On the immersibility of almost parallelizable manifolds

By

T. WATABE and T. HIROSE

(Received, December 15, 1963)

Introduction

M. W. Hirsch has shown that an almost parallelizable *n*-manifold is immersible in Euclidean (n+k) - space R^{n+k} if n < 2k [1]. He has proved the result by making use of a result due to M. Kervaire that the Smale invariant of an immersion of *n*sphere in R^{n+k} vanishes if $n \le 2k-2$ [4]. In this paper we shall prove the following; **Proposition 1**;

An almost parallelizable n-manifold is immersible in \mathbb{R}^{n+1} if $n \equiv 0 \pmod{4}$. **Proposition 2**;

If $n\equiv 0 \pmod{4}$, an almost parallelizable n – manifold is in general not immersible in \mathbb{R}^{n+1} . In particular, the Hirsch's result is best possible for n=4.

The authors wish to express their thanks to Prof. K. Aoki and Prof. T. Kaneko for their many valuable suggestions and several discussions.

§ 1. Definitions and Lemmas

In the following discussion, all manifolds are considered as connected, orientable, C^{∞} manifolds. By *immersion* $f: M^n \to R^p$ we mean a C^{∞} map whose Jacobian matrix has rank n=dim M^n at each point. A homeomorphic immersion will be called *imbedding*. A manifold M^n will be called *parallelizable* if its tangent bundle is trivial, we say M^n is almost parallelizable if $M^n - x$ is parallelizable for some $x \in M^n$. M^n will be called π -manifold if M^n is imbedded in R^{n+k} $(k \ge n)$ with trivial normal bundle ν^k .

Since a non-closed (i.e. non-compact or with boundary) almost parallelizable manifold is parallelizable, hence it is immersible in R^{n+1} . (Theorem 6.3 of [2]). Therefore we may consider only closed manifolds. First we consider the condition for that an orientable *n*-manifold is immersible in R^{n+1} .

Lemma 1;

Let M^n be an orientable manifold. Then it is necessary and sufficient for M^n to be immersible in R^{n+1} is that it is a π -manifold.

(**Proof**) If M^n is a π -manifold then M^n is immersible in \mathbb{R}^{n+1} , according to M. W. Hirsch [2]. Let f be an immersion of M^n into \mathbb{R}^{n+1} , and g be any imbedding of M^n in \mathbb{R}^{n+k} (k>n). By a result due to M. W. Hirsch [2], g is regularly homotopic to $i \cdot f$ where i denotes the inclusion map $i: \mathbb{R}^{n+1} \to \mathbb{R}^{n+k}$, hence the normal bundle induced by g is trivial, since the normal bundle of f is trivial. Thus M^n is a π -manifold.

Next we consider the principal SO(k) bundle associated to the normal bundle ν induced by an imbedding of an almost parallelizable manifold M^n in \mathbb{R}^{n+k} (k>n). By definition, $\nu | M^n - x$ (x is some point of M^n), the restriction of ν to $M^n - x$. is trivial. Hence ν admits a cross section over $M^n - x$. Let o_n denote the obstruction to the extension over M^n of the cross section over $M^n - x$. o_n is an element of π_{n-1} (SO(k)). The following lemma is well known.

Lemma 2;

Let $J: \pi_{n-1}(SO(k)) \rightarrow \pi_{n+k-1}(S^k)$ be the Hopf -Whitehead homomorphism. Then $J(o_n)=0$.

In his paper [3], M. Kervaire has obtained the relation between o_n and pontryagin class when $n \equiv 0 \pmod{4}$. His result is as follows:

Lemma 3;

Let the fundamental class of M^{4k} be M^{4k} , the 4k – dimensional Pontryagin class p_k of the bundle ξ takes on M^{4k} the value given by the formula;

 $p_k(\xi)[M^{4k}] = a_k \cdot o_n \cdot (2k-1)!$ up to sign,

where a_k is equal to 1 or 2 according to whether k is even or odd respectively. Moreover J. Milnor and M. Kervaire have proved in [5];

Lemma 4;

There exist an almost parallelizable manifold M_o^{4k} with

$$p_k[M_o^{4k}] = j_k \cdot a_k \cdot (2k-1)$$

where p_k is the 4k dimensional Pontryagin class of M_0^{4k} , j_k denotes the order of the finite cyclic group $J_{\pi_{4k-1}}(SO(m))$, (m>4k-1), and a_k is equal to 1 or 2 according to whether k is even or odd respectively.

Recently J. F. Admas has proved in [6] that;

Lemma 5;

If $n \equiv 1, 2 \pmod{8}$, then $J: \pi_{n-1} (SO(k)) \rightarrow \pi_{n+k-1}(S^k) (k > n)$ is injective.

§ 2. Proof of the Propositions

In the case of $n \equiv 0 \pmod{4}$, $\pi_{n-1}(SO(k)) = 0$ or Z_2 according to whether $n \equiv 3, 5, 6, 7$ (mod 8) or $n \equiv 1, 2 \pmod{8}$ respectively. From this it follows that in the case of $n \equiv 3, 5, 6, 7 \pmod{8}$, $o_n = 0$. In the case $n \equiv 1, 2 \pmod{8}$ o_n is also zero, since it belongs to the kernel of J (Lemma 2) which is injective [1]. Hence M^n is a π -manifold, so that it is immersible in \mathbb{R}^{n+1} [2], this complete the proof of the Proposition 1.

In the case $n\equiv 0 \pmod{4}$, by lemma 4, there exists an almost parallelizable 4k - dimensional manifold M_o^{4k} with $p_k [M_o^{4k}] \neq 0$ [3]. By Whitney dulity, the 4k - dimensional Pontryagin class of p_k (ν) of the normal bundle ν coincides with 4k - dimensional Pontryagin class of M_o^{4k} , up to sign, therefore p_k (ν) $[M_o^{4k}] \neq 0$. Hence it follows from lemma 3, that $o_{4k} \neq 0$ [4]. This means M_0^{4k} is not a π -manifold, so that it is not immersible in \mathbb{R}^{n+1} .

In particular we can prove that M_o^4 is not immersible in R^6 , for suppose M_o^4 be immersed in R^6 , then the normal bundle induced by this immersion is trivial since the second Stifel-Whitney class $w_2(\nu)=0$ hence by lemma 6.4 in [2], M_o^4 is immersible in R^5 , which is a contradiction. In other words, the Hirsch's result is best possible for n=4.

References

- [1] M. W. Hirsch: Immersions of almost parallelizable manifolds, Proc. Amer. Math. Soc., Vol. 12, (1961), pp. 845-846.
- [3] M. Kervaire: On the Pontryagin class of certain SO(n) bundle, Amer. J. Math., Vol. 80, (1958), pp. 632-638.
- [4] _____: Sur l'invariant de Smale d'un plongement, Comm. Math. Helv., Vol. 34, (1960), pp. 127-139.
- [5] J. Milnor and M. Kervaire: Bernoulli numbers, homotopy gronps and a theorem of Rohlin, Proc. International Congress of Math. (1958), pp. 454-458.
- [6] J. F. Adams: Vector fields on spheres, Ann. of Math. Vol. 75, (1962), pp. 603-632.