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1. Introduction

Consider a Galton-Watson process in which immigration is allowed in a generation if
the number of the previous generation is smaller than or equal to i, where i, is a fixed
positive integer.

Denote the size of the n-th generation by X», and we set up this process as follows;

D A= f} a;ixs, (|x|<1), is the probability generating function of the offspring
=0
distribution;
2) Br(x)= f} brjxi, (x|=1, 0<k= i), is the probablity generating function of the
7=0

immigrants distribution, where bz; is the probability that ; immigrants enter in a genera-
tion when the number of the previous generation is equal to &;
3) transition probability pi; is given by

pii=P Xn =il Xn=i)=a§", izigtl,
@ J *
= biredl), 0=i=iy

k=0

where agi*> is the j-th term in the i-th fold convolution of the sequence {a;}.
The state-dependent immigration have been studied by Pakes (1971) [9], Foster (1971) [4]
and Nakagawa-Sato (1974) [8]. The setting up of Pakes or Foster is the case that Bo(x)
= B(x) and Br(x)=1(k=1,2, ---, i), and Nakagawa-Sato’s is the case that Br(x) = B(x)
for all &, in our process.

From now on it will be assumed that
1' 0<a0: 0o+al, bk0< 1’ (k = 0’ 1’ """ 3 i0>;
2. a=A'(1-)<o and r=Br¥(1—) =< oo, (k=0,1, - , Tg).
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2. Preliminary Considerations

It is clear that {X»} is a Morkov chain with nonnegative integers as state space. This
Morkov chain will be said to be subcritical, critical or supercritical according asa<1, =1
or >1, respectively. A sufficient condition for irreducibility (and aperiodicity) is that

dl>0.
Let p{°(n, i, j=0,1, 2.-) be the n-th step transition probability from state i to j,

PP=pij and p{¥’ = éij, the Kronecker delta, and finally let

PP ®=20P  (sl=D.
-
Clearly
P (2)=P{™ (A (%)) —ki}:gl —Be(x))(A())kpP,

€©))
P$0) (x) = xi’ (”) i= 07 1: 2) )
By iterating this equation, we obtain
i, rn—1
©)) P ()= [An(® 1~ [ A~BAn(D))(Amn(@))pf "D
where Ant1(%) = A(An(x)) and Ag(x) = x.

Letting x = 0 in equation (3) and taking generating function, we get

31 30y =3 (An(O))iyn =31 [3+33 452 3m 3 (1= BaCAn(O)) (Ans (O3,
0 n=0 k=0 m=0 n=0

n=

whence we may rewrite the above equation as
@ P() =GO =39+ Pad-Di(),  (I31<D,
where
Pu(y)=p % GO)= 33 (An(0)im,
and
D=5 (1—B(An(O) Ansa@Dryn,  (Iy|<D.

Denote by ¢ the extinction probability of the branching process defined by A(x), so that
q is the least positive solutionof x=A(x) andg=1lifa<land 0<g<lifa<l.

LeMMA 1. When a <1 then Dr(1-) Eio(l—Bk(AnCO))) (An41 (0))* converges if and

only if
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L 1—By(w)
©) fo iy - du < o

And when a1 then Dr(1—) diverges for any k (k=0,1, -+, ip).
For the proof see Nakagawa-Sato (1974) [8].

3. Classification of {X}

In this section we consider the classification of the Morkov chain, {X»}, when it is ir-
reducible (and aperiodic). In the case where Br(x) = B(x) for all &, the classification of
the Morkov chain {X.} is considered by Nakagawa-Sato (1974) [8].

The following theorem is an extension of Nakagawa-Sato’s result.

THEOREM 1. Let the Morkov chain {Xn} be irreducible (and appriodic).

(1) The necessary and sufficient conditions for the chain to be positive recurrent (i.e. for the
stationary distribution to exist) are that

1 1—Br(u) . s
a<1 and Somdu <o,  forall k(k=0,1, -, ip).

(ii) When a=1, a2=A"(1—-) < o and Br<oo for all k(k=0,1, ---, iy), then {Xn} is null-
recurrent.
(iii) When a™>1 then {Xn} is transient.

Proof.
(i) Since the chain is assumed to be irreducible and aperiodic, we need to consider one
state only, and a convenient one is the empty state. Letting x=:=0 in the equation (3),

we have
P& =1-3 [ 33 (1= Be (An@) (Amsr Oip" ]

It is clearly sufficient for positive recurrence to show that 5 approaches to a positive

limit as n—> o, and it is sufficient to show that
® lim £ =1~} [lim 3} (1—Br(Am(OD) (Amsr ()05 |
n—rco = —>00 gy
is positive.
Now, since (1—Br(Am(0)))(Am4+1(0))*>0, we have

(1—BeCAn(0)) (Ans (O _
1A= Be(As(0)) (A (O

lim

Nn—>

Hence, using a well-known fact (see, e.g. Chung (1967) [2], p. 22), we have
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1;22 ,:z_:o(l —Br(Am(0))) (Am41(0))epGy ™™

) =lim D,
2 1= Bi(An(0)) (Ans1(0))*

whenever the limit of pi;’ as n—oo exists.
Equation (6) and (7) imply that whenever f_‘,o (A—Br(Am(0)))(Am+1(0)) diverges as
—

n—oo for some k (k=0,1, 2, -+, ip), it is impposible that the limit of p{? exists and is
positive for any j (=0, 1, ---).

Furthermore, from the lemma in the section 2 and (3), if Dr(1—)= 3(1—Be(4x(0)))
(An41(0))* converges for all k(k=0, 1, -, iy), equivalently, if "

11— Be(a) e
aél and Somdu<oo for all & (k—O, 1, *0 10),

then the limit of P{™ (x) as n— oo exists, and so the limit of p,(]’-’) as n—oo exists (4, 7 =0, 1,

.

Now we suppose that Dk(1—) converges as #—oco and lim p{’ = 0. Then lim p{P
n—>eo n—rc0

=0 forany j (j=0,1,2, ---).
Thus, equation (6) and (7) imply that

lim p{p’ =1,

n—oo
which is contradicting the assumption that lim p§’ = 0.
Hence, whenver Dr(1—) converges as n—co for all & (k=0, 1, ---ip),
lim p$3 > 0.

This completes the proof of (i).
(ii) Note that when @ =1 and 62 < o then, as shown by Kesten, Ney and Spitzer (1966),

@® ,Y‘:o(l—A»(O))~7]2-2—log n,  asn—oo.
Thus, for any &
Y (1— 28
20(1 Be(An(0))) ~ 2 log », as n—oo,

and hence Dr(1-) diverges and
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©) Dr(9) ~ B nﬂio(l—An(O))yn, as y—>1—.
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From lemma 1 and (i) of this theorem, we have only to show that Py(1—) = o, because

this yields that the Markov chain {X,} is null-recurrent.

Now we suppose that Py(1—) <o, then Pyr(1—) <o for any k(k=0, 1, ---). In this

case, since
i

(1-'3’)1300(3’):1—3’(1—3’%%‘, Por(3)« De(»),
we obtain

lHm (1—y) 3 Peo(»)*De(3) = 1,

) y—l—- k=0

equivalently,

S Pu() - DU~y asy—l—

-0 y

Thus, from equation (9) we have

31 (3% Pu(1=) « (1 An(O)y"~

Hence, by the Tauberian theorem (see, e.g. Feller (1966) [3] p. 423),

1—y°

é (1—Av(0))~-i——n~—— N as u—> oo,
=0 0

kZ_}oﬁkPOk(l =)

which is contradicting to equation (8).
Hence, we have Py(1—)= oo and the proof of (ii) is complete.

(iii) In the supercritical case we have only to show that Py (1—) < co.

Dp(1—) = o, and then we have

1

Di(y) ~[1—Br(g) 1g* 1=y

asy—1—.

This implies that

Poo(y)~1—£y— {l—yki:}o(l—Bk(q))quok(y)}, as y—>1-—.

Now we suppose that Py(1l—)=o0, then Py,(1—) =oo for any £(k=0, 1, ---

Therefore

lim 2 (1—33} (1=Be(@) - ¢* - Pu(@)} =—oo
k=0

y—r1—

whichis contradicting the assumption that Py(1—)=co.

as y—1—.

From lemma 1,

Hence we have Py(1—)< oo and the proof of (iii) is complete. Thus the proof of the

theorem is finished.
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1 1-Be(w)
o A(w)—u

Drobability generating function, II1(x), of the stationary distribution of the Markov chain {Xn}
satisfies the equation

CoroLLARY 1. When a<1 and S du< oo forall k (k=0,1, ---, 1), then the

A AE=HAE) 3 A~ Bl A - o

where

H<x>=§o1ckxk, (x| < D.

COROLLARY 2. In the supercritical case, even if iy = oo, the Morkov chain (X} is transient.

4. Continuously Subcritical Class

For the continuously subcritical (c. s. c.) class of offspring p.g.f.’s (Seneta (1969) [12])
we shall state an asymptotic relation that suggests an approximation to /7(x) for « close to
unity. The c.s.c. class of offspring distributions is defined by

(1) A(x)=A(a; x) isa p.gf. forallac=(1—e¢, 1) for some ¢ >0 and A(a; x)—>
A(*;x) (@11;0<x=<1), a proper p.g.f.,

(i) A"(*;1—=)=172>0 and

(i) A" (a; 1-)<c==const. forac(1—e, 1).

Now we suppose

Gv) B (1—-) <o for all k=0, 1, --+, i,
which implies that 8, <o, thus this assumption is sufficient condition for a stationary dis-
tribution to exist.

First, we have the following equations

an (A=) =3} mp) | (1—eD),
12) mn'a—) — 1_1a2 ’:Eionk[A/lgl_—(;).Bk + By (1—)+2kaB, ]

For subsequenct use we now iotroduce the notation in terms of Laplace transforms:
I(e)=I(), A(et)=A®,Blet)=B®  (k=0,1, -, ip)
IT;(t) = II(t3) = I1(e~t(1—a))
where we have put 6 = (1—a). The results (11) and (12) enable us to assert that

as Iy (04+)=—3 4B
(14) Iy (0+)= {jrg ’;vj_onk[ AT 4 B (1) + 2kaps]+ (1—a) kii:onkﬁk
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It therefore follows that for all £=0, and for all 4 sufficiently close to zero, under our con-
ditions, we have the uniform bounds

iy _
— N @b =1y =0
(15) £=0
0< 1Ty () < y=const.
THEOREM 2. Under the conditions (i)—C(iv),
1——H[exlzo{—(1—a)l‘}] ____)%log(l_}_%tfz)’ as a—>1—
) 7B
k=0

where 0< ¢t < co.
Proof. We rewrite (10) as

(16) IT;(® =m(-1°—g‘§@l) —;iigonk(l —Br(6t)) (A(60))*.

Now we arbitrarily chose T >0, which is finite, but fixed, then by the argument in Quine-
Seneta (1969) [10] it follows from (15) that for t=[0, T'] as 6—>0+

an if (_E—‘g—(ﬂ) =T, —( 1+% 142 \otITy' () +0(3)
where w=A"(a; 1-)+a—a?,

(18) Br(ot) =1—prot+0(8),  (k=0,1, i), and

19 (A())k=1—kadt+0(d)

where the notation 0(é?) is used to signify o(¢?) uniformly with respect to &[0, T].
Hence from (17), (18) and (19), using (16), that

IL;(H=IT;(t)— (1+‘21— tu2 )otiT ' () +0(6) —-fjoﬂk(ﬂkﬁt-i-;(&)) (1—kast+0(d))
ie.
1, .\ b —
(1+-2— tuz)ﬂa &) = —SY mpBet+o(D),
k=0
for t&[0, T]. By integrating this differential equation on [0, '], we have

where we have put o(1) = £&().
But

Il

ST §:(0) dt

0 <1+lm2> =e¢ S: dt clog (1+—2]L2{2t);2)2—
2

(=0
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for arbitrary positive ¢ if 6 is made sufficiently small.
Hence, since u2—>72 as 6—>0,

lim A=I(T) _ i g: +dt
5 ] 60+ B
3 7B (1+ 2 tu )
=0
_2 72
=2 1og(1+2-T)
Now since T">0 is arbitrarily chosen, we have for each :>0

1—-1T:(H) 2 2
A — 7log(1+—171), as 6—> 0+,
ALY

k=0

which completes the proof of the theorem.

5.A Limit Theorem for the Supercritical Process

We prove now a limit theorem for the supercritical process, which is an extension of
Pakes’ result.

Throughout this section we assume that 1 <a < co.

LemMma 2.

(20) ; [A-Bu@)¢3 o |=4.

Proof. Note that in the supercritical case Pir(1—) < « for any ¢, k(i, k=0, 1, ---).
We have seen that if « > 1 then

D)~ A-Buett- and G ~1L,  asy—il-.

Hence, from equation (4) we have

]~ lqi , as y—1—.

-y

3 [SpyDA-Buade 15

This yields that
[(1 Bu(@)e 5 p% |=a

and the proof of the lemma is complete.

THEOREM 3. Threr exists a sequence of positive constants {cn} (n=1, 2, ---) with cn—> o
and cn1 ¢ Cny—>a as n—>» oo, such that Xn/cn converges almost surely to a random variable
X, with P(X=0) =0, whose Laplace transform ®(60) is given by

@D o) = cr(o)):—k_o 3 {1-B(7 (o) ) }(7 (o)) 20 ] C0=0<0)
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where ¥(0) satisfies the equation
U(at) =AW O)).

Let 6y be any fixed mumber in (0, —log q). Then, cn can be taken as (hn(89))~! where
hn(8) is the inverse function of ka(8) = —log An(e?).

Proof. Let {cx} be as given in the statement of the theorem. Then, as shown by
Seneta (1968) [11], {cs} has the properties given in the theorem.

Now let ¥'(#) = lim An(e @), 0= 8 <oo, then ¥ () satisfies

V(at)=AF @),
and it follows that

0
An_m(e ”")——ﬂlf(—&gﬁ , as n—»> o,

(see Seneta (1968)).
From equation (3), for 4 &[0, )
0 R 9 0
@2 PP (@)= (AnCe oY= [31 (1-Bi(Anma(e o)) (AnmCe om))tpF].
Since 31 p{P’ <C 0, so letting n—>oo in equation (22), then we have equation (21), which
shows that Xx/c» converges in law to a random variable X.
Furthermore, using the equation (20), we obtain

lim @(6) =0,

6>
equivalenty,

P{X=0}=0.

It remains only to prove that X, /c» converges almost surely to a random variable X.

Denote by Byx,(x) the probability generating function of the immigrants entering in
the (n+1)th generation, so that if X, >+ 1, then Bx,(x) =1 for x& [0, 1].

Now define the random variable Y» = exp{—#x(0p) Xn} (n=0, 1, ---). Then, it follows
from the Markov property that

E(Yn41|Yny -, Yo) = E(Yn41| Yn), . (n=0,1, ).
From the difinition of {Xu},
E(Yn41|Yn) = Bx,, (€xp(—hn41(00))} [A {€xp(—An11(60))} 1Xn
=T[A {exp(—An41(60))} 1%X»
= [exp{—k(hns1(60))} 1X» =Y.
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Thus {Y,} is a bounded submartingale and so converges almost surely to some random

variable.

This completes the proof of the theorem.

Acknowledgement

The author has much pleasure in thanking Professor Tetsuo Kaneko, Tetsuo Nakagawa

and Hideyuki Fujihira for their encouragement and having given some advices.

Nncata UNIVERSITY

References

ATHREYA, K. B. and NEvY, P. E. (1972): Branching Processes. Springer Verlag Berlin.

CHunG, K. L. (1967): Markov Chains with Stationary Transition Probabilities. Springer Verlag
Berlin.

FeLLER, W. (1966): An Introduction to Probability Theory and its Application. Vol. II. Wiley New
York.

FOsTER, J. H. (1971): A limit theorem for a branching process with state-dependent immigration. Ann.
Math. Statist. 42, 1773-1776.

FosTER, J. H. and WILLIAMSON, J. A. (1971): Limit theorems for the Galton-Watson process with time-
dependent immigration. Z. Wahr. verw Gev. 20, 227-235.

HeATHCOTE, C. R. (1966): Corrections and comments to the paper “A branching process allowing im-
migration.” J. R. Statist. Soc. B28, 213-217,

KEesTeEN, H., NEY, P. E. and SPiTZER, R. (1966): The Galton-Watson process with mean one and finite
variance. Teor. Veroyat. Primen. 11, 579-611.

Nakacawa, T. and SaTo, M. (1974): A Galton-Watson process with state dependent immigration. Res.
Rep. Nagaoka Tech. Coll. 9, 177-182.

PakEes, A. G. (1971): A branching process with a state-dependent immigration component. Adv. Appl.
Pord 3, 301-314.

QuUINE, M. P. and SENETA, E. (1969): A limmitt theorem for the Galton-Watson process with immigra-
tion. Aus. J. Statist. 11, 166-173.

SENETA, E. (1968): On recent theorems concerning the supercritical Galton-Watson process. Ann. Math.
Statist. 39, 2098-2102.

SENETA, E. (1969): Functional equations and the Galton-Waton process. Adv. Prob. 1, 1-43.

SENETA, E. (1970): On the supercritical Galton-Watson process with immigration. Math. Biosciences.
7, 9-14.



	1. Introduction
	2. Preliminary Considerations
	3. Classification of $\{X_{n}\}$
	THEOREM 1. ...

	4. Continuously Subcritical ...
	THEOREM 2. ...

	5. $A$ Limit Theorem for ...
	THEOREM 3. ...

	References

