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Introduction

M. W. Hirsch has shown that an almost parallelizable n-manifold is immersible
in Euclidean $(n+k)$ -space $R^{n+k}$ if $n<2k[1]$ . He has proved the result by making
use of a result due to M. Kervaire that the Smale invariant of an immersion of $n-$

sphere in $R^{n+k}$ vanishes if $n\leqq 2k-2[4]$ . In this paper we shall prove the following ;
Proposition 1;

An almost parallelizable n-manifold is immersible in $R^{n+1}$ if $n\not\equiv O$ (mod 4).

Proposition 2;

If $n\equiv 0$ (mod 4), an almost parallelizable n-manifold is in general not immersible
in $R^{n+1}$ . In particular, the Hirsch’s result is best possible for $n=4$ .

The authors wish to express their thanks to Prof. K. Aoki and Prof. T. Kaneko
for their many valuable suggestions and several discussions.

\S 1. Definitions and Lemmas

In the following discussion, all manifolds are considered as connected, orientable,
$C^{\infty}$ manifolds. By immersion $f:M^{n}\rightarrow Rp$ we mean a $C^{\infty}$ map whose Jacobian matrix
has rank $n=dimM^{n}$ at each point. A homeomorphic immersion will be called

imbedding. A manifold $M^{n}$ will be called parallelizable if its tangent bundle is
trivial, we say $M^{n}$ is almost parallelizable if $M^{n}-x$ is paralleli $z$able for some $x\in M^{n}$ .
$M^{n}$ will be called $\pi$-manifold if $M^{n}$ is imbedded in $R^{n+k}(k>n)$ with trivial normal
bundle $\nu^{k}$ .

Since a non-closed (i.e. non-compact .or with $boundary$ )\langle almost parallel’zable
manifold is paralleli $z$able, hence it is immersible in $R^{n+1}$ . (Theorem 6.3 of [2]).
Therefore we may consider only closed manifolds. First we consider the condition
for that an orientable n-manifold is immersible in $R^{n+1}$ .
Lemma 1;

Let $M^{n}$ be an orientable manifold. Then it is necessary and sufficient for $M^{n}$ to
be immersible in $R^{n+1}$ is that it is a $\pi$-manifold. $J$



$(Pr\grave{o}_{\text{・}}Of)$ If $M^{n}$ is a $\pi$-manifold then $M^{n}$ is immersible in $R^{n+1}$ according to M.
W. Hirsch [2]. Let $f$ be an immersion of $M^{n}$ into $R^{n+1}$ , and $g$ be any imbedding
of $M^{n}$ in $R^{n+k}(k>n)$ . By a result due to M. W. Hirsch [2], $g$ is regularly homo-
topic to $i\cdot f$ where $i$ denotes the inclusion map $i:R^{n+1}\rightarrow R^{n+k}$, hence the normal
bundle induced by $g$ is trivial, since the normal bundle of $f$ is trivial. Thus $M^{n}$ is
a $\pi\cdot manifold$ .

Next we consider the principal $SO(k)$ bundle associated to the normal bundle $\nu$

induced by an imbedding of an almost parallelizable manifold $M^{n}$ in $R^{n+k}(k>n)$ .
By definition, $\nu|M^{n}-x$ ($x$ is some point of $M^{n}$), the restriction of $\nu$ to $M^{n}-x$. is
trivial. Hence $\nu$ admits a cross section over $M^{n}-x$. Let $0_{n}$ denote the obstruction
to the extension over $M^{n}$ of the cross section over $M^{n-X}$ . $0_{n}$ is an element of
$\pi_{n-1}(SO(k))$ . The following lemma is well known.
Lemma 2;

Let $J;\pi_{n-1}(SO(k))\rightarrow\pi_{n+}k-1(S^{k})$ be the Hopf -Whitehead homomorphism. Then
$J(0_{n})=0$.

In his paper [3], M. Kervaire has obtained the relation between $0_{n}$ and pontryagin
class when $n\equiv 0(mod 4)$ . His result is as follows:
Lemma 3;

Let the fundamental class of $M^{4k}$ be $M^{4k}$, the $4k-$ dimensional Pontryagin class
$p_{k}$ of the bundle $\xi$ takes on $M^{4k}$ the value given by the formula;

$ p_{k}(\xi)[M^{4k}]=a_{k}\cdot 0_{n}\cdot(2k-1).\nearrow$ up to sign,
where $a_{k}$ is equal to 1 or 2 according to whether $k$ is even or odd respectively.

Moreover J. Milnor and M. Kervaire have proved in [5];

Lemma 4;

There exist an almost parallelizable manifold $M_{o}^{4^{k}}$ with

$ p_{k}[M_{o}^{4^{k}}]=j_{k}\cdot a_{k}\cdot(2k-1).\nearrow$

where $p_{k}$ is the $4k$ dimensional Pontryagin class of $M_{o}^{4^{k}},$ $j_{k}$ denotes the order of the

finite cyclic group $J\pi_{4}k-1(SO(m)),$ $(m>4k-1)$ , and $a_{k}$ is equal to 1 or 2 according to
whether $k$ is even or odd $respe_{a}c_{\backslash s}tively$

. $Y$

Recently J. F. Admas $haf$ proved in [6] that;

Lemma 5;

If $n\equiv 1,2$ (mod 8), then $J;\pi_{n-1}(SO(k))\rightarrow\pi_{n+k-1(S^{k})}(k>n)$ is injective.

\S 2. Proof of the Propositions

In the case of $n\not\equiv O(mod4),$ $\pi_{n-1}(SO(k))=0$ or $Z_{2}$ according to whether $n\equiv 3,5,6,7$

(mod 8) or $n\equiv 1,2$ (nod 8) respectively. From this it follows that in the case of
$n\equiv 3,5,6,7$ (mod 8), $0_{n}=0$ . In the case $n\equiv 1,2$ (mod 8) $0_{n}$ is also zero, since it be-
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longs to the kernel of $J$ (Lemma 2) which is injective [1]. Hence $M^{n}$ is a $\pi$-manifold,

so that it is immersible in $R^{n+1}[2]$ , this complete the proof of the Proposition 1.
In the case $n\equiv 0$ (mod 4), by lemma 4, there exists an almost parallelizable $4k$

-dimensional manifold $M_{0}^{4^{h}}$ with $p_{k}[M_{0}^{4^{h}}]\neq 0[3]$ . By Whitney dulity, the $4k$ -di-

mensional Pontryagin class of $p_{h}(\nu)$ of the normal bundle $\nu$ coincides with $4k-$

dimensional Pontryagin class of $M_{0}^{4^{h}}$ , up to sign, therefore $p_{k}(\nu)[M_{0}^{4^{h}}]\neq 0$ . Hence
it follows from lemma 3, that $0_{4^{k}}\neq 0[4]$ . This means $M_{0}^{4^{h}}$ is not a $\pi$-manifold, so
that it is not immersible in $R^{n+1}$ .

In particular we can prove that $M_{0}^{4}$ is not immersible in $R^{6}$ , for suppose $M_{o}^{4}$ be
immersed in $R^{6}$ , then the normal bundle induced by this immersion is trivial since
the second Stifel-Whitney class $w_{2}(\nu)=0$ hence by lemma 6.4 in [2], $M_{0}^{4}$ is immersi-
ble in $R^{5}$ , which is a contradiction. In other words, the Hirsch’s result is best
possible for $n=4$ .
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