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A strong vectorial
Ekeland’s variational principle

Yousuke Araya

Abstract: Using a concept of approximately efficient point intro-
duced by Tanaka [8], we present a certain vectorial version of Ekeland’s
variational principle.
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1 Introduction

Since Ekeland [2] in 1972, the variational principle and its equivalent formulations
have been one of the main subjects in many fields of nonlinear functional analysis,
convex analysis, and optimization.

Theorem 1.1 (Ekeland[2]). Let (X,d) be a complete metric space and f : X —
(—00, 0] a ls.c. function, Z +oo, bounded from below. Let £ > 0 and u € X satisfy

< inf .
f(u) < inf f(z) +e
Then there exists some point v € X such that

(i) f(v) < flw),
(i) d(u,v) <1,
(iii) for each w # v, f(v)—ed(v,w) < f(w).

We are interested in generalizing the variational principle to that of vector-valued
function. Gopfert, Tammer and Zalinescu (G-T-Z)[4, 5] proved several minimal
point theorems and their corresponding variants for vectorial versions of Ekeland’s
variational principle. In their papers, they used the concept of e-efficient point,
which is an approximate concept introduced by Loridan [7]. On the other hand,
Tanaka introduced another concept called by approximately efficient solution point.



Definition 1.2 (Tanaka[8]). Let S be a nonempty subset of Y and ¢ > 0. A point
y € Y is said to be a lower e-approximately efficient point of S with respect to C' if

yeSand (y—C)N(S\ B.(3)) = 0, where B.(3) = {y € Y|lly — 7]l < ¢}.

The existence of such solutions guarantees a kind of lower boundedness of S which
is different from the Loridan’s type lower boundedness. Based on this property we
present a specification of G-T-Z’s vectorial Ekeland’s variational principle and obtain
detail properties of this.

We give the preliminary terminology and notation used throughout this paper.
Let X be a complete metric space and Y a normed space. For a set A C Y, corA
and intA denote the algebraic interior and the topological interior of A, respectively.
We assume that a nonempty set C' C Y is a solid closed convex cone, that is,

(a) intC # 0,

(b) clC =C,

(c) C+CCC,

(d) AC C C for all X € [0, 00).

A cone C is said to be pointed if C N (—C) = {0}. If a pointed convex cone C CY
is given, we can define an ordering in Y by “r <¢ y when y —x € C.” This ordering
is compatible with the vector structure of Y, that is, forevery z € Y and y € Y/,

(i) x <c y implies that z + z <cy+zforall z € Y;

(i) z <¢ y implies that az <¢ ay for all a > 0.

We denote 2 <t ¥ when y — 2 € intC, B.(9) = {y € Y|lly — 9|l < &} for any
e>0and f(X)=,cx{f(z)} for a function f: X — Y.

Tammer and Weidner introduced the following nonlinear scalarizing function,
which takes values in R in the setting of this paper because C is solid.

Lemma 1.3 (Lemma 7 in [5]). Let C be a conver cone. We take k® € C \ (—clC)
and define hoyo 1 Y — [—00,00] by

hC,kO(y) = 1nf{t € Rly € tko - C}

Then the function hcyo has the following five properties:

(i) hcyo is proper (hoyo £ +00 and hggo(y) > —o0 for everyy € Y),



(ii) heogo is sublinear (ho ko (Ayr + py2) < Ao go(y1) + phogo(y2) for every yi, yz €
Y and \, p > 0),

(iii) hogo is increasing with respect to <c¢ (y1 <c y2 tmplies hexo(y1) < hexo(y2)),
(iv) {y € Y|hcpoly) <t} =tk° ~C,
(v) hopo(y + Ak®) = hopo(y) + A for everyy € Y and A € R.

Moreover, if k® € corC then hcyo is finitely valued, {y € Y|hcxo(y) < t} = tk° —

corC and hexo(y1) < hopo(y2) if y2 — y1 € corC. Furthermore, if C is closed, then
hc ko s lower semicontinuous.

As a corollary of the above lemma, Gerth(Tammer) and Weidner presented the
following nonconvex separation theorem.

Lemma 1.4 (Theorem 2.3.6 in [4]). Assume that Y is a topological vector space, C
a solid closed convex cone and A C'Y a nonempty set such that AN (—intC) = 0.
Then hc ko is a finite-valued continuous function such that

hC,kO(—'y) <0< hCyk;O(iL') Vx € A, RS intC,

moreover, hoyo(x) > 0 for all x € intA.

The above two lemmas play important roles in this paper.

2 Main result

We obtain the following vectorial Ekeland’s variational principle.

Theorem 2.1. Let f : X — Y be a vector-valued function, o € X, € > 0 and
k® € intC. Assume that f satisfies (f(X)\ B(f(0))) N (f(xo) —intC) = @ and that

H) {&' € X | f(z') +d(z,2")k° <c f(z)} is closed for every x € X.

Moreover we also assume €' > 0 satisfies (—e'k® — intC) N B.(0) = 0. Then there
erists T € X such that

(i) f(@) <intc f(zo)
(i) 1[£(Z) = fzo)l[ <€



(iii) d(zo,Z) <€’

(iv) if for some z € X, f(z) + d(z,Z)k° <c f(Z) thenz = Z.
Proof. First of all, (hggo o f)(x) is bounded from below on X for all x € X. By
Proposition 1 in [8] and the assumption of Theorem 2.1, we have that a point f(z,)

is a Loridan’s &'-efficient point of f(X), that is, f(X) N (f(zo) — £'k® — intC) = 0.
By Lemma 1.4, we have

hoo(—y) < 0 < hego(f(z) — f(zo) + €'K°)

for all z € X, y € intC. Using (ii) and (v) of Lemma 1.3, we have

—00 < hepo(=y) — hego(—f(20)) — e < hego(f(z)).

We consider the following set-valued map F : X — 2%
F(z) := {y € X|f(y) + d(z,y)k° <c f(x)}.
By condition (H), F(z) is a closed set for each z € X and F has the following
properties:
(a) z € F(x) (reflexivity),
(b) if y € F(z) then F(y) C F(z) (transitivity).

Property (a) is easy. To prove property (b), we take y € F(x) and suppose that
z € F(y). Then we have that

f(y) +d(z,y)k° <c f(z) and f(2) +d(y, 2)k" <c f(y).

By the compatibility of the ordering <¢ to the vector structure, the triangle in-
equality on d and k° € C, we have that

f(2) +d(z, 2)k° <c f(=),
which implies z € F(z).
Next, using (iii) and (v) of Lemma 1.3, we have that y € F'(x) implies
howo(f () + d(z,y) < hepo(f(2)),

and hence

d(z,y) < hepo(f(z)) — z&ig(fz) hoxo(f(2))



for all y € F(x), which implies the following upper bound on the diameter of F'(z)

Diam(F (@) < 2(heus(f(@) = inf hesolf()) (2.1)
For each n = 1,2,..., by definition of the infimum, there exists z,1 € F(z,)

such that hcpo(f(2nt1)) < infrepa,) hope(f(2)) + 27 ™. Since F(2p11) C F(z,) by
property (b), we have

inf hogo(f(2)) < inf )hc,ko(f(z)).

2EF(xn) 2EF (Tn41

On the other hand, since we always have inf,cp() hopo(f(2)) < hope(f(y)) by
property (a), we obtain the inequalities

0 < hego(f(nt1)) — _inf )hC,ko(f (2)) < 27" (2.2)

2€F(zn+1

By combining (2.1) and (2.2), we get Diam(F(z,+1)) < 227", Consequently, it
follows that the sequence of diameters of the closed sets F(x,) converges to 0. By
Cantor’s theorem, we have that

() F(zx) = {z}.

n=0

Since Z belongs to F'(zg), we have that
f(Z) + d(z0, D)K® <c f(x0) (2.3)
and hence
f(zo) — f(Z) € C + d(xo,7)k° C intC,

which shows that the condition (i) holds. Since Z belongs to all the F'(z,), we have
that F(Z) C F(z,) and consequently that

F(z) = {z}.

Thus, we deduce that the condition (iv) holds. Moreover, by condition (i), that is,
f(Z) € f(zo) — intC, and assumption (f(X) \ B:(f(z0))) N (f(zo) — intC) = @, we
have that

/(@) € B(f(20)),

therefore condition (ii) holds. To prove condition (iii), we suppose that d(zo,Z) > €'.
Then we have that (d(zo,Z) — €')k® + C C intC. By condition (2.3) we have that

f(Z) € f(zo) — d(z0,7)k° — C C f(zxo) — 'k — intC,

which is a contradiction. a



Remark 1. Note that the case of Y =R, C =R, = [0,00), k® = ¢ € R, \ {0} and
¢’ =1 in Theorems 2.1 becomes Theorem 1.1. We also note that the pointedness of
C is not needed to prove Theorem 2.1.

Remark 2. In Theorem 2.1, the solidness of C' is used to ensure that the constructed
functional h¢ ko takes finite values. If we set

Y =R, C={=2)|reR}, k°=(,1), a=(2,2), b=(1,0).
We have that
hC,ko (a) =2 but hC,ko (b) = OQ.

This fact guarantees the lower boundedness of the function in Theorem 2.1.

3 Conclusions

Gopfert, Tammer and Zalinescu[5] obtained a vectorial Ekeland’s variational princi-
ple with an estimate of d(zg,Z). In this paper, we assume the existence of approxi-
mately efficient solution point introduced by Tanaka and obtain a vectorial Ekeland’s
principle not only an estimate of d(x,Z) but also an estimate of || f(Z) — f(z0)]|.
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