On the $b_p^{k,j}$, Coefficient of a Certain Symmetric Function.

S. Mukohda and S. Sawaki $\mathbf{B}\mathbf{y}$

(Received Dec. 15, 1954)

§ 1. Introduction.

A. Borel and J.-P. Serre have studied the cohomology mod a prime p of Lie group in the paper [1], using the cyclic reduced power defined by N. E. Steenrod.

This investigation has required the value of $b_p^{k,j}$ which appears in this paper. The definition of $b_p^{k,j}$ is as follows: Let $\sum x_1^p \cdot \cdot \cdot x_k^p x_{k+1} \cdot \cdot \cdot$ $x_{j-k(p-1)}$ be a homogeneous symmetric polynomial in variables x_1, x_2, \cdots , x_n of degree j where p, k and j are positive integers.

This polynomial is expressed by a polynomial $B_p^{k,j}$ in $\sigma_1, \dots, \sigma_j$ where $\sigma_i(i=1, 2, \cdots, j)$ is fundamental symmetric expression in x_1, \cdots, x_n of degree i, and we write the coefficient of σ_i $b_i^{k,i}$.

Regarding $b_p^{k,i}$, it is not necessary to know its value but it is sufficient to calculate the value with respect to mod. p.

For instance it is easily seen that $b_3^{1,i} \equiv j \pmod{3}$, but the general formula of $b_p^{k,j}$ has not been given. The particular case in which p=2has been treated by Wu Wen Tsün and the result yields

$$(1) b_2^{k,j} \equiv {j-k-1 \choose k} (mod. 2).$$

In addition to this formula, he has proved that

$$B_2^{k,j} \equiv {j-k-1 \choose k} \sigma_j + {j-k-2 \choose k-1} \sigma_1 \sigma_{j-1} + \cdots + {j-2k \choose 1} \sigma_{k-1} \sigma_{j-k+1} + \sigma_k \sigma_{j-k} \pmod{2}$$
and also in the case $k=1$, $b_p^{1,j} \equiv j \pmod{p}$ has been seen.

Now it is the purpose of this paper to show the following result about $b_{p}^{k,j}$:

(2)
$$b_p^{k,j} \equiv {j-k(p-1)-1 \choose k} \pmod{p}.$$

(1) is included in (2) in the particular case p=2.

§ 2. Reduction formula of $b_p^{k,j}$.

First of all we must show that there exists a following reduction formula

Proof. Let $P(x_1, \dots, x_k)$ be a polynomial in variables x_1, x_2, \dots, x_n such as

$$P(x_1, \dots, x_k) = (1-x_1^p) \cdot \dots \cdot (1-x_n^p)(1-x_{k+1}) \cdot \dots \cdot (1-x_n).$$

We write this polynomial in the form

$$P(x_{1}, \dots, x_{k}) = (1-x_{1}) \dots (1-x_{k})(1-x_{k+1}) \dots (1-x_{n})$$

$$\times (1+x_{1}+\dots+x_{1}^{p-1}) \times \dots \times (1+x_{k}+\dots+x_{k}^{p-1})$$

$$= (1-\sigma_{1}+\sigma_{2}-\dots+(-1)^{j}\sigma_{j}+\dots+(-1)^{n}\sigma_{n})$$

$$\times (1+x_{1}+\dots+x_{k}^{p-1}) \times \dots \times (1+x_{k}+\dots+x_{k}^{p-1})$$

where $\sigma_i(i=1, 2, \dots, n)$ is fundamental symmetric expression in x_1 , x_2, \dots, x_n of degree i.

Consider $\sum P(x_1, \dots, x_k)$ where this summation runs through all combinations (x_1, \dots, x_k) taken from x_1, \dots, x_n .

This polynomial is not only expressed by $\sigma_1, \dots, \sigma_n$ but written in the form

$$(-1)^{j} {n \choose k} \sigma_j + (polynomial \ in \ \sigma_1, \cdots, \sigma_n).$$

On the other hand, trying to develope $P(x_1, \dots, x_k)$ into another form, we obtain another homogeneous symmetric polynomial of degree i, i. e.

$$P(x_1, \dots, x_k) = \{1 - (x_1^p + \dots + x_k^p) + (x_1^p x_2^p + \dots + x_{k-1}^p x_k^p) - \dots + (-1)^k x_1^p x_2^p \dots x_k^p\} \times (1 - x_{k+1}) \dots (1 - x_n).$$

From this form on the right we get terms of degree j such as $x_1^p x_2^p \cdots x_k^p x_{k+1} \cdots x_{j-k(p-1)}, \quad x_1^p x_2^p \cdots x_{k-1}^p x_{k+1} x_{k+2} \cdots x_{j-(k-1)(p-1)+1}, \cdots, x_1^p x_2^p \cdots x_{k-l}^p x_{k+1} x_{k+2} \cdots x_{j-(k-l)(p-1)+l}, \cdots,$ then we must calculate its sign and coefficient.

In the first place, since $(-1)^k x_1^p x_2^p \cdots x_k^p$ combines with j-kp terms taken from $-x_{k+1}$, $-x_{k+2}$, \cdots , $-x_n$, its sign is

$$(-1)^k(-1)^{j-kp} = (-1)^{j-k(p-1)}$$
 and coefficient is 1.

 $(-1)^{k-1}(x_1^p \cdot \cdot \cdot x_{k-1}^p + \cdot \cdot \cdot + x_2^p \cdot \cdot \cdot x_k^p)$ combines with j - (k-1)p terms taken from $-x_{k+1}, -x_{k+2}, \cdot \cdot \cdot, -x_n$ and therefore its sign is

$$(-1)^{k-1}(-1)^{j-(k-1)p} = (-1)^{j-(k-1)(p-1)} \text{ and coefficient is}$$

$$\binom{\{n-(k-1)\}-\{j-(k-1)p\}}{1} = \binom{n-j+(k-1)(p-1)}{1}$$
so on. $(-1)^{k-r}(x^p \cdot \cdot \cdot x^p \cdot + \cdot \cdot \cdot + x^p \cdot \cdot \cdot x^p)$ con

and so on. $(-1)^{k-r}(x_1^p \cdot \cdot \cdot x_{k-r}^p + \cdot \cdot \cdot + x_{r+1}^p \cdot \cdot \cdot x_k^p)$ combining with j -(k-r)p terms taken from $-x_{k+1}, -x_{k+2}, \cdot \cdot \cdot, -x_n$, its sign is $(-1)^{k-r}(-1)^{j-(k-r)p} = (-1)^{j-(k-r)(p-1)}$ and coefficient is

$$\binom{\{n-(k-r)\}-\{j-(k-r)p\}}{r} = \binom{n-j+(k-r)(p-1)}{r}$$

where $r=0, 1, \dots, k$.

As in the above paragraph considering $\sum P(x_1, \dots, x_k)$, we obtain a homogeneous symmetric polynomial of degree j

$$(-1)^{j-k(p-1)} \sum x_{1}^{p} \cdot \cdot \cdot x_{k}^{p} x_{k+1} \cdot \cdot \cdot x_{j-k(p-1)} + (-1)^{j-(k-1)(p-1)} \binom{n-j+(k-1)(p-1)}{1}$$

$$\times \sum x_{1}^{p} \cdot \cdot \cdot x_{k-1}^{p} x_{k} \cdot \cdot \cdot x_{j-(k-1)(p-1)} + \cdot \cdot \cdot + (-1)^{j-(k-r)(p-1)} \binom{n-j+(k-r)(p-1)}{r}$$

$$\times \sum x_{1}^{p} \cdot \cdot \cdot x_{k-r}^{p} x_{k-r+1} \cdot \cdot \cdot x_{j-(k-r)(p-1)} + \cdot \cdot \cdot + (-1)^{j} \binom{n-j}{k} \sum x_{1} \cdot \cdot \cdot x_{j}.$$

Of course this last polynomial is expressed by $\sigma_1, \dots, \sigma_j$, and from this expression we obtain the following value as the coefficient of σ_j :

$$(-1)^{j-k(p-1)}b_p^{k,j} + (-1)^{j-(k-1)(p-1)}\binom{n-j+(k-1)(p-1)}{1}b_p^{k-1,j} + \cdots \\ + (-1)^{j-(k-r)(p-1)}\binom{n-j+(k-r)(p-1)}{r}b_p^{k-r,j} + \cdots + (-1)^j\binom{n-j}{k}b_p^{0,j} \text{ where we put } b_p^{0,j} = 1.$$

Let k-r=l, this becomes $\sum_{l=0}^{k} (-1)^{j-l(p-1)} \binom{n-j+l(p-1)}{k-l} b_p^{l,j}$ and must coincide with $(-1)^{j} \binom{n}{k}$, the coefficient of σ_j derived in the preceding paragraph and therefore we obtain

$$(-1)^{j} \binom{n}{k} = \sum_{l=0}^{k} (-1)^{j-l(p-1)} \binom{n-j+l(p-1)}{k-l} b_{p}^{l,j}.$$

If p is any prime number such as $p \ge 3$, this reduction formula becomes

$$\binom{n}{k} = \sum_{l=0}^{k} \binom{n-j+l(p-1)}{k-l} b_p^{l,j}$$

and also when p=2 this equality is valid with respect to mod. 2.

$\S 3.$ proof of (2).

To this end we shall prove that the reduction formula (3) is independent of n, i. e.

$$\binom{m}{k} = \sum_{l=0}^{k} \binom{m-j+l(p-1)}{k-l} b_p^{l,j}$$

is valid for every integer $m \ge n$. (Observe that we do not change n which may be contained in each $b_p^{l,j}$ but only n expressed explicitly in (3)).

Considering $b_p^{k-1,j}$ for $\sum x_1^p \cdot \cdot \cdot x_{k-1}^p x_k \cdot \cdot \cdot x_{j-(k-1)(p-1)}$, we obtain from (3)

$$\binom{n}{k-1} = \sum_{l=0}^{k-1} \binom{n-j+l(p-1)}{k-1-l} b_p^{l,j}$$

and combining this with (3)

$${n+1 \choose k} = \sum_{l=0}^{k} {n-j+l(p-1) \choose k-l} b_p^{l,j} + \sum_{l=0}^{k-1} {n-j+l(p-1) \choose k-1-l} b_p^{l,j}$$

$$= \sum_{l=0}^{k-1} \left\{ {n-j+l(p-1) \choose k-l} + {n-j+l(p-1) \choose k-1-l} \right\} b_p^{l,j} + b_p^{k,j}$$

$$= \sum_{l=0}^{k-1} {n+1-j+l(p-1) \choose k-l} b_p^{l,j} + b_p^{k,j} = \sum_{l=0}^{k} {n+1-j+l(p-1) \choose k-l} b_p^{l,j}.$$

By induction more generally

$$\binom{n+r}{k} = \sum_{l=0}^{k} \binom{n+r-j+l(p-1)}{k-l} b_p^{l,j} \qquad \text{for every positive}$$

integer r and then put m=n+r.

Let us now turn to the proof of (2).

Since the expression (4) is a polynomial in variable m of degree k and its equality is valid for every positive integer $m \ge n$, setting the constant term equal to zero, we get

(5)
$$\sum_{l=0}^{k} (-1)^{l} {j-l(p-1)+k-l-1 \choose k-l} b_{p}^{l,j} = 0.$$

As (2) is true for k=0, 1, if we assume

$$b_p^{l,j} \equiv \binom{j-l(p-1)-1}{l}$$
 (mod. p) for $0 \leq l < k$, it is sufficient to prove this equality for $l=k$.

From this assumption and (5), we obtain

$$(-1)^{k}b_{p}^{k,j} + \sum_{l=0}^{k-1} (-1)^{l} \binom{j-l(p-1)+k-l-1}{k-l} \binom{j-l(p-1)-1}{l} \equiv 0 \qquad (mod. \ p)$$

and therefore the proof may be reduced to

$$(-1)^{k} {\binom{j-k(p-1)-1}{k}} + \sum_{l=0}^{k-1} (-1)^{l} {\binom{j-l(p-1)+k-l-1}{k-l}} {\binom{j-l(p-1)-1}{l}} \equiv 0$$
(mod. p),

i. e.
$$\sum_{l=0}^{k} (-1)^{l} {j-l(p-1)+k-l-1 \choose k-l} {j-l(p-1)-1 \choose l} \equiv 0 \pmod{p}$$
.

However, since each term in the last expression may be reformed as follows:

$$\binom{j-l(p-1)+k-l-1}{k-l} \binom{j-l(p-1)-1}{l} = \frac{(j-l(p-1)+k-l-1)!}{(k-l)!(j-l(p-1)-1)!}$$

$$\times \frac{(j-l(p-1)-1)!}{l!(j-l(p-1)-l-1)!} = \frac{k!}{(k-l)!l!} \times \frac{(j-l(p-1)+k-l-1)!}{k!(j-l(p-1)-l-1)!}$$

$$= \binom{k}{l} \binom{j+k-1-lp}{k},$$

it is sufficient to prove that

$$\sum_{l=0}^{k} (-1)^{l} \binom{k}{l} \binom{j+k-1-lp}{k} \equiv 0 \pmod{p}.$$

In order to prove this, letting $\binom{j+k-1-lp}{k} = \frac{1}{k!} \sum_{i=0}^{k} (-1) A_i p^i l^i$ where

 A_i is polynomial in j and k, we have

$$\begin{split} &\sum_{l=0}^{k} (-1)^{l} {k \choose l} {j+k-1-lp \choose k} = \sum_{l=0}^{k} (-1)^{l} {k \choose l} \left\{ \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} A_{i} p^{i} l^{i} \right\} \\ &= \frac{1}{k!} \sum_{l=0}^{k} (-1)^{l} {k \choose l} \sum_{i=0}^{k} (-1)^{i} A_{i} p^{i} l^{i} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} A_{i} p^{i} \sum_{l=0}^{k} (-1)^{l} {k \choose l} l^{i}. \end{split}$$

In this place thanks to Euler's formula [2], we have

$$\sum_{l=0}^{k} (-1)^{l} {k \choose l} l^{l} = 0 \qquad \text{if} \quad 0 \leq i \leq k-1,$$

$$= (-1)^{k} k! \qquad \text{if} \quad i = k$$

and consequently

$$\sum_{l=0}^{k} (-1)^{l} \binom{k}{l} \binom{j+k-1-lp}{k} = \frac{1}{k!} (A_{k} p^{k} (-1)^{2k} k!) = A_{k} p^{k} \equiv 0 \quad (mod. p).$$

Thus the proof of (2) is complete.

Mathematical Institute, Niigata University, Niigata, Japan.

References

[1] A. Borel et J.-P. Serre,

Groupes de Lie et puissances réduites de Steenrod. American Journal of Mathematics, Vol. LXXV, No. 3, July, 1953.

[2] L. E. Dickson, History of the theory of numbers, Washington, Vol. I, 1919, p. 63.