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CONTINUITY OF A CERTAIN INVARIANT OF
A MEASURE ON A CAT(0) SPACE

TETSU TOYODA

ABSTRACT. For a finitely supported probability measure i on a complete CAT(0)
space Y, Izeki and Nayatani defined an invariant () € [0,1] in [1]. The supremum
of those for all such measures on Y is an invariant of Y, called the Izeki-Nayatani
invariant, which plays an important role in the study of fixed-point property of
groups. In this paper, we establish continuity of § on the space of finitely supported
probability measures. We prove the lower-semicontinuity of § with respect to
the (L?-) Wasserstein metric, and continuity with respect to some metric which
induces a stronger topology.

1. Introduction

First we set up some notations. Let (Y, d) be a complete CAT(0) space. For any
p,q € Y, there is a unique geodesic v joining p to ¢, that is an isometric embedding
of the closed interval [0,d(p, ¢)] into Y with v(0) = p and v(d(p,q)) = ¢, and we
denote its image by [p,q]. We denote by P(Y) the set of all finitely supported
probability measures on Y other than measures supported on a single point. For
any v € P(Y), there exists a unique point 7 € Y which minimizes the function

o | dta,pviay)

defined on Y. This point ¥ is called the barycenter of v. For detailed accounts of
CAT(0) spaces and behaviors of probability measures on them, we refer the reader
to [5] and [6]. Throughout this paper, we fix an infinite dimensional Hilbert space
H.

Definition 1.1 (Izeki-Nayatani). Let Y be a complete CAT(0) space. For p €
P(Y), we denote by ®(u) the set of all maps ¢ : suppu — H from the support of p
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to H such that

l¢(p)|| = d(p, 1), (1.1)
l6(p) — é(q)[| < d(p,q) (1.2)
for all p,q € suppu. For p = 3", t;Dirac,, € P(Y), we define a function D* :

®(n) — R by

IS el
DO = s otre ¢ €2

Here and henceforth, Dirac, denotes the Dirac measure at p. For p € P(Y), we

define 0(u) as

o(p) = jant D*(9).

And we define the Izeki-Nayatani invariant §(Y) of Y as
5(Y) = sup o(s).
neP(Y)

By definition, we have §(u) € [0,1] for all © € P(Y). We can say that the Izeki-
Nayatani invariant measures a sort of singularity of a CAT(0) space. And it plays
an important role in the study of fixed-point property of groups; we refer the reader
to [1], [2], [3], [4], and [7].

However, computation of this invariant is generally hard. To estimate the Izeki-
Nayatani invariants of various CAT(0) spaces, and to understand this invariant
better, it must be helpful if continuity of § is guaranteed. In this paper, we formulate
some continuity results for ¢ : P(Y) — [0, 1].

Recall that the (L2-) Wasserstein distance d" (u1, ) between

= ZtiDiracpi e P(Y)

i=1
and
v= Z s;Dirac,, € P(Y)

J=1

is defined by
d" (p,v)? = inf/ d(z,y)*dr(z,y),
Y XY

v
where the infimum is taken over all measures
T = g T;;Diracy, 4, (1.3)
1<i<m,1<j<n

on Y x Y such that Y T;; = s; for all 1 < j < m and Z?Zl T;; = t; for all
1 <i < n. Such a measure 7 is called a coupling of ;1 and v, so we can restate that
the infimum is taken over all couplings of u and v. The Wasserstein distance makes



P(Y) a metric space. The Wasserstein distance can be formulated in more general
setting, and plays a significant role in the theory of optimal transport. For more
information about this distance, we refer the reader to [§].

In Section 2, we prove the lower-semicontinuity of § with respect to d":

Theorem 1.2. Let (Y, d) be a complete CAT(0) space. Then ¢ : P(Y) — [0,1] is a
lower-semicontinuous function on (P(Y),d").

In Section 3, we introduce a new metric dgw on P(Y'), which induces a stronger
topology on P(Y’) than d", and prove the continuity of § with respect to this metric.

2. Lower-semicontinuity with respect to d"

In this section, we prove Theorem 1.2. But before starting the proof, we define an
invariant of a measure, which plays an important role in our proof.

Definition 2.1. Let (Y, d) be a CAT(0) space, and let v € P(Y). We set

S, = {(p,q) € suppv x suppv | p € [7,q], ¢ & [V, p]},

and define a positive real number L, as
L, =min {d(p,q)* — (d(p,7) — d(q,7))? ‘ (p,q) € S, }.
Because of the triangle inequality, we have
d(p,q)* = (d(p,7) = d(q.7))* > 0

for any p,q € suppr, and the equality holds if and only if p € [7,¢| or ¢ € [7,p].
Therefore, we have L, > 0 for any v € P(Y).

Proof of Theorem 1.2. Let

n

V= E Slervaj

j=1
be an arbitrary measure in P(Y), and let J = {1,...,n}. Let
m(N)

M(N) = Z tZ(N)DiI‘anZ(N), N = ]-; 27 37 cee
=1

be an arbitrary sequence of measures in P(Y') which converges to v in (P(Y),d"),
and let I™) = {1,...,m"™} for each N € N. Then what we have to show is that
lim inf §(u™) > (). (2.1)

Because the sequence of the barycenters { (™} converges to 7 in Y, for any n > 0,
we can find a positive real number N, such that N > N, implies

dV (™ vy <n?, d(p™),7) < 1. (2.2)



Then, to prove (2.1), it is sufficient to show that for any sufficiently small n > 0,
any N > N, and any ¢ € ®(u™M)), there exists ¢, € ®(v) such that

DW™(g) = D¥ () — F(n), (2.3)

where F'is some function converging to 0 when n — 0.
In the proceeding argument, assume that n > 0 is an arbitrary positive real
number such that

, 1 . .y
n < mln{éd(qj,qj/) ‘ ],]/ S J, J 7&]/}7
7’ <min{s; | j € J}.

And suppose N be an arbitrary integer such that N > N,,.
Let

={ie 1™ |dp"™, q) <n}
for any j € J, and
Y ={ie 1™ |vje dp™, q) > n}.

Then IéN), II(N), e ,LSN) satisfy the following three conditions.

o IM = MurMu...un,
on#ftMnﬂm I = 4,

e Forevery je J, I 7éq§
The first two are obvious. The last one is shown as follows: If 1 ](N) were empty, then
for any coupling = = Z  Tijr Dlrac( ™), of ™M) and v, we would have
]
/ d(x,y)*dr(z,y) Z ,qj
Y XY e I(N)
> s > '

But this contradicts the fact that d" (u™),v) < n%.
Now, we will construct ¢, € ®(v) in (2.3) in three steps. As the first step, we

(™)

construct a vector A; € 'H for each j €J. J For each j € J, since ;" is nonempty,

we can choose some iy € I I py, # /L , let

d(ﬁ,q) (N)
! ﬂMmmgU( )



and if p;; = p), let A; be an arbitrary vector of length d(7,¢;). Then, by the
second inequality of (2.2) and the assumption on 7, we have

o™y — Al < o) — St + (i) — 44|

<dp™ p™y + oM -

<d(p™, pMy + d<pz(éV)aﬂ(N)>_d(ijﬁ)‘

<dp™ p™y + 1d@Y, 1™y — d(u™), g;) +‘d(u(m,q]~)—d(?,qj)
< dp™, q5) + d(a;, ) + d(p”, 4;) + d(u™), 7)

<4n

for any ¢ € I;. For any j,j’ € J, we have

14; = Ay |l < 1145 = 6@ ) + 16) = S| + o) — Ayl

<8y +dpt", ;) + d(g;, q5) + d(gzr, p)
< 10n+d(g;, q;).

In the preceding inequality, ¢ and i’ are arbitrary elements of I; and I; respectively.

Before moving to the next step, we set up some notations related to v. We first
divide J into “branches”. We define a set J C J, “representatives of branches” |, by
declaring j € J if and only if ¢; # 7 and there is no j' € J other than j itself such
that ¢; is on the geodesic segment [7, ¢;] joining 7 to ¢;. Let k be the cardinality of
J, and we denote elements of J as ji, ..., jr. We define subsets J, ..., J, of J as
follows:

S={jeJ|q €v,qgl}, 1<I<E,
Jo={jeJlqg="}
It follows immediately that J = UF_,J;, and that [ # I’ implies J; N Jy = ¢. And
we claim that j, j € J\Jy must be contained in the same J; for some [ € {1,...,k}
whenever ¢; € [7,q;] or ¢y € [7,q;]. We define K, > 0 and k, > 0 as

K, =max{d(v,q;) | j € J}, Kk, =min{d(@,q;) | j € J\Jo}.

As the second step, we define



forany j € J; (I =1,...,k), and B; = 0 for j € Jy. Using the cosine formula for
the triangle spanned by A, and A;, we have

d(7,q;)* +d@,q;,)* — (100 +d(7, ¢;) — d(7,4;))°
2d(v,q;)d(7, ;)
1007 — 20n(d(7,¢;,) — d(7, 4;))
2d(7, q]')d(ﬁ, QJ'l) .

cos Z(A;, B;) >

=1

Then it follows that

K,
14, Bl < | K2 1002 + 209,
This is still true in the case of j € Jy. Hence, we have
1B = Byll* < (1B — A3l + 14 = Ayl + |14y — By |l)?
< d(gj,q7)* + f(n),

for any 7,7 € J, where

K, K,
f(n) = 1007 + 4= (1001 + 207K,) + 40n\/ ~ (10072 4 207K,)

14

Ji'€

K,

+ max d(gj, q5) (2077 + 4\/k—(100n2 + ZOUKV)) :

Now we come to the final step. Let £ € H be a unit vector orthogonal to the
subspace spanned by By, ..., B,. For 0 < 6 < 7, we define

B? =sinf - || B;||E + cosf - B,
for any j € J. Then for any 0 <6 < § and j € J,
18711 = 11B;]l,
and for any 7,7 € J,
1B; = By|* = 1B = Bj||* = sin®0 - {||B; — By |* = (1Bl — 1By )*}.  (2.4)

Assuming that 1 > 0 is taken to be small enough if necessary, we define

| f)
L,

n = S1Il

We define a map qz~577 : suppr — H by
o) = By, jE.

We have to confirm qgn € ®(v). The condition (1.1) is obvious, so we examine the
condition (1.2) by considering three cases separately.



CasE I: (gj,q) € Sy. In this case, B; and Bj are parallel vectors by definition,
so we have

0, 0,
1B;" — Bl = ||1B; — Byl = |l Bl — | Byl
= |d(q;,7) — d(qy, V)| < d(g5, q5)-

CasE II: (gj,q;) € S, and |B; — By||> — (|| Bjll — || By]l)* < L,. In this case, we
have

0, 0,
IB;" — B> < ||B; — By|?
< Ly, + (d(g;,7) — d(qy,7))* < d(gj,q5)°-

Cask I1I: (gj,q4) € S, and ||B; — Bj/||> — (|| Bj|| = ||1Bj:||)> = L,. In this case, by
(2.4) and the definition of §,, we have

0 0
1B;" = B |I” < d(gj, 7).

Hence ¢, € ®(v).
Let

F(n) = D*(é,) = D¥™)(9)
B IS S s 25)
ST S ST P T
To complete our proof, it is sufficient to show that F'(n) tends to 0 when n — 0.

And, since the limit
2
B\l =2 sid@.0;)"

jeJ jeJ

B

J

lim Sj
n—0

exists, it is sufficient to prove the following:
(i): lim, o ZieIéN) tEN)Qb(pEN)) =0;
(i): im0 35,00 1 0™ = 01
(iii): For every j € J, lim,_.g HZieI](N) tM ™) — sjB?”

(iv): For every j € J, lim,_.g (Zia](,m tEN)Haﬁ(pEN))HZ _ SjHB?WHQ) = 0.

Let I; = min{d(pz(-N), q;)|jeJ}forie IéN). To prove the above assertions, we first
show the following:

(a): lim, 0>, , ) tZ(N) =0;
(b): For each i € I((]N), lim, o ZiEIéN> tz(,N)li? = 0;
(c): For every j € J, lim, Zigjgm tl(.N) = s;.

(d): For any j € J and i € I™), lim, o |6(p\™) — BY"|| = 0.



(N)

Because d(p; ', q;) > n for any ¢ € [O(N) and j € J, we have

> = Z t dV (™M, v)? <’
icr{™) ielN

This implies (a). And (b) follows from the following;:

ST < d¥ (N, 0)? < gt

ier™

Next we prove (c). Fix an arbitrary j € J and let

™= E TZ-]-/D1rac(p5N> a)

.y ’ J
Z?]
be any coupling of ) and v. Then we have
N N N
oo Tpde™ g+ YD TudY g > 1>t — sl
iel™ jrea\{j} eI\ ier™

Therefore,
nt > dV (™, v)? > | Z t —sj|772.

(N)
zEIj

This implies (c). Finally, (d) is obvious from our construction of B?”.
Now (i) follows from (a) and (b) since

1> 6™ < Y #Vde™, u™)

ierf™) ier$™
< > 7)) +1)
ier$™
< Z t"(K, +1; + 1)
ier{™

N[
D=

SRR DI AR ISR B I D

ier{™ ier{™ ier{™

(ii) also follows from (a) and (b) since

ST M le(™M))? < Z tN(K, + 1+ )2

ier{™ ierN



(iii) follows from (c) and (d) because

N N 0
1Y 86(p™) — 5B <

- 7(N)
1€Ij

N N 7 N 0,
STty = By +| >t — s 1B

ieI;.N) z’eI;N)

Finally (iv) follows from (c) and (d) because

N N 0.
> ™o sl1B 1P| <

ier™
N N 0 N 0
> eI 1B P+ | Do 6™ = s 1B
iery™) ier™
J J
Now, the proof is completed. U

Remark 2.2. One simple application of Theorem 1.2 is the possibility to restrict
the set of measures over which we take supremum when we define the Izeki-Nayatani
invariant §(Y): Let Y be a complete CAT(0) space and U C P(Y) be a dense subset
in (P(Y),d"). Then our theorems guarantees that

6(Y) = supd(p).

pnel

For example, Let Py(Y) C P(Y) be a subset of all 4 € P(Y) of the form p =
>, =Dirac,,. Then, it is obvious that Po(Y") is dense in P(Y") with respect to d".

So we have
6(Y)= sup d(u).

BEP(Y)

3. Continuity with respect to dgy

To establish the continuity of ¢ on P(Y') we define another distance dgw on P(Y)
by declaring

duw (i, v) = max {dw(,u, v), dy(suppp, suppu)}
for any p,v € P(Y). Here, dy denotes the Hausdorff distance. Recall that the
Hausdorff distance between closed subsets A and B of Y is defined by

dy (A, B) = max {sup d(a, B), supd(b, A)} :
acA beB
The distance dyy makes P(Y) a metric space, and induces a topology which is

stronger than the one induced by d"'. Then with respect to this topology, we can



also prove the upper-semicontinuity of § by the argument similar to that in the proof
of Theorem 1.2.

Theorem 3.1. Let (Y, d) be a complete CAT(0) space. Then 6 : P(Y) — [0,1] is a
continuous function on (P(Y),duw).

Proof. The lower-semicontinuity follows from Theorem 1.2. We prove the upper-
semicontinuity. We proceed as in the previous section. Let v = Z?Zl s;Dirac,; be
an arbitrary measure in P(Y), and let

m)

M(N) = Z tZ(N)DiracpZ(N), N=1223,...
i=1

be an arbitrary sequence of measures in P(Y) which converges to v in (P(Y), dgw ).
Then, for any n > 0, we can find a positive real number N; such that N' > N;
implies

dHW(:u’(N)7 V) < 7727 d(ma D) <. (31)
Now, what we have to show is that for any sufficiently small n > 0, any natural
number N > N, and any ¢ € ®(v) there exists ¢, € ® (™) such that

D" (2,) < D¥(¢) + G(n), (3.2)

where G is some function converging to 0 when n — 0.
As in the previous section, assume that 7 is an arbitrary positive real number
such that

(1 . L,
n < mm{id(%‘a%’) ‘ Jg €, ] #J’}7
7’ <min{s; | j € J}.

And let N be an arbitrary integer such that N > N, and let ¢ € ®(v). Let

[éN), . I8 be as in the previous section. Then the following four assertions hold:

o IM =My y...ur™,
o If j # j' then IV NIV = ¢;
e For every 5 € J, I](N) % ¢;
° IéN) = .
The first three are shown by the same argument as in the previous section, and the
last one follows immediately from the fact that dg(suppu™), suppr) < 7.
Now, we will construct , € ®(u™)) in (3.2) in two steps. As the first step, we

construct a vector C; € H for each i € IN) as follows: For i € I (N), let

J
d(p™), p™)

_ %

i = W¢(Qj)



if ¢; # 7, and let C; be an arbitrary vector of length d(u(N),pz ) if ¢ = 7. Then
the second inequality of (3.1) and the assumption on 7 imply

le(a) = Cill = (™), p™) = (7, ;)
gﬂ(Niﬂ+ﬂﬁmﬂﬂ<2n
Henceforanyzel( ) and ' EI 1f] # 7', we have
1= €l 10— (0l + o) = ola)] + i) = ol

< dn+d(g;, p") +d™, i) + i gp)

< 6n+dp!™, ).
Thus, with the fact that dg (suppu™), suppr) < n we have

1C: = Coll* < dw™ . pi")? + 9(m). (3.3)

where g(n) is some function converging to 0 when n — 0. And in the case j = j/,
we have

1C; = Coll = 1d(u™), p™) — d(u™), piM)|

N) (N
<dp™, piM).
Let us proceed to the second step. First, we set up one notation We define a
subset TW) C suppu™) x suppu™ by declaring (pl(-N),pE,N )) e T™) if and only if

1€ I](N) and i’ € IJ(,N) for some j, j' such that (¢;,q;) € S,. And let

—\2
Liyy = min {d(PEN);pZ(/N))Q (d(pEN)’M(N)) _ d(pz(-/N),M(N)D |
™, pM) e T},
Then observe that for all sufficiently small n > 0 we have
L,

N = 5 (3.4)

This follows from the fact that for any (pEN), pE,N )) € TW) there is (¢;,q;) € S, such
that
dp™, q) <, dw§,qp) <m,  d(u®, ) <.
Now we assume that n > 0 is sufficiently small so that (3.4) holds.
Let £ € 'H be a unit vector orthogonal to the subspace spanned by C,...,C ().

For 0 <0 < 7, we define
C% =sinf - |G| E + cosf - C;
for any i € I™). Then for any 0 < < Z and i € /™),
IC21 = ICill = (™), p™),



and for any i,7’ € IV,
IC; = Cal* = |C7 = C2|1? = sin* 0{[| Ci — C|1> = (Gl = [|Cr )3 (3.5)

Assuming that 1 > 0 is taken to be small enough if necessary, we set

1 [29(n)
¥, = sin™! I
and define a map ¢, : suppu™ — H by
gﬁn(p,EN)) —cl eI,

We want to confirm ¢, € ®(u™)). The condition (1.1) is obvious, so we examine
the condition (1.2) by considering three cases separately.
Cask I (pgN) pf;,N)) ¢ TN, In this case, C; and Cy must be parallel vectors, so

1 )

we have
ICP — il = 1C; = Cull = Gl — |Gl
= |d(p\"™ ™)) — i, )| < dp™ piY).
Case IT: (pi™,piY)) € T and ||C; — Cy||? = (|Ci]| — [|Cxl))? < Liy,. In this

case, we have
)" — Com? < [|C; — C?
N) ~— [y N
< Liyy + (d@™, 1™ — d(pd™, 1®))? < d(p™, pi)2.

Case 1L (pi™,piM) € T and ||C; — Cy || = (||Cil| — ||Cx]1)? > L{y,. In this

’L

case, by (3.3), (3.4), (3.5) and the definition of ,, we have
lei = CinlP < doi™. i),

N)

Hence @, € ® ().
Let

(N) v~
G(n) = D¥ ) (p) — D" ()
n N
_uzﬁﬁzdmt <)W Hzﬁﬁjm

2

It is sufficient to show that G(n) tends to 0 when  — 0. It is quite obvious that
this follows from the same argument by which we show that F(n) tends to 0 in the
previous section, so our proof is completed. l
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