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SUBSPACE METHODS FOR SOLVING ELECTROMAGNETIC

INVERSE SCATTERING PROBLEMS∗
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Abstract. This paper presents a survey of the subspace methods and their applications to
electromagnetic inverse scattering problems. Subspace methods can be applied to reconstruct both
small scatterers and extended scatterers, with the advantages of fast speed, good stability, and higher
resolution. For inverse scattering problems involving small scatterers, the multiple signal classification
method is used to determine the locations of scatterers and then the least-squares method is used to
calculate the scattering strengths of scatterers. For inverse scattering problems involving extended
scatterers, the subspace-based optimization method is used to reconstruct the refractive index of
scatterers.
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1. Introduction. Electromagnetic inverse scattering problems are considered
in this paper. In recent years, subspace methods are widely used in solving electro-
magnetic inverse scattering problems. This paper presents a survey of the subspace
methods for such applications. Generally speaking, in electromagnetic inverse scat-
tering problems, scatterers can be categorized into two types: point-like scatterers
and extended scatterers. A scatterer can be treated as point-like when its size is
much smaller than one wavelength. When subspace methods are applied to recon-
struct point-like scatterers, they are fast imaging methods since the nonlinear prob-
lem can be solved without iteratively evaluating the corresponding forward problem.
In this survey, the multiple signal classification (MUSIC) method and the two-step
least squares method are discussed, with the former being used to locate point-like
scatterers and the latter being used to retrieve the scattering strengths of point-like
scatterers. In reconstructing extended scatterers, the inverse scattering problems are
usually cast into nonlinear optimization problems. The survey discusses the subspace-
based optimization method (SOM). The method decomposes the solution space into
two subspaces, so that the solution in one subspace is directly obtained from measured
scattering data whereas the solution in the other subspace is obtained via iterative
optimization. Since the optimization is carried out in a subspace instead of the whole
space, the SOM is fast convergent. In addition, the SOM also has the advantage of
being robust in presence of noise, high resolution, and the ability of reconstructing
scatterers of complex patterns.

2. Reconstructing point-like scatterers.

2.1. Forward scattering problem. Consider M three-dimensional objects
that are illuminated by time-harmonic electromagnetic waves radiated by an array
of N antenna units (transceivers). The transceivers are located at r′1, r

′
2, . . . , r

′
N , and

each consists of 3 small dipole antennas oriented in the x, y and z directions with the
transmitting current Itranx , Itrany , Itranz , respectively. The M scatterers can be of any
shape, but we consider only spherical objects here for ease of presenting. The size
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of each scatterer is much smaller than the wavelength so that they can be treated as
point-like scatterers. The centers of the scatterers are located at r1, r2, . . . , rM . The
shape and composing material of each small scatterer determine its polarization tensor

ξ [4] (that is also called the scattering strength tensor). Note that the time depen-
dence factor exp (−iωt) for field quantities is assumed and is suppressed throughout
the paper.

When multiple scattering between scatterers is taken into account, the total inci-
dent field Ēinc

t upon a scatterer includes both the incident field directly from antennas
Ēinc

0 and the scattered fields from other scatterers. The total incident fields are gov-
erned by the Foldy-Lax equation,

(1) Ēinc
t = Ēinc

0 +Φ · Λ · Ēinc
t ,

where both Λ and Φ are of size 3M × 3M . Λ = diag
[

ξ1, ξ2, . . . , ξM

]

and Φ(j, j′) is

null for j = j′ and is ikG(rj , rj′ ) for j 6= j′, with k being the wavenumber and G(r, r′)
being the dyadic Green’s function in free space [28]. The incident field directly from
transmitting antennas Ēinc

0 is easily found to be

(2) Ēinc
0 = R

T
· Ītran,

where R is of size 3N × 3M with the submatrix in the ith row and jth column being

R(i, j) = ikG(r′i, rj) and the superscript T denotes transpose. The scattered field is
found to be

(3) Ēsca = R · Λ · Ēinc
t ,

The multi-static response (MSR) matrix that relates scattered fields to transmitting
current is obtained by substituting (1) and (2) into (3):

(4) K = R · Λ · (I3M − Φ · Λ)−1 · R
T
,

where I3M is a 3M -dimensional identity matrix. The MSR matrix is characteristic of
the collection of scatterers for given sets of transceivers at the frequency of operation.

The following notations will be used throughout the section. The 3N×3 matrixD3(r)

is defined as D3(r) = ik

[

G
T
(r′1, r), G

T
(r′2, r), . . . , G

T
(r′N , r)

]T

. The Green’s function

vector, D̄x(r), D̄y(r), and D̄z(r) are defined through D3(r) = [D̄x(r), D̄y(r), D̄z(r)].

It is obvious that D̄x(r), D̄y(r), D̄z(r), and D3(r) represent the Green’s function
observed at all the antennas due to a dipole source at the position r, with the dipole
oriented in the x, y, z, and all three directions, respectively.

2.2. Mathematical foundations. The key of the theoretical foundation lies in
the injectivity of the so called current-to-field mapping operator, which is a map from
the induced current (or secondary source) to the measured scattered field.

Proposition. Define the operator Γ: C3M to C3N by

(5) λ 7→
{

[(Λλ)(r′1)]
T
, [(Λλ)(r′2)]

T
, . . . , [(Λλ)(r′N )]

T
}T

.
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Then there exists N0 ∈ N such that the operator Γ is one-to-one for N ≥ N0.
Note that in (5) we have defined the operator Λ, which maps C3M to the space
C(R3\{r1, r2, . . . , rM}) of continuous function on R3\{r1, r2, . . . , rM}, by

(6) (Λλ)(r) :=

M
∑

j=1

G(r, rj) · aj

for r ∈ R3\{r1, r2, . . . , rM}, aj ≡ [λ3j−2, λ3j−1, λ3j ]
T ∈ C3.

The proof of the above property directly follows [27] and is slightly different
from [7]. It is sketched here for the reader’s convenience.

Proof.

Step 1 : We show that Λ is one-to-one. Let λ ∈ C3M , such that (Λλ)(r) = 0 for
all r ∈ R3\{r1, r2, . . . , rM}. In case of r tending to one of the points rj , the fact that

G(r, rj) approaches infinity yields that aj = 0 for every j = 1, 2, . . . ,M .

Step 2 : Assume, without loss of generality, that the antenna array is on a spherical
surface Sρ0

≡ {r : (x2 + y2 + z2)1/2 = ρ0}, where ρ0 is large enough to enclose all M
sources. Consider {r′}n ⊂ Sρ0

be a countable set of positions with the property that
any analytic function which vanishes in r′n for all n ∈ N vanishes identically on the
spherical surface Sρ0

.
We prove the proposition by contradiction. If there existed no such N0, then

there would exist sequences {Nl} in N and {λ(l)} in C
3M with

∑3M
j=1 |λ

(l)
j | = 1 and

(Λλ(l))(r′p) = 0 for all p = 1, 2, . . . , Nl. The sequence {λ(l)} has accumulation points.

We assume that λ(l) → λ as l → ∞, with
∑3M

j=1 |λj | = 1. For any n ∈ N and l with
Nl ≥ n, we estimate by the triangle inequality

|(Λλ)(r′n)| ≤

∣

∣

∣

∣

∣

∣

M
∑

j=1

G(r′n, rj) · aj −
M
∑

j=1

G(r′n, rj) · a
(l)
j

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

M
∑

j=1

G(r′n, rj) · a
(l)
j

∣

∣

∣

∣

∣

∣

=

M
∑

j=1

∣

∣

∣
G(r′n, rj) · (aj − a

(l)
j )
∣

∣

∣
≤ C

M
∑

j=1

∣

∣

∣
aj − a

(l)
j

∣

∣

∣
(7)

for some finite constant C independent of l, and this converges to zero as l tends to
infinity. Therefore, (Λλ)(r′n) = 0 for every n ∈ N. Since Λλ is analytic on Sρ0

, we
conclude, by our assumption, that Λλ vanishes on all of points on the spherical surface
Sρ0

. By Huygens’s principle [28], we conclude that the far field electric field vanishes
identically. Then by Rellich’s lemma [19], (Λλ)(r) = 0 for all r ∈ R3\{r1, r2, . . . , rM},
which yields λ = 0 by the first part of the proof. This contradicts the fact that
∑3M

j=1 |λ
(l)
j | = 1. The proof is complete.

As corollaries, the injectivity of the current-to-intensity operator Γ theoretically
justifies the position-locating work via MUSIC method and the polarization-tensor-
retrieval work via two-step least squares method. It is stressed that this injectivity is
independent of the number of scatterers, i.e., it is valid for any positive integer M .

2.2.1. Locating positions. Positions of point-like scatterers can be found by
MUSIC method, and its basic principle is summarized as follows. Suppose a ∈ C3\{0}
and the size, 3N , of the MSR matrix K is sufficiently large, then for any position r,

(8) D3(r) · a ∈ R(K) iff r ∈ {r1, r2, . . . , rM},
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where R(·) denotes the range. This statement is in fact a corollary of the aforemen-

tioned proposition, considering the fact that the range of K is the span of the columns

of D3(rj), j = 1, 2, . . . ,M , i.e., D̄x(rj), D̄y(rj), D̄z(rj).

Proof of sufficient condition. If, for example, r = r1, the obvious choice of zeroing

coefficients of all D3(rj) except D3(r1) satisfies the condition.

Proof of necessary condition. Assume, to the contrary, that there is an r0 that

is different from r1, r2, . . . , rM and D3(r0) · a for some a is in the range of K. Thus,

the new set of Green’s function vectors D3(rj), j = 0, 1, 2, . . . ,M , corresponding to
the group of M + 1 points {r0, r1, r2, . . . , rM} is linear dependent, which however
contradicts the injectivity of Γ.

2.2.2. Retrieving polarization tensors. As to retrieving the polarization ten-
sor, the injectivity of Γ simply implies that the coefficient λ ∈ C3M can be uniquely
determined from (5) once the scattered field (∈ C3N ) is measured, which is the first
and the most important step in the two-step retrieval method presented in [43, 2].

2.3. MUSIC algorithm: Locating positions. The multiple signal classifica-
tion (MUSIC) algorithm [37, 20, 5, 6] has been of great interest in the inverse scat-
tering community since it was proposed to locate point-like scatterers in 2000 [20].
Positions of the small objects are retrieved from the multistatic response (MSR) ma-
trix generated by an array of transceivers [21, 22, 38, 27, 7]. MUSIC imaging method
was first applied to acoustic imaging, where scalar field is involved. The test func-
tion used to generate the MUSIC pseudo-spectrum is the Green’s function of the
background medium associated with a monopole source [18, 22, 27]. Recently, MU-
SIC algorithm was generalized to electromagnetic imaging of small three-dimensional
targets [7, 26, 43].

2.3.1. Standard MUSIC algorithm. The MSR matrix K maps C3N , the
vector space of complex 3N -tuples, to its range Sr ⊆ C3N . From the singular
value decomposition (SVD) analysis [24], the MSR matrix could be represented as

K · v̄p = σpūp and K
∗
· ūp = σpv̄p, p = 1, 2, . . . , 3N , where the superscript ∗ de-

notes the Hermitian. The vector space C3N can be decomposed into the direct sum
of the range (subspace) Sr = span{ūp, σp > 0} and the orthogonal complement
subspace Sn = span{ūp, σp = 0} that is referred to as noise subspace. Consider
non-degenerate scatterers in the absence of noise, three independent electric current
dipole components are induced in each scatterer, and the scattered field Ēsca is in the
space S0 spanned by the background Green’s function vectors associated with the x,
y, and z components of electric dipoles evaluated at the position of each scatterer, i.e.,
Ēsca ∈ S0 = span

{

D̄x(rj), D̄y(rj), D̄z(rj); j = 1, 2, . . . ,M
}

. In this case, it is easy to
conclude that two subspaces Sr and S0 are identical [21, 22, 43]. Due to the orthogo-
nality between the range Sr and the noise space Sn, we have

∣

∣ū∗pD̄l(rm)
∣

∣ = 0 and for
σp = 0, m = 1, 2, . . . ,M and l = x, y, z. The standard MUSIC algorithm [7, 26, 43]
defines the following pseudo-spectrum

(9) Φ(r) =
1

∑

σp=0

∣

∣ū∗pf̄(r)
∣

∣

2 ,

where test function f̄(r) can be any linear combination of D̄x(r), D̄y(r), and D̄z(r).
The pseudo-spectrum becomes infinite at the position of every scatterer.
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2.3.2. MUSIC algorithm with the optimal test dipole direction. In stan-
dard MUSIC, the test dipole can be oriented in any direction in noise free case for
non-degenerate scatterers, defined as those inside which three independent compo-
nents of an electric dipole are induced. Inside degenerate scatterers, only one or two
independent components of an electric dipole are induced due to special shapes or
composing materials of the scatterers. For example, a needle-like or disk-like small
object may present only one or two dominant components of induced electric dipoles.
In degenerate cases, the standard MUSIC does not work since an arbitrarily chosen
direction of test dipole is not necessarily located in the space spanned by actually
induced independent dipole components [10]. In addition, even for non-degenerate
scatterers, when scattered fields are noise contaminated, the performance of the MU-
SIC algorithm is found to noticeably depend on the orientation of the test dipole.
Here, we introduce an algorithm to find the optimal test dipole direction which not
only obtains a good imaging resolution but also is able to deal with degenerate scat-
terers.

To find the optimal test dipole direction is equivalent to determine a ∈ C3 subject
to ||a|| = 1, so that the solution x̄ to the equation

(10) K · x̄ = D3(r) · a

is most robust in the presence of noise. The SVD of K is given by

(11) K =
3N
∑

i=1

ūiσiv̄
∗
i .

Assume singular values are in non-increasing order, σ1 ≥ σ2 ≥ . . . ,≥ σ3N ≥ 0. The
least squares solution of x̄ is given by

(12) x̄ =
3N
∑

i=1

ū∗i ·D3(r) · a
σi

v̄i.

Note that the value of 1
σi

is large for a small σi. To obtain a stable solution x̄,

we should find a so that ū∗i · D3(r) · a is non-zero for only the first few items. It
is worth mentioning that even in case of truncated singular value decomposition,
i.e., regularization method is used, it is desirable to have a fast decaying series of

ū∗i ·D3(r) · a. Due to the orthogonality of ūi, we need to find a so that D3(r) · a is a
linear combination of the first few (say L) ūi.

(13)

L
∑

i=1

λiūi = D3(r) · a.

The new MUSIC algorithm is based on the analysis of the induced electric current
dipoles in the eigenstate, which is referred to as the eigen-dipole hereafter. We use

J
(i)

j to denote the current in the jth scatterer in the ith eigen-state. We have

(14) ūi =

M
∑

j=1

D3(rj) · J
(i)

j , i = 1, 2, . . . , L.
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The substitution of (14) into (13) yields

(15)
M
∑

j=1

D3(rj) ·
L
∑

i=1

λiJ
(i)

j = D3(r) · a.

There are two cases to be considered: (a) when the test position r is not at any of
the scatterers, rj , and (b) r is at one of the scatterers.

It is important to stress that the map from induced currents to scattered electric
fields is one-to-one [27, 7]. The proof is given in Section 2.2. When the test position
r is not at any of the scatterers, (15) holds only if a = 0 and λi = 0. Therefore, for

any dipole direction a, which satisfies ||a|| = 1, ū∗i ·D3(r) · a is not equal to zero for
all 3N left singular vectors ūi. In this case, the solution x̄ is the linear combination
of all 3N right singular vectors v̄i as shown in (12). It is obvious that the resultant
least squares solution is not stable due to the presence of small σi.

When r is at one of the scatterers, for example, r = r1, (15) requires

L
∑

i=1

J
(i)

1 λi = a,(16)

L
∑

i=1

J
(i)

j λi = 0, j = 2, 3, . . . ,M.(17)

Eq. (17) amounts to determining the minimum value of L so that J
(1)

, J
(2)

, . . . ,

J
(L)

are linearly dependent, where J
(i)

is a column vector of length 3(M−1) consisting

of J
(i)

j , j = 2, 3, . . . ,M . Therefore, when the test point r is at one of the scatterers,
the value of minimum L is equal to one plus the total number of independent dipoles
induced in other scatterers. For example, for M isotropic spheres, the value of L
equals to 3M − 2. It is stressed that the algorithm also applies to degenerate cases.
When the nontrivial λi, i = 1, 2, . . . , L obtained from (17) are plugged into (16), the
resulting a is generally a complex value. When we force the vector a to be real, more
eigen-states are needed to solve (16) and (17). Thus from (12), we know that the
solution is not as robust as the one obtained from the previous complex a.

In practice, the value of L can be easily obtained after the total number of dom-
inant singular values is found from the spectrum. From the previous analysis, it is
easy to conclude that the value of L is equal to the total number of dominant singular
values, or it minus one or two, depending on the case of degeneracy of scatterers.
The test dipole direction is determined by finding a ∈ C3 subject to ||a|| = 1, so that

D3(r) · a is close to the space spanned by the first L dominant singular vectors ūi,

i.e., we aim at a minimum projection angle between the vector D3(r) ·a and the space
spanned by the singular vectors ūi, i = 1, 2, . . . , L:

(18) amax = argmaxa

∑L
i=1 |ū∗i ·D3(r) · a|2

|D3(r) · a|2
.

From the general eigenvalue decomposition, we obtained the solution a that is
given by the eigenvector corresponding to the maximum eigenvalue of the ma-

trix
(

D3(r)
∗ ·D3(r)

)−1 ([

U ·D3(r)
]∗ [

U ·D3(r)
])

, where U = [ū1, ū2, . . . , ūL]
∗
. It
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should be noted that when the test vector a is restricted to be real, the solution
to (18) is given by the eigenvector corresponding to the maximum eigenvalue of the

matrix
[

R

(

D3(r)
∗D3(r)

)]−1

· R
([

U ·D3(r)
]∗ [

U ·D3(r)
])

, where R(·) denotes the
real part operator. Then, the pseudo-spectrum can be defined as

(19) Φ(r) =
1

1−
∑

L
i=1

|ū∗

i
·D3(r)·amax|2

|D3(r)·amax|2

,

which peaks at the position of every scatterer.

2.4. Two-step least squares: Retrieving polarization tensors. Once the
positions of point-like scatterers are located, we are able to retrieve the polarization
tensors of scatterers. It is stressed that this is a nonlinear problem when multiple
scattering effect is considered. A common approach to such a nonlinear problem is
to cast it into an optimization problem and the corresponding forward problem is
iteratively evaluated during the optimization process. However, this approach is time
consuming and the optimization results depend, to a great extent, on the initial guess.

However, such a nonlinear problem can be solved noniteratively. As shown in
Section 2.2.2, the injectivity of Γ simply implies that the coefficient λ can be uniquely
determined from (5). Following this guideline, the polarization tensors of scatterers
can be retrieved noniteratively, which is outlined as follows. From (3), the induced

current (secondary source) Λ · Ēinc
t can be uniquely determined from the scattered

field Ēsca.

(20) Λ · Ēinc
t = R

†
· Ēsca,

where † denotes the least-square based inverse. In the second step, we multiply both

sides of (1) by Λ,

(21) Λ · Ēinc
t = Λ ·

(

Ēinc
0 +Φ · Λ · Ēinc

t

)

.

The polarization tensor matrix Λ is obtained, with the aid of (20),

(22) Λ =
(

Λ · Ēinc
t

)

·
(

Ēinc
0 +Φ · Λ · Ēinc

t

)†

.

Thus, the two-step least squares method solves the nonlinear inverse problem nonit-
eratively.

The retrieval algorithms presented in [43, 9, 2, 10] all follow the aforementioned
guideline. It is worth mentioning that the first non-iterative algorithm was proposed
in [30], and it was different from the two-step least squares method. The numerical
simulation conducted in [9] showed that the two-step least squares method performed
better than the first non-iterative algorithm.

2.5. Reconstructing point-like scatterers: Phaseless data. When only the
intensity of scattered field is measured, the inverse scattering problem of determining
the locations and scattering strengths is more difficult to solve. The Green’s function
vectors D̄x(rj), D̄y(rj), D̄z(rj), j = 1, 2, . . . ,M , do not form the linear basis of the
measured intensity data any more. Nevertheless, [31] and [11] constructed the linear
basis of the phaseless data: D̄x(ri)◦D̄y(rj)

∗, D̄y(ri)◦D̄z(rj)
∗, D̄z(ri)◦D̄x(rj)

∗, i, j =
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1, 2, . . . ,M , where ◦ denotes Hadamard product (or Schur product) that is an element-
wise product. The superscript * denotes complex conjugate. In MUSIC algorithm
that is presented in [31], the aforementioned basis span a subspace that coincides with
the range (subspace) of the resultant MSR matrix.

After obtaining the locations of point-like scatterers, a three-step noniterative
retrieval algorithm is applied to solve the nonlinear problem of determining the po-
larization tensors of scatterers, with multiple scattering taken into account [11]. The
first and third steps are similar to the two-step retrieval method for full scattering
data, whereas the second step is new and is to find the constant phase factor.

To summarize, for phaseless inverse scattering problems for point-like scatterers,
even if multiple scattering effect is taken into account, the locations and scattering
strengths of point-like scatterers can be obtained without iteratively evaluating the
corresponding forward problem.

3. Reconstructing extended scatterers. When the scatterer’s size is com-
parable to wavelength, the inverse scattering problem is significantly different from
the one for point-like scatterers. For extended scatterers, it is well known that the
source-to-field operator (see (5)) is compact. In another word, it is impossible to
uniquely determine the value of λ from (5) when M approaches infinity. However, a
portion of λ can be uniquely obtained from a subspace of the domain of the operator
Γ. This subspace is spanned by singular vectors of Γ associated with few leading
singular values. Following this guideline, we proposed a subspace-based optimization
method (SOM) for solving the two-dimensional (2D) electromagnetic inverse scatter-
ing problems [12, 13] and the 3D problem [44], i.e., reconstructing the dielectric profile
of scatterers from scattered fields. By using the spectral property of the current-to-
field mapping operator, the SOM first determines part of the induced current, the
deterministic part, and then obtains the rest part, the ambiguous part of the induced
current, via optimization. Since the optimization is carried out in a subspace of the
current space, the SOM actually simplifies the nonlinear optimization problem.

Based on the SOM, we further analyze the spectral property of the mapping
from the induced current to the scattered fields inside the domain of interest. We
find that, the current subspace could be shrunk to a much smaller one so that the
optimization of the induced current is regularized in a proper way which increases
the stability of the inversion and the robustness against the noise compared to the
original SOM. Since a secondfold subspace constraint is used, this method is referred
to as the twofold SOM (TSOM) [45].

In this section, we first introduce the SOM in both 2D transverse magnetic (TM)
and 3D cases. Then, the TSOM is discussed. Here, the forward problem is solved in
the framework of the method of moments (MOM), which however is not a necessity
and can be replaced by other numerical models, such as the coupled dipole method
(CDM).

In both 2D and 3D cases, the domains of interest are chosen to be rectangular
and cuboid in order to implement the conjugate gradient fast Fourier transform (CG-
FFT) scheme. For the convenience of reading, we denote the one-dimensional tensor
as a, two-dimensional tensor as a, three-dimensional tensor as â, and four-dimensional
tensor as ˆ̂a. Unless otherwise specified, the subscript of the tensors denotes the index
of the element, such as am,n denotes the element in a with index {m,n}. We use bold
symbols to denote vector quantities, such as the positions r and the electric fields E
in 3D case.
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3.1. 2D TM SOM. Assume that there are Ni incident waves from different
angles onto the rectangular domain of interest D (D ⊂ R2, the background 2D homo-
geneous medium with permittivity ǫ0, permeability µ0, and wave number k0), where
nonmagnetic scatterers are located, and these incident waves are expressed as Einc

l (r),
l = 1, 2, . . . , Ni, r ∈ D. For each incidence, the scattered fields are detected by Nr

antennas located at r′
j , j = 1, 2, . . . , Nr. With all these information, including every

incident field inside the domain of interest and the corresponding scattered fields at the
positions of all detectors, we aim at retrieving the dielectric profile ǫ(r), r ∈ D. The
governing equation inside the domain of interest is the Lippmann-Schwinger equation.
From the Lippmann-Schwinger equation or the electric field integral equation (EFIE)
in TM scenario, for the lth incidence (l = 1, 2, . . . , Ni), the induced current satisfies
(23),

(23) [ǫr(r)− 1]Einc
l (r) =

Il(r)

−iωǫ0
− [ǫr(r)− 1] iωµ0

∫

D

g(r, r′)Il(r
′)dr′,

where i =
√
−1, g (r, r′) = i

4H
(1)
0 (k0 |r − r

′|) is the 2D Green’s function of the back-
ground medium, ǫr(r) = ǫ(r)/ǫ0 is the relative permittivity at r, and

(24) Il(r) = −iωǫ0 [ǫr(r)− 1]El (r)

is the induced current while El (r) is the electric field at r [35]. For the convenience of
computing, the domain of interest D is discretized into many small subdomains whose
dimensions are much smaller than the wavelength and whose centers are located
at, say, rm,n, m = 1, 2, . . . ,M1 and n = 1, 2, . . . ,M2, where M1 and M2 are the
total number of subdomains along x and y axes, respectively (so that, the total
number of subdomains is M = M1 × M2). Thus the continuous integral operator
in Lippmann-Schwinger equation becomes a summation of contributions from every
subdomain. By approximating every subdomain as a small circle with an equivalent
radius am,n =

√

Sm,n/π, where Sm,n is the area of the subdomain with index (m,n),
m = 1, 2, . . . ,M1, n = 1, 2, . . . ,M2, and its center at rm,n, we discretize (23) as

(25) χm,nE
inc

l;m,n =
I l;m,n

−iωǫ0
− χm,nAm,n(I l),

where χm,n = ǫr;m,n − 1 is the contrast at rm,n, ǫr;m,n is the relative permittivity

at rm,n, E
inc

l;m,n is the incident electric field at rm,n, I l;m,n is the induced current at

rm,n, and A is an operator defined by

(26) Am,n(I l) =

M1
∑

m′=1

M2
∑

n′=1

GD(rm,n, rm′,n′)I l;m′,n′ ,

with GD(rm,n, rm′,n′) being the integral of the Green’s function [35]. All the two
dimensional tensors in (25) are with size M1 ×M2. Similarly, the integral operator
relating the induced current and the scattered fields could also be expressed as the
summation of the contribution from all the subdomains,

(27) E
sca

l = GS · I l,
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where E
sca

l =
[

Esca
l (r′

1), E
sca
l (r′

2), . . . , E
sca
l (r′

Nr
)
]T

, I l = vec
{

I l

}

is an M di-

mensional vector, and GS is a Nr × M matrix with its elements GS;j,q =

− η0πam,n

2 J1(k0am,n)H
(1)
0 (k0

∣

∣r
′
j − rm,n

∣

∣) for j = 1, 2, . . . , Nr, q = m + (n − 1) ×M1,
m = 1, 2, . . . ,M1 and n = 1, 2, . . . ,M2. Here, vec {·} denotes the operation of vector-

izing a tensor, i.e., in this case, I l;q = I l;m,n with q = m+ (n− 1)×M1.
Since the inverse scattering problem for extended scatterers is usually underde-

termined, i.e. Nr and Ni are both much smaller than M , and due to the fact that

GS contains zero and very small singular values, it is impossible to directly determine
I l from (27). Thus, it is convenient to split the induced current into two parts: a

deterministic part I
d

l and an ambiguous part I
a

l , the former of which could be ob-
tained from (27) and the later by the optimization method [12]. The singular value

decomposition of GS tells GS ·vSj = σS
j u

S
j , j = 1, 2, . . . ,M , with the bases vSj spanning

the current space while uSj the scattered field space. Here the superscript S denotes

the mapping GS. Assuming that the singular values are a non-increasing sequence,
i.e. σS

m ≥ σS
n if m < n, the first L (since L ≤ Nr) current bases, vSj , j = 1, 2, . . . , L,

construct a current subspace that is the most influential to the scattered fields. Thus,
from (27), we have

(28) I
d

l =

L
∑

j=1

uS∗j ·Esca

l

σS
j

vSj = V
+

S · α+
l ,

where V
+

S =
[

vS1 , v
S
2 , . . . , v

S
L

]

, α+
l =

[

α+
l;1, α

+
l;2, . . . , α

+
l;L

]T

with α+
l;j = (uS∗j · Esca

l )/σS
j ,

j = 1, 2, . . . , L, and the superscript ∗ denotes the Hermitian operation while super-
script + refers to the dominant current subspace, the subspace corresponding to the
dominant singular values. From (28), we clearly see that in order to reduce the impact
of noise contained in the contaminated measured E

sca

l , it is necessary to choose an
appropriate value of L so that the σS

L is above the level of noise. On the other hand,
in [12], the ambiguous part of the current is expressed by the rest M − L bases,

(29) I
a

l =
M−L
∑

j=1

vSj+Lα
−
l;j = V

−

S · α−
l ,

where V
−

S =
[

vSL+1, v
S
L+2, . . . , v

S
M

]

and α−
l =

[

α−
l;1, α

−
l;2, . . . , α

−
l;M−L

]T

, with the latter

being the unknown coefficients. Here the superscript − refers to the subordinate
current subspace, the subspace corresponding to those subordinate singular values.

In [44], by using the identity V
−

S ·V
−∗

S = IM−V
+

S ·V
+∗

S , where IM is theM dimensional
identity matrix, the authors propose a new current construction method as follows

(30)

I
a

l (βl) = V
−

S · α−
l

= V
−

S · V
−∗

S · βl

=

(

IM − V
+

S · V
+∗

S

)

· βl

= βl − V
+

S ·
(

V
+∗

S · βl

)

,

in which we let α−
l = V

−∗

S · βl (This is reasonable since the rank of V
−∗

S is M − L).
In this new current expression, βl becomes the unknowns instead of α−

l . Though
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the number of the unknowns increases (βl is an M dimension vector while α−
l is an

M − L dimension vector), the computational complexity of the current construction
decreases dramatically. Besides, since only the first L singular vectors are needed,
a thin SVD operation (generating only those singular vectors with non-null singular
values) is enough. Having expressed the induced current in the aforementioned way,
it is convenient to define the objective function. Firstly, it is natural to define the
mismatch of the scattered fields by

(31) ∆fie
l (βl) =

∥

∥

∥
GS · I

a

l +GS · I
d

l − E
sca

l

∥

∥

∥

2

,

where I
d

l and I
a

l are as in (28) and (30), respectively, and ‖·‖ denotes the L2 norm of
a tensor. The current equation in (25) is another key equation to satisfy. Using the
current construction (30), we define an operator as

(32)
(

L2D
SOM

(

βl

))

m,n
=
I
a

l;m,n

−iωǫ0
− χm,nAm,n

(

I
a

l

)

,

where I
a

l = ten
{

I
a

l (βl)
}

, ten {·} is the inverse operation of vec {·}, i.e., I
a

l;m,n = I
a

l;q

with q = m + (n − 1) × M1, m = 1, 2, . . . ,M1 and n = 1, 2, . . . ,M2. With this
definition, we could write the mismatch of (25) as

(33) ∆cur
l (βl, χ) =

∥

∥

∥

∥

L2D
SOM(βl)− Γ

2D

l

∥

∥

∥

∥

2

,

where Γ
2D

l;m,n = χm,n

[

E
inc

l;m,n +Am,n

(

I
d

l

)]

+ 1
iωǫ0

I
d

l;m,n. Finally, the objective of the

optimization is to minimize the objective function

(34) f(β1, β2, . . . , βNi
, χ) =

Ni
∑

l=1

(

∆fie
l /
∥

∥

∥
E

sca

l

∥

∥

∥

2

+∆cur
l /

∥

∥

∥

∥

E
inc

l

∥

∥

∥

∥

2
)

.

In [13, 44, 34], the conjugate gradient (CG) type algorithm that is used in contrast
source inversion (CSI) method [39, 40] is adopted to minimize this nonlinear equation
by alternatively updating the βl and χ in every iteration of the optimization. Note
that, the most computational demanding operation in every iteration is the calculation
of the output of the operator A with anM1×M2 dimensional tensor as the input (see
(26)). Due to its intrinsic convolution characteristic, it can be calculated by using
the fast Fourier transform (FFT) with much less computational cost, O(M log2M),
compared to the direct operation, O(M2), where M =M1 ×M2.

The parameter L controls the convergence rate, and there is a successive range for
the value of L in which the SOM could converge at the optimal speed. This is mainly
due to the fact that, when the deterministic part of the current is already obtained
from the scattered fields, the dominant part of the scattered fields is automatically
matched whereas the mismatch of the remaining subordinate part of the scattered
fields only contribute little to the total objective function (34). The larger the L is, the
smaller the mismatch of the scattering data. In this case, the algorithm only needs to
construct the ambiguous part of the current within the subordinate current subspace

V
−

S to balance the total induced current at the first few iterations of the optimization
when the mismatch of the induced current is still much larger than the mismatch of
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the scattering data. Consequently, at the very beginning of the optimization, this
mechanism lets the algorithm avoid simultaneously matching the scattering data and
the induced current, and thus reduces the difficulty of the problem. Such a mechanism
actually accelerates the optimization. Again, here we need to accentuate that if we
increase the value of L so that σS

L is below the noise level, although the mismatch of
the scattering data is further depressed, the noise contaminated deterministic part of
the current could spoil the optimization [41].

In [23, 8, 36], the radiating and non-radiating current concept is used to address
the inverse source problem, in which the radiating current is obtained either as the
minimum norm solution or by the truncated SVD method. Compared to this well-
known concept, the concept of the deterministic part and the ambiguous part of
the induced current used in the SOM is more convenient for the numerical inversion
method in the presence of noise, since, as discussed above, the parameter L can be
chosen so that the deterministic part of induced current is obtained without too much
being contaminated by the noise. The inclusion of the scattering data mismatch in the
objective function in SOM guarantees that the current obtained by the optimization
is more rectified by the physical conditions, and in the meanwhile, the effect from
the noise is minimized. The key difference between the two sets of concepts is that
the ambiguous part of the induced current could include both the radiating and non-
radiating current.

3.2. 3D SOM. For the method of moments for 3D case, we adopt the scheme
proposed in [1]. Since in this subsection we only consider non-magnetic scatterers, we
only consider the simpler EFIE rather than the integral equation set in [1].

In 3D case, we similarly assume that, there areNi incident waves from different an-
gles onto the cuboid domain of interest D (D ⊂ R3, the background 3D homogeneous
medium with permittivity ǫ0, permeability µ0, and wave number k0). For each inci-
dence, the scattered fields are detected by Nr antennas located at r′j , j = 1, 2, . . . , Nr.

For the lth incidence, the EFIE is as

(35) [ǫr(r)− 1]Einc
l (r) =

I l(r)

−iωǫ0
− [ǫr(r)− 1] iωµ0

(

I +
∇∇
k20

)

·
∫

D

g(r, r′)I l(r
′)dr′

where I is the identity tensor, g(r, r′) = exp (ik0 |r − r
′|)/(4π |r − r

′|) is the 3D
Green’s function for the background homogeneous medium, and I l(r) and E

inc
l (r)

are the induced current and the incident electric field at r, respectively. Similarly, the
induced current is defined as

(36) I l(r) = −iωǫ0 [ǫr(r)− 1]El(r),

where El(r) is the electric field at r. Compared to 2D case, the most distinguishable
difference is the coupling effects between the different components of the vectorial

field and current due to the operator I + ∇∇
k2
0

. We follow the finite difference scheme

in [1] to deal with such coupling, and thus the volume integration only concerns the
multiplication of the scalar Green’s function with each component of the induced
current

(37) (AI l)(r) := iωµ0

∫

D

g(r, r′)I l(r
′)dr′,

which is a convolution type integration and can be computed by the 3D fast Fourier
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transform (FFT). For the coupling term, we define

(38) (BI l)(r) :=
∇∇ · (AI l)(r)

k20
.

With Eqs. (37) and (38), we can rewrite (35) as

(39) [ǫr(r)− 1]Einc
l (r) =

I l(r)

−iωǫ0
− [ǫr(r)− 1] [(AI l)(r) + (BI l)(r)] .

And we now need to write (39) into a discretized form. To this end, we first discretize
the cuboid domain of interest into many small cuboid subdomains, the center of which
are located at rm,n,p, m = 1, 2, . . . ,M1, n = 1, 2, . . . ,M2 and p = 1, 2, . . . ,M3. Here,
M1, M2, and M3 are the total number of subdomains along x, y, and z direction,
respectively, and, in 3D case, we still let M =M1 ×M2 ×M3 be the total number of
the subdomains. With such discretization, (39) can be written as

(40) χ̂m,n,p
ˆ̂
Einc

l;m,n,p,κ =
1

−iωǫ0
ˆ̂
Il;m,n,p,κ − χ̂m,n,p

[

ˆ̂
Am,n,p,κ(

ˆ̂
Il) +

ˆ̂
Bm,n,p,κ(

ˆ̂
Il)
]

,

where the subscript κ = 1, 2, and 3 denotes the x, y, and z components of a vector. As

in 2D case, the output of
ˆ̂
A here can be obtained by 3D FFT algorithm. For further

details of the discretization of (39) and the finite difference scheme to generate
ˆ̂
B from

ˆ̂
A, please refer to the Appendix of [1].

Due to the polarization characteristics, for the lth incidence, the scattered fields
in 3D scenario can be obtained by

(41) E
sca

l = G
3D

S · I l,

where E
sca

l =
[

E
sca

l;1

T
, E

sca

l;2

T
, E

sca

l;3

T
]T

is a 3Nr dimensional vector with E
sca

l;κ =
[

Esca
l;κ;1, E

sca
l;κ;2, . . . , E

sca
l;κ;Nr

]T

(κ = 1, 2, 3 denotes the x, y, z component of the cor-

responding vector, respectively), I l is a 3M dimensional vector obtained by I l =

vec
{

ˆ̂
Il

}

. In 3D scenario, the vectorization operation vec {·} is defined to vectorize a

four-dimensional tensor into a vector, i.e., if I l = vec
{

ˆ̂
Il

}

, we have I l;ϑ =
ˆ̂
Il;m,n,p,κ

with ϑ = (κ−1)×M+(p−1)× (M1×M2)+(n−1)×M1+m. In (41), the scattering
operator is defined as

(42) G
3D

S =







GS;11 GS;12 GS;13

GS;21 GS;22 GS;23

GS;31 GS;32 GS;33






,

a 3Nr×3M matrix, withGS;uv, aNr×M matrix, the mapping from the v component of
the induced current to the u component of scattered fields (the subscripts u, v = 1, 2, 3

are not indexed for tensor elements). The explicit expression of GS;uv is as

(43)

GS;uv(a, b) =
iωµ0

k2
0

{(

k20 +
ik0

Ra,b
− 1

R2

a,b

)

δ(u− v)+

[(r′
a)u − (rm,n,p)u] [(r

′
a)v − (rm,n,p)v]×

(

− k2

0

R2

a,b

− 3ik0

R3

a,b

+ 3
R4

a,b

)}

g(r′
a, rm,n,p)

,
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where δ(y) is 1 when y = 0 and is 0 otherwise, k0 = ω
√
ǫ0µ0 is wave number of the

background medium, Ra,b = |r′a − rm,n,p| in which b = (p−1)×(M1×M2)+(n−1)×
M1 +m with a = 1, 2, . . . , Nr, b = 1, 2, . . . ,M , m = 1, 2, . . . ,M1, n = 1, 2, . . . ,M2,
and p = 1, 2, . . . ,M3. Here, (r)u denotes the u component of r.

As mentioned in the previous subsection, the induced current in (41) could be split

into two parts, the deterministic part I
d

l and the ambiguous part I
a

l . After operating

the thin SVD on G
3D

S , we still have the same expression for I
d
and I

a
as (28) and

(30), respectively. The only difference is that the V
+

is obtained from the thin SVD

of G
3D

S , and the dimension of β now becomes 3M . Note that, the complexity of thin

SVD of G
3D

S is O(27N2
rM). Thus, the mismatch of the scattering data in 3D case has

the same expression as (31).
For the mismatch of the current equation, we need to first define an operator as

(44)
(

L3D
SOM

(

β
))

m,n,p,κ
=

ˆ̂
Ial;m,n,p,κ

−iωǫ0
− χ̂m,n,p

[

ˆ̂
Am,n,p,κ

(

ˆ̂
Ial

)

+
ˆ̂
Bm,n,p,κ

(

ˆ̂
Ial

)]

,

where
ˆ̂
Ial = ten

{

I
a

l (βl)
}

and the ten {·} is the inverse operation of vec {·}. Using this

operator, we can define the mismatch of the current equation as

(45) ∆cur
l (βl, χ̂) =

∥

∥

∥
L3D
SOM(βl)−

ˆ̂
Γ3D
l

∥

∥

∥

2

,

where
ˆ̂
Γ3D
l;m,n,p,κ = 1

iωǫ0

ˆ̂
Idl;m,n,p,κ + χ̂m,n,p

[

ˆ̂
Am,n,p,κ(

ˆ̂
Idl ) +

ˆ̂
Bm,n,p,κ(

ˆ̂
Idl ) +

ˆ̂
Einc

l;m,n,p,κ

]

.

The objective function in 3D case shares the same form as in 2D case that is defined
in (34). We also use the CG-type optimization algorithm mentioned in the previous
subsection to minimize the objective function.

3.3. The twofold SOM. In this subsection we introduce the twofold SOM in
2D TM case and its variant, the FFT twofold SOM, that can be used in both 2D and
3D cases. First, we need to introduce a new way to construct the ambiguous part of
the current. From the analysis in the previous subsection, we know that in the SOM
the ambiguous part of the current is constructed within a current subspace spanned

by the remaining M − L bases obtained from GS. Due to the fact that all these
current bases correspond to the small singular values of the mapping, as long as the
value of L is large enough, the contribution from the ambiguous part of the current
to the scattered fields is small. However, this part of the induced current may still
be influential to the fields inside the domain of interest, as seen from (23). In other
words, the existence of the ambiguous part of the current balances the total induced
current inside the domain of interest by making it satisfy the Lippmann-Schwinger
equation. Besides, from (25), it is also clearly that the influence from the induced

current to the fields inside the domain of interest is via the integral operator A.
Bearing these, it is possible to construct I

a

l only within a subspace that is influential
to the fields inside the domain of interest, whose dimension may be much smaller
than the one used in (29). To achieve this, we need to analyze the spectral property

of the A mapping, or its matrix form GD. The singular value decomposition (SVD)

of GD reads GD · vDj = σD
j u

D
j , j = 1, 2, . . . ,M , with vDj spanning the current space

and uDj the field space. Here the superscript D denotes the mapping GD. With the
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assumption that the singular values are a descending sequence, the first few, say M0,
current bases, vDj , j ≤M0, is influential to the fields inside the domain of interest, and
we can use these bases to construct the ambiguous current. On the other hand, since
we already used (27) and (28) to obtain the deterministic part of the induced current,
the bases used to construct the ambiguous part of the current should not include those
components in the deterministic part. Thus, we can express the ambiguous part of
the induced current in this way:

(46) I
a

l =

M0
∑

j=1

vD′
j γj,l = V

+′

D · γl,

where we have defined

(47)

V
+′

D =
[

vD′
1 , v

D′
2 , . . . , v

D′
M0

]

= V
−

S · V
−∗

S ·
[

vD1 , v
D
2 , . . . , v

D
M0

]

= V
−

S · V
−∗

S · V
+

D

=

(

IM − V
+

S · V
+∗

S

)

· V
+

D,

and IM is the M dimensional identity matrix. Here, we still use superscript + to

denote the dominant current subspace for the mapping GD, and the γl is an M0

dimensional vector. Thus, by using such construction of the ambiguous part of the
induced current, the optimization is searching the current within an M0 dimensional
subspace.

Such SOM with second fold subspace constraint on the induced current is referred
to as the twofold SOM (TSOM). It is found that [45], the second-fold subspace con-
straint on the ambiguous part of the induced current works as regularization which is
able to further stabilize the optimization and increase the robustness of the inversion
against noise.

However, in the TSOM, in order to obtain the bases that span the current sub-
space, we need to perform a singular value decomposition (SVD) of the operator
that maps the induced current to the electric fields inside the domain of interest.
Since the computational cost of such SVD operation is very high, O(M3), where M
is the number of subdomains, it is almost prohibitive to efficiently apply the TSOM
to solve the inverse scattering problems with large amount of unknowns, such as the
three-dimensional electromagnetic inverse problems.

To overcome this drawback, we need to find another way to construct the current
subspace instead of using the SVD operation. Notice that, as aforementioned, the
purpose of using the second-fold subspace constraint is to further regularize or stabilize
the optimization by rejecting those current components in the subordinate current

subspace spanned by singular vectors with small singular values, say V
−

D. Thus, we
may approximate the original current subspace spanned by the singular vector basis
by a new current subspace so that the new one still works as the original one, i.e.,

to exclude most of the current components in the subordinate current subspace V
−

D.
In [46], it is found that the current subspace spanned by the discrete Fourier bases
is a very good approximation. After implementing such new current subspace in the
TSOM, we significantly reduce the computational cost from the following two aspects:
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1. Since we use discrete Fourier bases to construct the current subspace, we avoid
the SVD operation of the matrix operator that maps the induced current to
the electric field inside the domain of interest.

2. Since the discrete Fourier bases are used as the new current bases, the pro-
cedure to construct the ambiguous part of the induced current is the inverse
discrete Fourier transform that can be accomplished by using the fast Fourier
transform (FFT) algorithm.

The new algorithm is referred to as the FFT-TSOM, and it can solve, in an efficient
manner, the 2D and 3D electromagnetic inverse scattering problems. The FFT-TSOM
inherits the merits of the TSOM, better stability during the inversion and better
robustness against noise compared to the SOM, and in the meanwhile has much lower
computational complexity than the original TSOM. Details can be found in [46].

4. Numerical simulations.

4.1. Point-like scatterers. The following simulation shows the advantage of
the proposed MUSIC method over the standard MUSIC, where the former produces
higher imaging resolution than the latter does. Numerical simulations in two scenarios,
noise free case and noise-contaminated case, are investigated.

We assume that three small spheres are located at r1 = (0.084λ, 0.196λ, 0.084λ),
r2 = (−0.168λ,−0.056λ,−0.112λ) and r3 = (−0.196λ,−0.084λ, 0.140λ), the first two
of which are isotropic spheres with permittivity ǫ1 = ǫ2 = 2ǫ0, while the third is a
rotated anisotropic sphere with permittivity tensor ¯̄ǫ3 = diag [ǫ0, 3ǫ0, 9ǫ0] and rotation
Euler angles [43] (ψ, φ, θ) = (π/4, π/3, 3π/8). These three spheres are electrically
small with the same radius a = λ/30. Note that the smallest distance between the
centers of spheres is 0.255λ (the distance between the second and the third one), and,
for the convenience in depicting the test results, all three spheres are chosen to locate
in the y = x+ 0.112λ plane. It is easily seen from the constitutive parameters of the
scatterers that there are up to eight independent secondary sources induced inside
the three scatterers.

There are 16 antenna units employed in this simulation, half of which are aligned
along the y axis while the other half aligned along the z axis in the x = −13λ plane.
The two linear arrays are centered at (−13λ,−9λ, 11λ) with 5λ separation distance
between neighboring units.

For the noise free case, the singular values of the MSR matrix are shown in
Fig.1(a), in which we see that the first eight singular values are much larger than the
rest, since they are corresponding to the eight singular vectors spanning the signal
space. Fig.1(b), Fig.1(c) and Fig.1(d) are the pseudo-spectrum in y = x + 0.112λ
plane obtained by the standard MUSIC method using x-, y- and z-oriented test dipole,
respectively. Not surprisingly, the standard MUSIC algorithm can only find the first
two isotropic spheres and fail to locate the third degenerate anisotropic target. Here,
we plot the base 10 logarithm of it, and the horizontal and vertical axes in Fig.1(b),
Fig.1(c) and Fig.1(d) are the x and z coordinate of spatial points in y = x + 0.112λ
plane, so do the cases hereafter. In comparison, the pseudo-spectrum obtained by the
proposed MUSIC algorithm are shown in Fig.2 with L = 4, 5, 6 and 7. From these
results, we see that, to locate the first two isotropic spheres, we only need L = 6, but,
to locate the third degenerate anisotropic sphere, we need L = 7. This is due to the
reason that when locating one of the first two isotropic spheres, the rest two spheres
have only five independent induced dipoles, which means that L = 6 is sufficient for
the governing equation (15) to have exact solutions; but, if we want to locate the
third degenerate sphere, the rest two isotropic spheres have totally six independent
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Fig. 1: Singular values and pseudo-spectrum obtained by the standard MUSIC al-
gorithm in noise free case. (a) The 10 base logarithm of the singular values of the
MSR matrix (j = 1, 2, . . . , 48). (b), (c) and (d) are the 10 base logarithm of the
pseudo-spectrum in y = x+0.112λ plane obtained by the standard MUSIC algorithm
with test dipoles in x, y and z directions, respectively.

Fig. 2: Pseudo-spectrum obtained by the proposed MUSIC algorithm in noise free
case. (a), (b), (c) and (d) are the 10 base logarithm of the pseudo-spectrum in
y = x + 0.112λ plane obtained by the proposed MUSIC algorithm corresponding to
the L = 4, 5, 6 and 7 cases, respectively.
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Fig. 3: Singular values and pseudo-spectrum obtained by the standard MUSIC algo-
rithm in noise-contaminated case (30dB). (a) The 10 base logarithm of the singular
values of the MSR matrix (j = 1, 2, . . . , 48). (b), (c) and (d) are the pseudo-spectrum
in y = x+0.112λ plane obtained by the standard MUSIC algorithm with test dipoles
in x, y and z directions, respectively.

induced dipoles, thus only when L = 7 can we solve (15). For the L = 4 and 5 cases,
since the L is not large enough to solve the governing equation, none of the three
scatterers can be located precisely. If L is further increased to 8 and 9, the result will
be almost the same as the one in L = 7 case, which are not presented here.

For the noise-contaminated case, we add additive white Gaussian noise to the
MSR matrix [43]. In this simulation, 30dB white Gaussian noise is added. Fig.3(a)
shows the singular values of the noise-contaminated MSR matrix, in which the sin-
gular values corresponding to the noise space are much larger than those in the noise
free case. In such a case, if we apply the standard MUSIC algorithm to locate the
scatterers, the pseudo-spectrum obtained by the test dipoles in x, y and z direction
are shown in Fig.3(b), Fig.3(c) and Fig.3(d), respectively, which show that all the
three test dipole directions fail to locate any of the three scatterers. By using the
proposed MUSIC algorithm, the pseudo-spectrum are drawn in Fig.4. In Fig.4, for
the L = 4, 5, 6 and 7 cases, image patterns are similar to those in noise-free case
shown in Fig.2. However, for the L = 8 and 9 cases, some unwanted disturbance
appear in between the second and the third spheres, which shows that the singular
vector corresponding to the eighth singular value is contaminated by the noise to an
extent so that it cannot be regarded as in the signal space anymore.

After locating positions, we will estimate the scattering strengths of point-like
scatterers. The numerical simulations in Section 4 of [43] and Section 4 of [10]
have shown the accuracy of the proposed two-step least squares method, where the
scattering strengths of scatterers are reconstructed with low computational cost.
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Fig. 4: Pseudo-spectrum obtained by the proposed MUSIC algorithm in noise-
contaminated case (30dB). (a), (b), (c), (d), (e) and (f) are the pseudo-spectrum
in y = x + 0.112λ plane obtained by the proposed MUSIC algorithm corresponding
to the L = 4, 5, 6, 7, 8 and 9 cases, respectively.

4.2. Extended scatterers. We present two numerical simulations for the SOM,
in 2D TM and 3D scenarios. The numerical models for the forward problem in
following simulations are the coupled dipole method (CDM). As mentioned at the
beginning of the previous section, this does not affect the essence of the SOM.

In the 2D TM case, the ‘Austria’ profile, as illustrated in Fig. 5 is considered. The
obstacles under study are contained in a square test domain of 2×2 m2. The ‘Austria’
profile consists of two discs and one ring. The discs of radius 0.2 m are centered at
(0.3, 0.6) m and (−0.3, 0.6) m. The ring has an exterior radius of 0.6 m and an inner
radius of 0.3 m, and is centered at (0, −0.2) m. The background is air and the contrast
between the obstacles and the background has a value of 1 (or ǫr = 2). 16 line sources
and 32 line receivers are equally placed on a circle of radius 3 m centered at (0, 0)
m. In the forward scattering problem, the data are generated numerically using the
CDM method with a 100× 100 grid mesh, which is much finer than the one used in
the inverse process (64× 64) in order to avoid the inverse crime [19]. The scattering
data generated in the forward process are recorded in the format of the multistatic

response (MSR) matrix K whose size is Ns×Ni. Then additive white Gaussian noise
is added to the MSR matrix, and the resultant noisy matrix is treated as the measured
MSR matrix and is used to reconstruct scatterers [43]. The operating frequency is 400
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Fig. 5: Inverse experiment of the Austria profile: exact profile.
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MHz, and the proposed method works directly on the data without using frequency-
hopping. A priori information is that the scatterers are lossless and have non-negative
contrasts [39]. One of the key components of the SOM is the spectrum analysis.
In particular, the value of L is determined from the spectrum. The spectrum of

GS corresponding to the aforementioned simulation configuration is shown in Fig. 6.
First, in the absence of noise, the convergence is compared for different value of L
in the first 50 iterations and the results are shown in Fig. 7. It is observed that the
increase of the value of L results in a faster convergence. The reconstructed relative
permittivity profiles are shown in Fig. 8. The cases of L = 10, 15, 20 and 25 produce
successful reconstruction results. Numerical simulations show that the cases of L = 1
and 5 also produce successful reconstruction results, however at the expense of more
iterations, especially for the case of L = 1, which in this test costs 800 iterations to
achieve that. Both Fig. 7 and Fig. 8 indicate that there is no noticeable difference
between the results for L = 15, 20, and 25.

Next, the proposed algorithm is tested for noise-contaminated data. The recon-
struction results for 10%, 30%, and 50% additive white Gaussian noise are shown in
Fig. 9, where L is equal to 15. The optimization iteration is terminated when there
is no significant improvement in the objective function in consecutive two iterations.
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(b) L = 5
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(c) L = 10
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(d) L = 15
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(e) L = 20
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(f) L = 25

Fig. 8: Reconstructed relative permittivity profiles at the 50th iteration for different
values of L.
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Fig. 9: Reconstructed relative permittivity profiles for L = 15 at different noise
levels. The optimization is terminated when there is no significant improvement in the
objective function in consecutive two iterations, which are 59, 31, and 21, respectively
for the three noise levels.

For the three noise levels, the numbers of iterations are 59, 31, and 21, respectively.
The reconstruction is successful in case of 10% noise. The result in case of 30% noise
is also satisfying, except that an artifact appears in the inner upper of the annulus. In
case of 50% noise, the artifact is more prominent and a portion of the upper annulus
is almost disjointed from the rest. Nevertheless, the positions of the disks and the
annulus are correctly determined. In particular, the hole inside the annulus and the
gap between the rings and the annulus can be easily identified.

For 3D case, the scatterer used in the simulation is a coated cube centered at the
origin with its inner edge length a = 0.6λ and outer edge length b = 1.6λ (λ is the
wavelength of the incident wave in the background medium, air), as shown in Fig. 10.
The relative permittivity of the inner layer is ǫr1 = 1.6 while the relative permittivity
of the outer layer is ǫr2 = 1.3. Note that though we use non-conductive scatterer, we
do not assume so during our inversion procedure. The coated cube is illuminated by
30 electric dipole antennas, which are located on three circles (with 10 dipoles evenly
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distributed on each circle) with the same radius 3λ. The three circles are in x − y,
y − z and z − x planes, and their centers are at (0.2λ, 0,−0.1λ), (0.1λ, 0,−0.15λ)
and (−0.05λ, 0.1λ, 0), respectively. The direction of the electric dipole sources in
x − y plane are in z direction, while those in y − z and z − x planes are in x and
z direction, respectively. Scattered fields are detected by 30 detectors, which are
located at the same positions as the 30 dipole sources. As mentioned at the beginning
of the previous section, we assume that each detector measures the vectorial electric
field in three directions. Thus, we have 30 × 90 data points. These synthetic data
are calculated by the MOM-based algorithm proposed in [1] using 60× 60× 60 mesh
grid of a cubic domain containing the scatterer. This cubic domain is centered at the
origin and with an edge length 3λ. In this simulation, 10% additive white Gaussian
noise is added.

We choose the same cubic domain as the domain of interest during our inversion
procedure. The domain of interest is discretized into a 30× 30× 30 mesh grid, which
means we have 27000 unknowns in total. After concreting the locations of detectors
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Fig. 12: The objective function values within 60 iterations when L = 1, 5, 10, 30 and
60.
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and all the subdomains, we can generate G
3D

S and its singular values, as shown in
Fig. 11. From Fig. 11, we see that there is a gap between the first 60 singular values
and the last 30 singular values. This is due to the fact that all the detectors are
located in the far-field zone of the domain of interest, thus the radial components
of scattered fields are weaker than the tangential components, the former of which
span the subspace corresponding to those subordinate singular values. In addition,
we have numerically verified that, the gap increases when we increase the radius of
the three circles where the detectors are located. In this simulation, we test five
different values of L, i.e., L = 1, 5, 10, 30 and 60, and for all these cases the initial
guesses are the background medium, air. The values of the objective function within
60 iterations are shown in Fig. 12, from which we clearly see that, the larger the
value of L, the faster the objective function converges. The retrieval results for these
different cases after 60 iterations are shown in Fig. 13 and 14. In Fig. 13, the real
part of the retrieval dielectric profile is presented. Sub-figures from the first row to the
fifth row are corresponding to the cases of L = 1, 5, 10, 30 and 60, respectively. The
sub-figures in the first, second and third column are the cross section at z = −0.05λ,
y = −0.05λ, and x = −0.05λ, respectively. We apply the same rule to the sub-figures
in Fig. 14 in which the imaginary part of the retrieval dielectric profile is presented.
From these two figures, we clearly see that, when L = 60, we obtain a satisfactory
retrieval result. From this simulation, we can conclude that, in 3D scenario, the SOM
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behaves the same as it does in 2D TM case, and the SOM can efficiently solve the 3D
electromagnetic inverse scattering problems in a small number iterations.

For numerical tests of the TSOM in 2D TM case, readers are referred to the
reference [45], and for FFT-TSOM in both 2D and 3D cases, readers are referred
to [46], in which the better stability and good robustness against noise of the two
algorithms are presented.

5. Conclusion and discussion. The inverse scattering problem of reconstruct-
ing point-like scatterers is distinctly different from that of reconstructing extended
scatterers. The key difference is the current-to-field mapping operator. The operator
is injective for point-like scatterers, whereas it is compact for extended scatterers.
Due to this key difference, point-like scatterers can be reconstructed noniteratively.
The MUSIC is applied to locate scatterers, where the Green’s function vectors eval-
uated at scatterers span a subspace that coincides with the range (subspace) of the
MSR matrix. A two-step least squares method is applied to retrieve the scattering
strengths of point-like scatterers. Since there is no forward problem iteratively evalu-
ated in both the MUSIC and the two-step least squares method, the inverse problem
is solved with low computational cost. In comparison, the inverse problem of recon-
structing extended scatterers has to be cast into an optimization problem and be
solved iteratively. Although the induced current cannot be uniquely determined from
the scattered field, a portion of it can be uniquely determined. This portion corre-
sponds to the subspace spanned by the singular vectors of the current-to-field mapping
operator associated with few leading singular values. The complementary orthogonal
subspace is obtained by optimization method. Due to aforementioned reasons, the
SOM is fast convergent, robust in presence of noise, being high resolution, and able to
reconstruct scatterers of complex patterns. Numerical simulations validate the algo-
rithms. Based on the SOM, the TSOM and the FFT-TSOM are introduced in order
to achieve better stability and better robustness against noise for the inversion.

The MUSIC and two-step least squares method can also be generalized to solve
phaseless (intensity only) inverse scattering problems [31, 11]. In addition, they can be
applied to inverse scattering problems with inhomogeneous backgrounds as well [16].
The SOM has been further extended to deal with inverse scattering problems in 2D
transverse electric (TE) scenario for both isotropic scatterers [32], and anisotropic
scatterers [3], as well as the electric impedance tomography problem [14]. Besides,
the SOM has been applied to reconstruct perfect conducting scatterers by using a
properly defined objective function [42]. The SOM has also been used to solve the
inverse scattering problems with inhomogeneous background [17], the through-wall
imaging problem [29], and the inverse scattering problem with phaseless data [33].
Here, it is worth mentioning that, when solving the inverse scattering problems with
phaseless data, we use an optimization method to obtain the deterministic part of the
induced current, since the measured data is no longer a linear function of the induce
current. Details can be found in [33]. Recent paper [25] shows that the MUSIC
algorithm is amenable to extended scatterers as well. Our experiences in this regard
are that there are conditions for MUSIC to be able to reconstruct extended scatterers,
such as it requires sufficiently large apertures of incidence and measurement, scatterers
cannot be annulus-like, and two scatterers cannot be too close to each other. Finally,
it is interesting to investigate the inverse scattering problem where both point-like and
extended scatterers are present. To the best of authors’ knowledge, there has been
no such technical literature reported so far. If the scattering strength of point-like
scatterer is not strong enough, we can hardly identify it due to presence of noise. Thus,
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we consider only point-like scatterers with strong scattering strengthes. To solve such
a mixed scatterer problem, we may consider two approaches: (1) First apply MUSIC to
identify the positions of point-like scatterers and then apply optimization algorithms
to reconstruct both scattering strength of point-like scatterers and permittivities of
extended scatterers; (2) Treat each point-like scatterer as one cell of discretized domain
and apply optimization methods to reconstruct the permittivity of each cell. Mixed
scatterer is one of our future research topics in inverse scattering.
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