Boundary representations of a tensor product of C^*-algebras

By

Tadashi HURUYA

(Received October 26, 1973)

1. Introduction

In [1] Arveson gives a non-commutative generalization of Choquet boundary and Silov boundary. We shall study those of a tensor product of C^*-algebras.

If E is a subspace of a C^*-algebra and M_n is the algebra of $n \times n$ complex matrices, then the algebraic tensor product $E \otimes M_n$ is the set of $n \times n$ matrices with entries in E. If $\varphi: E \rightarrow F$ is a linear map from one linear space into another, then, for each positive integer n, define $\varphi_n: E \otimes M_n \rightarrow F \otimes M_n$ by applying element by element to each matrix over E, i.e. $\varphi_n(T_{ij}) = (\varphi(T_{ij}))$. φ is called completely positive (resp., completely isometric) if each φ_n is positive (resp., isometric).

Following Arveson [1], let B be a C^*-algebra with unit and A a subspace of B which contains unit and generates B as a C^*-algebra.

An irreducible representation π of B is called a boundary representation for A if the restriction $\pi|A$ has a unique completely positive linear extension to B.

A closed two-sided ideal J in B is called a boundary ideal for A if the canonical quotient map $q_J: B \rightarrow B/J$ is completely isometric on A.

A boundary ideal is called the Silov boundary for A if it contains every other boundary ideal.

A is called an admissible subspace of B if the intersection of the kernels of the boundary representations for A is a boundary ideal for A.

Throughout this paper, we use the following notations. Let B_1 and B_2 be C^*-algebras, and let for each $i =1, 2$, e_i be unit in B_i, A_i a subspace of B_i which contains e_i and generates B_i as a C^*-algebra.

2. Boundary representations

Let $A_1 \otimes A_2$ be the algebraic tensor product, and $B_1 \otimes_{a} B_2$ the C^*-tensor product [3]. Then $A_1 \otimes A_2$ generates $B_1 \otimes_{a} B_2$ as a C^*-algebra.
Theorem 1. Let \(\pi_1 \) (resp., \(\pi_2 \)) be a boundary representation of \(B_1 \) (resp., \(B_2 \)) for \(A_1 \) (resp., \(A_2 \)). Then \(\pi_1 \otimes \pi_2 \) is a boundary representation of \(B_1 \otimes B_2 \) for \(A_1 \otimes A_2 \).

Proof. Let \(\varphi \) be a completely positive extension to \(B_1 \otimes B_2 \) of the restriction \(\pi_1 \otimes \pi_2 |_{A_1 \otimes A_2} \). Then there is a representation \(\pi \) of \(B_1 \otimes B_2 \) on a Hilbert space \(H \) such that

\[
\varphi(x) = H_1 \otimes H_2 \pi(x) H_1 \otimes H_2, \quad x \in B_1 \otimes B_2,
\]

where \(H_1 \) and \(H_2 \) are representation spaces of \(\pi_1 \) and \(\pi_2 \).

Let \(L(H_1) \) and \(L(H_2) \) be the \(C^* \)-algebras of all bounded operators on \(H_1 \) and \(H_2 \). We define the bounded linear map \(L_{\xi, \eta} \) of \(L(H_1) \otimes L(H_2) \) to \(L(H_1) \) by

\[
L_{\xi, \eta}(x \otimes y) = (\eta | \xi) x, \quad x \in L(H_1), \quad y \in L(H_2), \quad \xi, \eta \in H_2.
\]

Then \(L_{\xi, \eta} \) is a completely positive map. By [1; Theorem 1.2.9] it has a completely positive extension to \(L(H_1 \otimes H_2) \), and is also denoted by \(L_{\xi, \eta} \).

Then the map: \(a \rightarrow L_{\xi, \eta} \varphi(a \otimes e_2) \) is completely positive and we have

\[
L_{\xi, \eta} \varphi(a \otimes e_2) = (\xi | \xi) \pi_1(a), \quad a \in A_1.
\]

Since \(\pi_1 \) is a boundary representation of \(B_1 \) for \(A_1 \), we have

\[
L_{\xi, \eta} \varphi(a \otimes e_2) = (\xi | \xi) \pi_1(a), \quad a \in B_1.
\]

Since \(L_{\xi, \eta} \) is a linear combination of maps of the form \(L_{\xi, \xi} \), we have

\[
L_{\xi, \eta} \varphi(a \otimes e_2) = (\eta | \xi) \pi_1(a), \quad a \in B_1.
\]

Hence we have

\[
\varphi(a \otimes e_2) = \pi_1(a) \otimes I_{H_2}, \quad a \in B_1.
\]

Consequently, by [1; p. 174], \(H_1 \otimes H_2 \) is a invariant subspace for \(\pi(B_1 \otimes B_2) \).

Similarly, we have \(\varphi(e_1 \otimes b) = I_{H_1} \otimes \pi_2(b), \quad b \in B_2 \) and \(H_1 \otimes H_2 \) is a invariant subspace for \(\pi(e_1 \otimes B_2) \).

Hence we have

\[
\varphi(a \otimes b) = H_1 \otimes H_2 \pi(a \otimes b) H_1 \otimes H_2
\]

\[
= H_1 \otimes H_2 \pi(a \otimes e_2) \pi(e_1 \otimes b) H_1 \otimes H_2
\]

\[
= \pi_1(a) \otimes \pi_2(b), \quad a \in B_1, \quad b \in B_2.
\]

Consequently, we have \(\varphi = \pi_1 \otimes \pi_2 \). This completes the proof.

In [2] Hopenwasser proved the following result.

Let \(B \) be a \(C^* \)-algebra with unit \(e_b \). Let \(S \) be a linear subspace of \(B \otimes M_n \) which generates \(B \otimes M_n \) and which contains the set of matrix units \(e_{ij} \otimes e_{ij}, i, j = 1, \ldots, n \). Let \(T \) be the set of operators in \(B \) which appear as a matrix entry in some element of \(S \). Then an irreducible representation \(\pi \) of \(B \) is a unique completely positive extension of \(\pi |_T \) to \(B \) if and only if \(\pi \otimes I_n \).
is a boundary representation for S.

We shall give the proof of the "if" part in a slightly different way.

Proof. Let π be a boundary representation for T, acting on the Hilbert space H, and let φ be a completely positive extension to $B \otimes M_n$.

Then, by [1: p. 146], we have a representation π_b of $B \otimes M_n$ such that

$$\varphi(x \otimes y) = H \otimes H_n \pi_b(x \otimes y) H \otimes H_n, \quad x \in B, \text{ and } y \in M_n,$$

where H_n is n-dimensional Hilbert space.

Since $e_b \otimes e_{ij} \in S$,

$$\varphi(e_b \otimes e_{ij}) = P \pi_b(e_b \otimes e_{ij}) P = I_H \otimes e_{ij},$$

where P is the projection on $H \otimes H_n$.

Hence the map: $x \mapsto \varphi(e_b \otimes x)$ is a representation of M_n, and so P is invariant for $\pi_b(e_b \otimes M_n)$.

Now, we have

$$\varphi(x \otimes e_{ij}) = P \pi_b(x \otimes e_n) \pi_b(e_b \otimes e_{ij}) P$$

$$= P \pi_b(x \otimes e_n) P I_H \otimes e_{ij},$$

where e_n is unit of M_n.

On the other hand, we have

$$\varphi(x \otimes e_{ij}) = P \pi_b(e_b \otimes e_{ij}) \pi_b(x \otimes e_n)$$

$$= I_H \otimes e_{ij} P \pi_b(x \otimes e_n) P.$$

Hence, we have $P \pi_b(x \otimes e_n) P \in (I_H \otimes L(H_n))^\prime$, and so there is a positive linear map ρ such that

$$P \pi_b(x \otimes e_n) P = \rho(x) \otimes I_{H_n}.$$

Since we have for each $s \in S$, $\varphi \otimes I_n(s) = \pi \otimes I_n(s)$, we have $\rho = \pi$ on T.

On the other hand, the map: $x \mapsto \varphi(x \otimes e_n)$ is completely positive, and π is a boundary representation for T we have $\pi = \rho$ on B.

Then P is invariant for $\pi_b(B \otimes e_n)$.

Consequently, we have $\varphi = \rho \otimes I_n = \pi \otimes I_n$. This completes the proof.

3. Boundary ideals

We assume throughout this section, for each $i = 1, 2$, B_i acts on a Hilbert space H_i.

Theorem 2. Let J_i be a boundary ideal for A_i of B_i. Then $\ker(q_{J_1} \otimes q_{J_2})$ is a boundary ideal of $B_1 \otimes B_2$ for $A_1 \otimes A_2$.

Proof. The map $q_{J_1}(a) \rightarrow a$ is completely isometric on $q_{J_1}(A_1)$ by [1: Theorem 1.
2. 9], this map has a completely positive linear extension to B_1/J_1. There are a representation π_1 of B_1/J_1 and a linear isometric map V_1 from H_1 into a representation space H_{π_1} of π_1 such that
\[
a = V_1^* \pi_1(q_{f_1}(a)) V_1, \quad a \in A_1.
\]

Similarly, there are a representation π_2 of B_2/J_2 and a linear isometric map V_2 from H_2 into a representation space H_{π_2} of π_2 such that
\[
b = V_2^* \pi_2(q_{f_2}(b)) V_2, \quad b \in A_2.
\]

We have for $a \in A_1$ and $b \in A_2$
\[
a \otimes b = (V_1 \otimes V_2)^* \pi_1 \otimes \pi_2(q_{J\iota}(a) \otimes q_{f_2}(b)) V_1 \otimes V_2.
\]

Hence the map: $q_{ker}(q_{f_1} \otimes q_{J\iota})(x) \rightarrow x$ is completely contractive.

Consequently, ker$(q_{K1} \otimes q_{K2})$ is a boundary ideal.

THEOREM 3. Let A_1 (resp., A_2) be an admissible subspace of B_1 (resp., B_2), and K_1 (resp., K_2) be the intersection of all kernels of boundary representations of B_1 (resp., B_2) for A_1 (resp., A_2). Then $A_1 \otimes A_2$ is an admissible subspace of $B_1 \otimes B_2$, and ker$(q_{K1} \otimes q_{K2})$ is the Silov boundary for $A_1 \otimes A_2$.

PROOF. Let B_i denote the set of boundary representations of B_i for A_i, and let $\rho_i = \sum_{\pi_{ij} \in B_i} \otimes \pi_{ij}$ be the direct sum of boundary representations of B_i. Let J be the intersection of the kernels of representations of the form $\pi_{1m} \otimes \pi_{2n}$ where π_{1m} and π_{2n} are boundary representations of B_1 and B_2. Since $q_{K1} \otimes q_{K2}(B_1 \otimes B_2)$ is *-isomorphic to $\rho_1 \otimes \rho_2(B_1 \otimes B_2)$, we have
\[
ker(q_{K1} \otimes q_{K2}) = J.
\]

Let K be the intersection of all kernels of boundary representations of $B_1 \otimes B_2$ for $A_1 \otimes A_2$.

By Theorem 1, $\pi_{1m} \otimes \pi_{2n}$ is a boundary representation, then we have
\[
J \supset K.
\]

On the other hand, by Theorem 2, ker$(q_{K1} \otimes q_{K2})$ is a boundary ideal. Therefore, K is a boundary ideal, and so $A_1 \otimes A_2$ is admissible. Then K is the Silov boundary ideal [1: Theorem 2. 2. 3], hence we have
\[
K \supset ker(q_{K1} \otimes q_{K2}).
\]

Consequently, we have
\[
K = ker(q_{K1} \otimes q_{K2}).
\]

This completes the proof.

NIIGATA UNIVERSITY
References