Thus we
obtain a diffeomorphism $M_{1}\rightarrow M(\pi)$ . QED.

THEOREM C. Let $M$ be an iniective Seifert fiber space with typical fiber $T^{2}$. Then
$M$ admits a geometry.

PROOF. We have the following central exact sequece

$1\rightarrow\pi_{1}(T^{2})\rightarrow\pi\rightarrow Q\rightarrow 1$ ,

where $\pi=\pi_{1}(M)$ and $Q=\pi/\pi_{1}(T^{2})$.
Let $\chi(Q)$ denote Euler characteristic of $Q$ and the above exact sequence represents an

element $[\pi]$ of $H^{2}(Q;Z^{2})$ .
Case 1. $\chi(Q)<0$ .

Subcase 1. $[\pi]$ has finite order in $H^{2}(Q;Z^{2})$ .
Let $i$ : $Z^{2}\rightarrow R^{2}$ be the inclusion. From the assumption we have $i_{*}[\pi]=0$ , where $i_{*}$ :

$H^{2}(Q;Z^{2})\rightarrow H^{2}(Q;R^{2})$ . We shall consider the following commutative diagram;

1 $\rightarrow$ $Z^{2}$ $\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1 $[\pi]\in H^{2}(Q;Z^{2})$

$\downarrow$ $\downarrow$ $\downarrow=$

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $\overline{\pi}$ $\rightarrow$ $Q$ $\rightarrow$ 1 $i_{*}[\pi]=\rho_{*}[U]$

$\downarrow=$ $\downarrow$ $\downarrow\rho$

1 $\downarrow$ $R^{2}$ $\rightarrow R^{2}\times PSL_{2}R\rightarrow$ $ PSL_{2}R\rightarrow$ 1 $\rho^{*}[U]\in H^{2}(Q;R^{2})$ ,
$11$

$U$

where $\rho$ is an embedding as a cocompact discrete subgroup. This diagram exists from
the theorem 3 ([LR]), since $i_{*}[\pi]=\rho^{*}[U]=0$ . Then we have an injection $\pi\rightarrow U=Iso_{o}$

$(R^{2}\times H^{2})$ , thus $M$ admits a geometry modelled on $R^{2}\times H^{2}$ , where $H^{2}$ denotes the hyper-

bolic 2-space.
Subcase 2. $[\pi]$ has infinite order in $H^{2}(Q;Z^{2})$ . Since $i_{*}[\pi]$ is nonzero, we can de-
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Pne $\overline{Q}$ such that $1\rightarrow R^{2}\rightarrow\overline{Q}\rightarrow Q\rightarrow 1$ is an exact sequence and $[\overline{Q}]$ is nonzero. In fact,
we have the following exact sequences;

1 $\rightarrow$ $R$ $\rightarrow$ Iso. $(PSL_{2})\sim$

$\rightarrow k$

$Iso_{o}(H^{2})$ $\rightarrow$ 1,

1 $\rightarrow$ $R\times R$ $\rightarrow R\times Iso_{o}(PSL_{2}R)\sim\rightarrow$ $Iso_{o}(H^{2})$ $\rightarrow$ 1 ,

where $ PSR_{2}R\sim$ is a universal covering of $PSL_{2}R$ . Put $Q$ $‘=k^{-1}(Q)$ and $\overline{Q}=R\times Q$ ‘. Then
we have the commutative diagram;

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $\overline{Q}$
$\rightarrow$ $Q$ $\rightarrow$ 1

$\downarrow p_{\gamma}$ $\downarrow pr$ $11$

1 $\rightarrow$ $R$ $\rightarrow$ $Q^{\prime}$ $\rightarrow$ $Q$ $\rightarrow$ 1,

where $pr$ is a projection on the second factor.
$Itisclearthatthehomomorphismp\gamma_{*}$ : $H^{2}(Q;R^{2})\rightarrow H^{2}(Q;R)$ maps $[\overline{Q}]$ to $[Q^{\prime}]$ . Since
$[Q^{\prime}]$ is nonzero (see [KLR]), $[\overline{Q}]$ ls nonzero.

On the other hand, $i_{*}[\pi]$ is nonzero in $H^{2}(Q;R^{2})$ . Since $H^{2}(Q;R^{2})\simeq R^{2}$ ([KLR]),
there exists a linear homomorphism $\epsilon$ : $R^{2}\rightarrow R^{2}$ such that $\epsilon_{*}i_{*}[\pi]=[\overline{Q}]$ . Then we have
the commutative diagram;

1 $\rightarrow$ $Z^{2}$ $\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1
$\downarrow\epsilon\circ j$ $\downarrow$

$11$

1 $\rightarrow$ $R^{2}$ $\rightarrow$
$\overline{Q}$

$\rightarrow$ $Q$ $\rightarrow$ 1
$11$ $\downarrow$ $\downarrow\rho$

1 $\rightarrow$ $R^{2}$ $\rightarrow R\times Iso_{o}(PSL_{2}R)\rightarrow Iso_{o}\sim(H^{2})\rightarrow$ 1.

Thus we have an injection $\pi\rightarrow\overline{Q}\subset R\times Iso_{o}(PSL_{2}R)=Iso_{o}\sim(R\times PSL_{2}R)\sim$ by the theorem 3
([LR]). In other words, $M$ admits a geometry modelled on $R\times Ps^{\sim}L_{2}R$ .
Case 2. $\chi(Q)=0$ .

This case is very similar to the proof of the cace 1. When $[\pi]$ has finite order in
$H^{2}(Q;Z^{2})$ , we have the following commutative diagram;

1 $\rightarrow$ $Z^{2}$ $\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1
$\downarrow j$ $\downarrow$

$11$

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $\overline{\pi}$ $\rightarrow$ $Q$ $\rightarrow$ 1
$11$ $\downarrow$ $\downarrow\rho$

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $R^{2}\times Iso_{o}(R^{2})\rightarrow Iso_{o}(R^{2})$ $\rightarrow$ 1.

Since $i_{*}[\pi]=\rho^{*}[U]=0$ , this diagram exists and the homomorphism $\pi\rightarrow U\subset Iso_{o}(R^{2}\times R^{2})$

is injective. Thus $M$ admits a geometry modelled on $R^{4}$ .
Next we consider the case $[\pi]hasinfiniteorderinH^{2}(Q;Z^{2})$ . In the exact sequence
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$1\rightarrow R\rightarrow Iso_{o}(Nil)\rightarrow Iso_{o}(R^{2})\rightarrow 1$ , let $Q$ ‘ be the inverse image of $Q$. Then an exact se-
quence $1\rightarrow R\rightarrow Q^{\prime}\rightarrow Q\rightarrow 1$ represents a nonzero element $[Q^{\prime}]\in H^{2}(Q;R)(\simeq R)$ ([KLR]).

We have the commutative exact sequences;

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $R\times Iso_{o}$ (Nil) $\rightarrow$ $Iso_{o}^{t}(R^{2})$ $\rightarrow$ 1
$11$ $U$ $\cup$

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $R\times Q^{\prime}$ $\rightarrow$ $Q$ $\rightarrow$ 1
$\downarrow p_{\gamma}$ $\downarrow p_{\gamma}$ $||$

1 $\rightarrow$ $R$ $\rightarrow$
$Q^{\prime}$ $\rightarrow$ $Q$ $\rightarrow$ 1.

The homomorphism $p\gamma_{*}$ : $H^{2}(Q;R^{2})\rightarrow H^{2}(Q ; R)$ maps [Q] to $[Q^{\prime}]$ , where $\overline{Q}=R\times Q^{\prime}$ .
Since $[Q,]$ is nonzero, $[\overline{Q}]$ is so.

On the other hand, since $[\pi]$ has infinite order, $i_{*}[\pi]$ is nonzero. Therefore there

exists a linear homomorphism $\epsilon$ : $Q^{2}\rightarrow R^{2}$ such that $\epsilon_{*}\circ i_{*}[\pi]=[\overline{Q}]$ , because $H^{2}(Q;R^{2})$

$\simeq R^{2}$ ([KLR]). Thus the commutative diagram is obtained;

1 $\rightarrow$ $Z^{2}$ $\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1
$\downarrow\epsilon\circ i$ $\downarrow$ $11$

1 $\rightarrow$ $R^{2}$ $\rightarrow$
$\overline{Q}$

$\rightarrow$ $Q$ $\rightarrow$ 1
$11$ $\cap$ $\downarrow p$

1 $\rightarrow$ $R^{2}$ $\rightarrow R\times Iso_{o}(Nil)\rightarrow$ $Iso_{o}(R^{2})$ $\rightarrow$ 1.

Since the homomorphism $\pi\rightarrow R\times Iso_{o}(Nil)=Iso_{o}(R\times Nil)$ is injective, $M$ admits a geome-
try modelled on $R\times Nil$ .
Case 3. $\chi(Q)>0$ .

In this case, since $\rho$ : $Q\rightarrow Iso_{o}(S^{2})$ is an embedding, $Q$ is a finite group. Then we
have $i_{*}[\pi]=\rho^{*}[U]=0$ , so the following commutative diagram is obtained by the Theo-
rem 3 ([LR]);

1 $\rightarrow$ $Z^{2}$ $\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1

$\downarrow i$ $\downarrow$ $\downarrow\rho$

1 $\rightarrow$ $R^{2}$ $\rightarrow R^{2}\times Iso_{o}(S^{2})\rightarrow Iso_{o}(R^{2}\times R^{2})$ $\rightarrow$ 1
$11$

$U$

Thus we have an injection $\pi\rightarrow U\subset Iso_{o}(R^{2}\times S^{2})$ and $M$ admits a geometry modelled on
$R^{2}\times S^{2}$.

QED.

THEOREM D. Let $M$ be a 4-dimensional aspherical Seifert fiber space wieh typical fiber
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a surface $F$ except for a torus. If $M$ admits a geometry, then $M$ is a product manifold up
to a finite covering.

PROOF. It follows from Remark 1 that up to a finite covering $M$ is a fiber space over
$B$ and both $M$ and $B$ are orientable. Then $F$ is also orientable.
From the bundle relation $\tau_{M}=\tau_{F}+p*TB\wedge$ , the signature of $M$ is always zero.

Case 1. $B$ is not a torus.
We have the exact sequence; $1\rightarrow\pi_{1}(F)\rightarrow\pi\rightarrow Q\rightarrow 1$ , where $\pi=\pi_{1}(M)$ and $Q=\pi_{1}(B)$ .

We apply the following results of $[S]$ ; let $\Gamma$ be a discrete group and $\Gamma^{\prime}$ its subgroup,

if $X=K(\Gamma, 1),$ $Y=K(\Gamma^{\prime}, 1)$ and $Z=K(\Gamma/\Gamma^{\prime}, 1)$ are finite complexes, then (i) $\chi(\Gamma)$

$=\chi(\Gamma^{\prime})\chi(\Gamma/\Gamma^{\prime})$ (ii) $\chi(\Gamma)=\chi(X)$ and so the others. Thus we obtain $\chi(M_{1})=\chi(\pi)=\chi(\pi_{1}$

$(F))\chi(Q_{1})>0$ . By the results $([W_{1}])$ on the characteristic numbers of closed oriented
geometric 4-manifolds, $M$ admits a geometry on modelled on $H^{2}\times H^{2}$ . So $\pi$ is contained
in $Iso_{o}(H^{2}\times H^{2})=PSL_{2}R\times PSL_{2}R$ . There exists a subgroup $\pi^{\prime}$ in $\pi$ with a finite index

such $\pi^{\prime}=\pi_{1}\times\pi_{2}\subset PSL_{2}R\times PSL_{2}R$ ( $[R$ , Theorem 5. 22]), where $\pi j\subset PSL_{2}R$ for $i=1,2$ .
Let $M^{\prime}$ be a finite covering of $M$ associated to $\pi^{\prime}$ . Thus this $M^{\prime}$ is a product manifold
$H^{2}/\pi_{1}\times H^{2}/\pi_{2}$ .

Case 2. $B$ is a torus.

In this case we have a fiber bundle
$F\rightarrow M\rightarrow T^{2}p$ . Since $p*\tau_{T^{2}}$ is trivial, $TM$ has a

nonzero cross-section. Thus $\chi(M)$ is zero. Applying the results of Wall $([W_{1}])$ , possi-

ble geometries on $M$ are $R\times PSL_{2}R\sim,$ $R^{2}\times H^{2}$ or $R\times H^{3}$ , because $\pi_{1}(M)$ is not solvable.
First we consider the case of $ R\times PSL_{2}\sim$ R. $\pi$ is a cocompact discrete subgroup of

$ Iso_{o}(R\times PSL_{2}R)\sim$ , we have the exact sequence;

1 $\rightarrow$ $R^{2}$ $\rightarrow$ $ Iso_{o}(R\times PSL_{2}R)\sim$ $\rightarrow$ $Iso_{o}(H^{2})$ $\rightarrow$ 1

U $U$ $\cup$

1 $\rightarrow$ $ R^{2}\cap\pi$ $\rightarrow$ $\pi$ $\rightarrow$ $Q$ $\rightarrow$ 1.

We may assume $Q$ is torsionfree. If $R^{2}\cap\pi=\{1\}$ or $Z$, then cohomological dimension of
$\pi$ is smaller than 4, which is a contradiction. Thus we have $R^{2}\cap\pi=Z^{2}$ . We have the
following diagram;

1
$\downarrow$

$Z^{2}$

$\downarrow j$

$1\rightarrow\pi_{1}(F)\rightarrow\pi_{1}(M_{1})\rightarrow Z^{2}\rightarrow 1$

$i$

$\downarrow$

$Q$

$\downarrow$

1
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Since $\pi_{1}(F)$ does not contnin $Z$ as a normal subgroup by the assumption of $F,$ $i(\pi_{1}(F))$

$\cap j(Z^{2})=\{1\}$ . The direct product $i(\pi_{1}(F))\times j(Z^{2})$ is a subgroup of $\pi_{1}(M)$ with a finite
index. Let $M^{\prime}$ be a finite covering of $M$ associated to this subgroup. It follows that
$HJ(M)\simeq H_{1}(F)+Z^{2}$ . Thus the rank of $H_{1}(M^{\prime})$ is even. On the other hand, l-st Betti
number of a manifold that admits a geometry modelled on $ R\times PSL_{2}R\sim$ is odd $([W_{1}])$ . So
we have a contradiction.

Next we consider the case of $R\times H^{3}$ . Since $\pi$ is a cocompact discrete subgroup of
$Iso_{o}(R\times H^{3})$ , we have the exact sequence;

1 $\rightarrow$ $R$ $\rightarrow$ $Iso_{o}(R\times H^{3})$ $\rightarrow$ $Iso_{o}(H^{3})$ $\rightarrow$ 1
$\cup$ $\cup$ $\cup$

1 $\rightarrow$ $ R\cap\pi$ $\rightarrow$ $\pi$
$\rightarrow$ $Q$ $\rightarrow$ 1.

As before, we obtain $R\cap\pi=Z$. The following commutative diagram is obtained;

1
$\downarrow$

$ Z\downarrow\searrow$

$1\rightarrow\pi_{1}(F)\rightarrow\pi_{1}(M_{1})\rightarrow Z^{2}\rightarrow 1$

$s\backslash \downarrow Q$

$\downarrow$

1

where there exist injectons $r$ : $Z\rightarrow Z^{2}$ and $s$ : $\pi_{1}(F)\rightarrow Q$ because of $j(Z)\cap i(\pi_{1}(F))=\{1\}$ .
$s$

Thus there exists a subgroup $Q_{1}$ of $Q$ with a finite index such that $ 1\rightarrow\pi_{1}(F)\rightarrow Q_{1}\rightarrow Z\rightarrow$

$1$ is an exact sequence. By results of ([H. Chap. 11]), $H^{3}/Q_{1}$ is diffeomorphic to a fiber
bundle over $S^{1}$ with fiber a surface, because $Q_{1}=\pi_{1}(H^{3}/Q_{1})$ . In fact, it was proved that
there exist hyperbplic 3-manifolds which admits the structure of bundle over $S^{1}([J])$ .
Thus this case can happen and $M$ is a product manifold $S^{1}\times N$ up to a finite covering,
where $N$ is a hyperbolic 3-manifold.

In the case of $R^{2}\times H^{2}$ , it is clear that $M$ has a product structure $F\times B$ up to a finite
covering, where $F$ and $B$ are surfaces.

QED.
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