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1. Introduction

This paper is a continuation of our paper [4] and is concerned with semi-Markowv
games with some criterion. In the Markov games, time until the transition from a state
to a next state occurs is a unit time, but it does not seem general enough. For this reason,
in the paper, we shall consider the semi-Markov game which time until the transition
occurs is a known random variable.

However, so far as we know, such the games have not been tried up to the present.
Hence, at first, we shall give the formulation of semi-Markov game with the criterion of
long-run average reward as the game proceeds over the infinite future. Then, we shall
show that the game has a value and there exist the optimal stationary strategies for both
players under this criterion and some assumptions. Moreover, we shall give a sufficient
condition for some important assumption.

This paper consists of four sections. In Section 2, we shall give the formulation of
the problem treated by us in this paper. In Section 3, we shall show the existence of
optimal stationary strategies and, in Section 4, we shall give a sufficient condition.

2. The formulation of the problem

In this paper, we determine “semi-Markov game”’ by six objects (S, A, B, ¢, F, 7).
Here, S is a non-empty Borel subset of a Polish space, the set of states of a system; A is
a non-empty Borel subset of a Polish space, the set of actions available to player I; Bisa
non-empty Borel subset of a Polish space, the set of actions available to player II; g is the
law of motion of the system, it associates Borel measurably with each triple (s, @, b)&SX
A x B a probability measure g(+|s, @, b) on the Borel measurable space (S, ®(S)), where
®(S) is the o-field generated by the metric on S; F(«|s, @, b, s’) is a distribution of time
until the transition from s to s’ occurs, given that the next state is s’; 7, the reward func-
tion, is a bounded Borel measurable function on SxA X Bx R, where R is a real line. At
successive random times, player I and player II observe the current state s of the system

and choose actions @ and b, respectively, according to the full knowledge of the history of
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the system as it has evolved to the present. As a consequence of the actions chosen by
the players and the duration time of s, player II pays player I r(s, a, b, £) units of money,
and the system moves to a new state s’ according to the conditional distribution ¢(-|s, a,
b) after some duration of state s. Then the whole process is repeated from the state s’.
Here, our optimization problem is to maximize the limit of expected reward of player I
gained during the first # transitions divided by the expected length of the first » transi-
tions as the game proceeds over the infinite future and to minimize the limit of expected
loss of player II incurred during the first » transitions divided by the expected length of
the first » transitions.

A strategy n for player 1 is a sequence of =, m3,..., where r, specifies the »nth action
to be chosen by player I by associating Borel measurably with each history %,=(s;, a1, b1,
Hyeoey Sn—1y @n—1, bn—1, tn—1, Su) Of the system a probability distribution 7.(+|kx) on (A4,
®(A)), where si, ai, bi, and ¢ are the ith state, the ith action chosen by player I, the ith
action chosen by player II and the ith duration time, respectively. A strategy = is, par-
ticularly, said to be sfationary if there is a Borel measurable map f from S to P4, where
P4 is the set of all probability measures on (4, ®(A)), such that =,=f for all » and in
this case, = is denoted by f=. IT denotes the class of all strategies for player I. Strategies
and stationary strategies for player II are defined analogously. I denotes the class of all
strategies for player II.

In order to ensure that the transitions do not take place too quickly, we shall need to
assume the following:

AssumpTiOoN 1. There exists 4 >0, € >0 such that

{s 7315, 0, b, ') da(s'Is, @, B)<1 —e @ 1)
for all s, @ and .

DEerFINITION 1. A strategy =* is optimal for player 1 if for each ¢ &I" and s; &S,

E: o[ ‘:‘_‘, r(si, ai, bi, ti)]
1=1 (2- 2)

inf sup Tim -
oSl =€l n== Eﬁ',ﬂ'[ -21 t‘ lsl]
=

Exs o }p;‘, r(si, ai, bi, ti)]
_S__liE i=1 =
e~ E".’a[,‘gl ti|s1]

where Ex - denotes the expectation by the pair (=, o) of strategies for player I and player
11
A strategy ¢* is optimal for player II if for each = &1 and s, €S,
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Eﬁ_a[ﬁlr(suai, bi, ti)]
’=

sup inf lim - . 3)
€] oE N Ex'a[ Elti's]_]
n
Ex e[ 23 7(si, @i, bi, ti)]
> Tim* =
e Ex,o[ 3 fils1]
DeFINITION 2. Semi-Markov game has a value if for each s;&S,
Ex ol i‘ r(si, ai, bi, ti)]
inf sup Tim = )

oy ”n
oEr =€l " Efr,o[ 21 tiI31]
=

Ex ol i]l r(si, ai, bi, t:)]

=sup inf lim =
TEL IEr e Ez,,[z:lmsl]
=

In the case semi-Markov game has a value, the quantity

n
. Ex o[ 3 7(si, ai, bi, ti)]
inf sup Tim =l )
o€ mE] N Ez o[ 21 ti|s1]
=

as a function on S, is called the value function.

3. Existence of optimal strategies

In this section, we are concerned with the existence of optimal stationary strategies
for our semi-Markov game. We have to impose some assumptions on S, A, B, ¢, Fand
to ensure that there exist optimal strategies.

AssumptioN 2. (i) A, B and S are compact metric spaces, (ii) whenever s,—> so,
an—> ao and by,—> bo, q(*|Sn, an, bsn) converges weakly to g(+|so, @0, bo).
AssumpTiON 3. (i) S: tdF(t|s, a, b, s")=t(s, a, b, s") is a continuous function on Sx

AxBx S, (ii)
So r(s, a, b, )dF(t|s, a, b, s')=7r(s, a, b, s") is a continuous function on SxA X BxS.

From these assumptions we can show the following lemma.
LemMma 3.1. (s, @, b) and 7(s, a, b) are bounded continuous functions on Sx Ax B,

where
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7 (s, a, b)=Ss (s, a, b, s') dq(s’|s, a, b)
and
7(s, a, b)=Ss 7(s, @, b, s*) dg(s’ |s, @, b).
Proor. It holds that
|7 (Sns @ny bu)—7(S0, o, Do)l G D

=\ 1Csn, @n, bn, $)—7(s0, @v, bo, $1daCs’ |n, Gn, ba)
+lSS 7(So, @g, bo, ') Aq(S’ |Sn, @n, by)
_SS TCSO’ Qy, bO’ S')dq(S’ISo, Qo, bO)I-

Then, from Assumption 2 (i), (ii), Assumption 3 (i) and (3. 1), we can prove that (s, a,
b) is a bounded continuous function on SxA xB. Similarly, 7(s, a, b) is a bounded con-
tinuous function on Sx A x B.

AssumpTioN 4. There exist a continuous function #(s) on S and a constant d such
that for each s& S,

u(s)=sup inf (7Cs, o D+ u(sDdg(s |5, 1, D—dT (s, D), 3. D)
€Pp

pEP 4 2

where for each ¢ &Pa, A& Pp and EE®(S),
7 mD={,0,7¢ a0 DB dua,

rmD={,{,7( a0 DB dua),
and
WEls, m D=\ §, a(Els, a ) d1(5) dpu(a.

Since A and B are compact metric spaces, P4 and P, endowded with weak topology,
are compact metric spaces.

LemMA 3. 2. Let u(s, a, b) be a continuous, real-valued function on SXAXDB. Then
under Assumption 2 (i),

uCs, 1 D=1 §  uCs, &, ) A6 dpa,

SES, pEPa, A& PB is continuous function on Sx Pax Pp.
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LemMA 3.3. Let u be a bounded, continuous function on Xx Y, where X is a Borel
subset of a polish space and Y is a compact metric space. Then, u* (x)=ma§,( u(x, ¥) is con-
ye

tinuous. Moreover, u,(x)=min u(x, y) is also continuous.
yeY

LemMA 3.4. Let u be a bounded, continuous function on XX Y, where X is a Borel
subset of a Polish space and Y is a compact metric space. Then, there exist Borel measurable
maps f and g from X into Y such that u(x, f(x))= max u(x, ¥) and u(x, g(x))= mm u(x,

), seX.
The proofs of these lemmas are given in Lemma 2. 1, Lemma 2. 2 and Lemma 2. 3 of

[11. :
Let C(S) denote the family of all bounded, continuous functions on S. For #&C(S)
we define |« ||=sup |#(s)|. Then (C(S), d) is a complete metric space, where d(«, v)=

lu—n] for each %, v=C(S).
Now, for = C(S) and d in Assumption 4, we define

K (s, 1, D=7 (s, o D+ (s (s |5, p, D—d (s, 1, 2. 3.3

Then, by virtue of Lemma 3. 2, K(s, ¢, ) is a continuous function on Sx Pax Ps. K(s,
# 2), Pa and Pp satisfy the conditions of Sion’s minimax theorem (Theorem 3. 4 of [3]
because of it’s bilinearity in (g, 1) and, consequently,

sup inf K(s, ¢, )= inf sup K(s, g, 2), SES. 3. 4
#EPy JSPp A€EPp pEPy

Moreover, since K(s, g, 2) is continuous on Sx Pax Pp and P4, Pp are compact, sup and
inf can be replaced by max and min, respectively. Thus, (3.2) can be written as follows:

#( s)=max min K(s, g, )= m1n max K(s, #, 2), s&S. (3. 5)
HEP 4 A€Pp A€Ppg pePy

LemmMmA 3. 5. There exist Borel measurable maps py and A, from S into Pa and Pg,

respectively, such that

mln K(s, s, A)=max min K(s, p, 2) (3. 6
A€Pp #EPy 2€Pp

=min max K(s, g, 1)
2€Pp rePy

—-maxK(s, u, ), SES.

BEPy
The proof is immediate from Lemma 3. 3 and Lemma 3. 4.

TureoreM 3. 1. Under the Assumptions 1, 2, 3, 4, semi-Markov game has a value and
both players have optimal stationary strvategies.

Proor. By Assumption 4 and Lemma 3. 5, there exists a Borel measurable map g,
from S into Pa such that
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#(s)=max min {r(s, g, 1)+Ss u(s')dq(s’' |s, p, A)—d(s, p, D)

rEP 4 A€Ppg

=max min K(s, g, 1)
pEPA RGPE

=min K(s, ftx, ).
IEPB

For a stationary strategy p«"=(tx, £«,...) for player I and any strategy ¢ for player II,
we have

n+1
B0 [ 3 (o)~ oz, ol u(s) bty ]} | =0, B.D

But, for each ¢ it holds that

Euz o Lu(se)|he—1] =SS u(s')dq(s’|st—-1, prx(St-1D5 A1—1) CX:))

= {7 (st-1, (511D, 2:-1)+Ss u(s')dq(s’[se-1, pa(St-1), At-1)

—dt (St—1, o (St=1D5 At—1D} — {7 (St=1, px(5t-1), At—1)

—d;(st—lr F*(st—l); 21—1)} 2min~ {7(31_1, ”*(st—ID: 2)
1ePg

+SS u(s')dq(s’ |St—1, px(St=1)y AD—d 7 (St—1, pa(St=1), A}

- {?(81—1) #*(sf—l)’ 21—-1)_‘{; (3!—1, #*(st—l)’ 21—1)}

=u(st-1)— {;(St—l, tx(St—1), 21-1)"'d;(3!—-1, #*(St—1), At-1)},

where 2:—, denotes a probability measure on (B, ®(B)) determined by o:—1(e|At—1).
Hence, from (3. 7) and (3. 8),

Og Ep?:,a [:‘il {u(st)“‘(u(-”-—l)—-;cst—l' s 1t—l)+d;(st—1’ Pxs 2!-—1))}]
@G. 9

n—1 __ —
=F3 0 [u(3n+1)_u(31)+ Z}z( 7(St—1, Pxs At—1)—dr (St—1, tx, 1t—1)):l ’

or
n+l __
Eu3, o [ ;22 7 (St—1s Hx, 2:-1)] Exg, o [u(sn+1)—u(s1)]
d é n+l__ n+l _
Eigo[ 3 7 (stmty tras 2e-)] Eifo[ 23 7 (stms a0 44-0))
=2 t=2

(3. 10)
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B Eu3 o [tz:_‘,lr(s;‘, ai, bi, t.')] N Eg o[ u(spe1)—u(s1)]
Ey",:'a[ié tiIS]_:l Ep::,a[ié tilsl]

By Assumption 1, it is easy to see that
Ex3 a[iitilsl] =ned—>00 as m—>oo.
’ i_ —
Since % is bounded, from (3. 10) and (3. 11), we obtain

4= lim. Eu3 o [’g r(si, ai, bi, fi)]

~ for any o&rl”
= B, [f_;,l ti|sy ]

Thus, from (3. 12), it holds that for any s;&S

Ez'a[ élr(su', ai, bi, ti)]

d =sup inf lim —
TEH oSI no= En,a[.z_‘l ti '31 ]
t=1

(3. 11)

(3. 12)

(3. 13)

Similarly, from Assumption 4 and Lemma 3. 5, it holds that, for any #& Il and ;&S

n
E-, z;’;[ 2 r(si, ai, bi, t.')]
d = [im’ =
e Ex, z‘;:[ iz_}lti Isl]

Ex, a[ é r(si, ai, bi, ti)]

= inf sup lim =
cereen e g $tils ]
=1

On the other hand, generally we have

Ex,o[ glr(s;, ai, bi, ti)]

sup inf lim =
x€J]l cE == ' En‘,d[ Z 4 Isl ]
=1

Presm———

<inf sup lim =

”
Ex o X2 7(si, ai, bi, ti)
[’=1 ] for any s;ES.

@G. 14

(3. 15)

61
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By (3.13), (3.14) and (3. 15), our semi-Markov game has a value d and g, and 4, are
stationary optimal strategies for player I and player II, respectively. Thus the proof is
complete.

4. Sufficient condition

In this section, we shall give the sufficient condition to ensure Assumption 4.

First we define an operator Ta: C(S)—>C(S) as follows: for a >0

(Te w)(s)= max min [SASB e—7(s,a,8 (7(s, a, b)

+{g u(s') dq(s'|s, @, b)) dA(b) dp(@)) 4.1

LemMMA 4. 1. The operator Ta is a contraction mapping on C(S) for any a™>0.
Proor. 1t is easily proved that, for any %, v&C(S), |Tate— Tav|

i —at(s,a,b) | y— .
< max min[ { e-eiaplu—o] da(6)du()] (4. 2)
and, by Assumption 1, (s, a b)=de. (4. 3)

From (4. 2) and (4. 3), we have
| Tats— Tav|| < e—=% | u—v].

This completes the proof.

Since C(S) is a complete metric space, T« has a unique fixed point in C(S), by virtue
of the Banach fixed point theorem. Let w«* be the unique fixed point of T=. Then it
holds that, for each s&S,

#a*(s)=max min [S S e—2(s,a,) {7 (s, a, b)
#E€P4 2€Pp B

+S o 4a*(s")dqCs' |5, a, D} dACH) dp(a) ] 4. D

Now, fix some state 0 and let
fa(s)=ua*(s)—ua*(0). (4. 5)
From (4. 4) and (4. 5), we have

ua*(0)+f=()= max min[{ g e=av(s, 0,5 (7(s, a, b)

+{ f«(s')da(s'Is, a, b)) d2(B) du(a)
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+ua*(0)SASB e=a(s,a,0) dACH) dp(a)]. (4. 6)
But

§ § 5 000 da®d dp@y=1—dx(s, 1, D+ § , 0D 2D duca.

4.7
Henée, from (4. 6) and (4. 7),
fa <s>=,f2%§ erelgg [S AS B e~(s,a,0) (7 (s, @, b)
+{ fu(s ) da(s' 15, @, D) dA() dp(@)—eua*(0) 2 (s, 1, D)
+ua*(0) 237, 4. 8)

where
Zzs AS 5 0Ca) dA(b) dp(a).

THEOREM 4. 1. If {fa(s), 0<la<c) is a uniformly bounded, equi-continuous family of
Junctions on S for some 0<c<oco. Then, Assumption 4 holds.

Proor. By Ascoli-Arzela’s theorem there exist a sequence a»——0 and a continuous
u(s) such that fa,(s) converges uniformly to #(s) on S.

Now we show that {au.*(0), 0<a<c} is bounded. By virtue of Lemma 3. 2 and
Lemma 3. 3, for a fixed point ua*, there exist Borel measurable maps g, and 4, from S
into P4 and Pp such that for each s&S

ua*(s)=SASB e—a7(s,a,8) (7 (s, a, b)
+{g ua*(s2daCs' 15, a, b)) dAu(BI dpn(a). 4 9
From (4. 9), it is easy to see that for each s; &S
ua*(81)= Ep?ﬁ, zi[nile—kf.:l“;(skv“k’bk) ;(Sn; Cn, bn)] . (4- 10)

Then, since |7|<M and |7|=¢3d, from (4. 10) |au*| is bounded. Hence, we can require
that avua,*(0) converges to d as av——>0 and we can show that %.*(0)2X converges uni-
formly to zero in ¢ and 2 as e&» —>0. Thus, from (4. 9), we get

u(s)=max min (7(s, s, D+{ u(s)da(s'ls, 1, D—d=(s, 1 D).

This completes the proof.




64

[1]

[2]
(3]
[4]

K. Tanaka and K. Wakuta

References

A. Ma1TrA and T. PARTHASARATRY, On stochastic games, Journ. Opti. Theory and its Appl., 5
(1970) , 289-300.

M. Ross, Average cost semi-Markov decision processes, J. appl. Prob., 7 (1970), 649-656.

M. Si1ON, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.

K. TANAKA, S. Iwase and K. WAKUTA, On Markov games with the expected average reward crite-
rion, Sci. Rep. Niigata Univ., ser. A. No. 13, (1976), 31-41.



	1. Introduction
	2. The formulation of ...
	3. Existence of optimal ...
	THEOREM 3. ...

	4. Sufficient condition
	THEOREM 4. ...

	References

