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STRONG STABILITY WITH RESPECT TO WEAK LIMITS FOR A

HYPERBOLIC SYSTEM ARISING FROM GAS

CHROMATOGRAPHY∗

C. BOURDARIAS† , M. GISCLON‡ , AND S. JUNCA§

Abstract. We investigate a system related to a particular isothermal gas-solid chromatography
process, called “Pressure Swing Adsorption”, with two species and instantaneous exchange kinetics.
The particularity of this system is to have a linearly degenerate eigenvalue, which allows the velocity
of the gaseous mixture to propagate high frequency waves. In the case of smooth concentrations
with a general isotherm, we prove L∞ stability for concentrations, with respect to weak limits of
the inlet boundary velocity. Using the Front Tracking Algorithm (FTA), we prove a L1 stability for
concentrations with bounded variation (BV), under some convex assumptions on the isotherms. In
both cases we show that high frequency oscillations with large amplitude of the inlet velocity can
propagate without affecting the concentrations.

Key words. Systems of conservation laws, boundary conditions, BV estimates, entropy so-
lutions, linearly degenerate fields, convex isotherms, Front Tracking Algorithm, waves interaction,
geometric optics.
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1. Introduction. “Pressure Swing Adsorption (PSA) is a technology used to
separate some species from a gas under pressure according to the molecular cha-
racteristics and affinity of the species for an adsorbent material. Special adsorbent
materials (e.g. zeolites) are used as a molecular sieve, preferentially adsorbing the
undesired gases at high pressure. The process then swings to low pressure to desorb
the adsorbent material” (source: Wikipedia).

A typical PSA system involves a cyclic process, where a number of connected
vessels containing adsorbent material undergo successive pressurization and depres-
surization steps, in order to produce a continuous stream of purified gas. We focus
here on one of the steps of this cyclic process: a step restricted to isothermal behavior.
As in general fixed bed chromatography, each of the d species (d ≥ 2) simultaneously
exists under two phases : a gaseous and movable one with velocity u(t, x) and con-
centration ci(t, x), and a solid one (adsorbed) with concentration qi(t, x), 1 ≤ i ≤ d.
We assume that mass exchanges between the mobile and the stationary phases are
infinitely fast, thus the two phases are constantly at composition equilibrium: the
concentrations in the solid phase are given by equations as qi = q∗i (c1, ..., cd) where
the functions q∗i are the so-called equilibrium isotherms. Concerning this topic, a
theoretical study of a model with finite exchange kinetics was presented in [6] and a
numerical approach was developed in [7].

In gas chromatography, velocity variations accompany changes in gas composition,
especially in the case of high concentration solute: this is known as the sorption effect.
In the present model, the sorption effect is taken into account through a constraint
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on the pressure (or on the density in this isothermal case). See [33] and [37] for a
precise description of the process and [11] for a survey on various related models.

The system for two species (d = 2) with three unknowns (u, c1, c2) is:

∂t(c1 + q∗1(c1, c2)) + ∂x(u c1) = 0,(1)

∂t(c2 + q∗2(c1, c2)) + ∂x(u c2) = 0,(2)

c1 + c2 = ρ(t),(3)

with suitable initial and boundary data. The function ρ represents the given total
density of the mixture. The experimental device is realized such that it is a given
function depending only on time and in the sequel we assume that

ρ ≡ 1,(4)

(which is not really restrictive from a theoretical point of view).
Notice that we seek positive solutions (c1, c2), thus considering (3) and (4), c1, c2
must satisfy

0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1.(5)

Let us rewrite system (1), (2), (3) as a 2 × 2 system as in [9, 11]. For this purpose,
we use the following notations, introduced in [10]: we set c = c1 ∈ [0, 1], then c2 =
ρ− c1 = 1− c, and we set

qi(c) = q∗i (c, 1− c), i = 1, 2,

h(c) = q1(c) + q2(c),

I(c) = c+ q1(c).

Adding (1) and (2), thanks to (3), we get:

∂t(q1(c) + q2(c)) + ∂xu = 0,

thus our purpose is to study the following system:

(6)

{

∂tI(c) + ∂x(u c) = 0,

∂th(c) + ∂xu = 0,

supplemented by initial and boundary data:

(7)















c(0, x) = c0(x) ∈ [0, 1], x > 0,

c(t, 0) = cb(t) ∈ [0, 1], t > 0,

u(t, 0) = ub(t) > 0, t > 0.

Notice that in (7) we assume an incoming flux at the boundary, i.e. ∀t > 0, ub(t) > 0.
In the case where the first species is inert, that is q1 = 0, the I function reduces to
the identity function.
The first results of solutions’ existence, with large initial and boundary data, which
satisfy some entropy criterium in the case of two chemical species, were obtained in
[9, 10] for System (6) with initial and boundary BV data for the concentration and
only L∞ boundary data for the velocity ub. Furthermore, the velocity u becomes BV
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with respect to x in the quarter t > 0 and x > 0, see [9, 10]. But, we have no gain
of regularity with respect to time for the velocity. The following simple example is
illuminating the topic. Let c be a constant and ub any L∞ positive function, then

(c(t, x), u(t, x)) = (c, ub(t))

is a weak entropy solution of (6). Thus, strong singularities for the velocity u, with
respect to time, are expected, singularities which do not seem to affect the concentra-
tion.

In this paper, we study more precisely the specific structure of the velocity in
two cases, namely the case with smooth concentrations and the more complicated
case with BV concentrations. The specific structure of the velocity has an interesting
application: the stability in strong topologies of concentrations with respect to weak∗

limits for the incoming velocity. For instance, physically, a high oscillating velocity
can be replaced by its mean value to compute the concentration. Notice that in the
chromatography field, there are models with constant velocity ([37, 34, 11]).

In the first case (smooth concentration), if the velocity u(., .) is also smooth, we
have already proven in [9] that the System (6) reduces to a nonlinear scalar conserva-
tion law for the concentration. Actually, for a weak entropy solution, with lipschitz
concentration but only L∞ velocity, the reduction to one equation for c(., .) remains
true, see section 3. Furthermore the velocity is stratified in the following sense:

(8)

{

u(t, x) = ub(t)× v(t, x),
v(., .) is as regular as c(., .).

There is no restriction on the isotherms q1, q2 for such phenomenons. The only
limitation is the local existence of a smooth concentration before shocks.
Thus with a regular concentration (Lipschitz), the main singularity of u(., .) comes
from its boundary value and it is a temporal singularity. The structure of the veloc-
ity given by (8) is a key element to pass to the weak limit for u and to the strong
limit for the concentration. This also allows to propagate high oscillations with large
amplitudes for the velocity without affecting the concentration.
Several questions raise up :
First of all, does structure (8) remain true after shock waves? This question con-
cerns the second case (BV concentrations): we try to generalize Structure (8) and
its consequences for concentrations c(., .) in BV , i.e. for general entropy solutions
(c, u) of System (6). For the realistic case with shock-waves, we restrict ourselves to
the classical treatment of hyperbolic systems. That is to say, we assume that each
eigenvalue is either linearly degenerate or genuinely nonlinear. This restriction im-
plies some convex assumptions on the isotherms q1, q2. Nevertheless, this limitation
allows us to use the classical Front Tracking Algorithm (FTA see [13]), which gives
new estimates for the velocity. For instance, if the boundary velocity belongs to BV
with respect to time, the velocity has the same smoothness. Furthermore we obtain
better interaction estimates when the shock and rarefaction curves are monotonic in
coordinates (c, lnu). This is the case for instance for an inert gas and an active gas
with the Langmuir isotherm.
Above all, we prove that u/ub is BV with respect to time and space with only
ln(ub) ∈ L∞ and c0, cb ∈ BV . With this new estimate for the velocity, again we
get the stratified Structure (8). This decomposition of the velocity yields a strong
stability in L1 for concentration. For general weak entropy solutions of quasilinear
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System (6), high oscillations with large amplitude for the velocity can propagate as
in semilinear systems, with a strong profile for u with double scale as in [27], see for
instance [25, 26, 28]. We conjecture that our result is still valid for general isotherms
without any convex restriction.
The second question is : why does the velocity of a system like System (6) has such a
simple structure as in System(8)? There are two fundamental reasons to explain this.
First, System (6) has a constant zero eigenvalue, which is linearly degenerate ; second,
this nonlinear system is linear with respect to u.
The system expounded in [4] also has a null eigenvalue and an evident stratified com-
ponent, but unlike in [4], we cannot reduce System (6) to a single equation in the case
of solutions with shocks. P. Bagnerini and M. Rascle ([3]) studied another interesting
system, with linearly degenerate eigenvalues, which modelises some traffic flows, but
it is a Temple system ([40, 41]). As shown in [18, 19, 17, 16, 31], the zero eigenvalue
makes the existence of stratified solutions or the propagation of large-amplitude high
frequency waves possible. For genuinely nonlinear conservation laws, it is the op-
posite, since only high oscillating solutions with small amplitude can propagate, see
[23, 15]. Moreover, the linearity of System (6) with respect to the velocity, helps to
pass to the weak limit for u and to obtain a strong stability result for the concentra-
tion. Furthermore, entropies are also linear with respect to u, see section 2.
As this system has strong features, the third question is, wether it is a Temple system
or not. Generally it is not, see section 2.2 for some comments and [12] for a detailed
study about the intersection beetween the Temple class and System (6). In [12] we
construct an entropy solution with L∞ data exhibiting a blow up. Obviously, results
from [5] show that such a blow up is impossible for a Temple system.
The paper is organized as follows: In section 2 we recall some basic results from [10],
concerning hyperbolicity, entropies and weak entropy solutions of System (6). In sec-
tion 3, we study the case where the concentration is smooth and the velocity is only
L∞. In the remainder of the paper we study the case with only BV concentrations.
In section 4, we briefly expound the Front Tracking Algorithm (FTA) for System (6).
Section 5 is devoted to the study of both shock and rarefaction curves. We state the
assumptions that we need to perform estimates with the Front Tracking Algorithm.
These assumptions restrict us to convex (or concave) isotherms and we give some
examples coming from the chemistry. We show the fundamental interaction estimates
in section 6 and BV estimates for v in section 7. Finally, we obtain strong stability
for concentration with respect to weak limits of the boundary velocity in section 8.

2. Hyperbolicity and entropies. In order for this paper to be self contained,
we recall without any proof some results expounded in [10].
It is well known that it is possible to analyze the chromatography system, and thus
System (6), in terms of a PDE hyperbolic system, provided we swap time and space
variables and u > 0, see for intance [34] and [36]. In this framework the vector state

will be U =

(

u
m

)

where m = u c is the flow rate of the first species. In this vector

state, u must be understood as u ρ, that is the total flow rate.
In the sequel, we will use the function f = q1 c2 − q2 c1 introduced by Douglas

and al. in [29], written here under the form

f(c) = q1 c2 − q2 c1 = q1(c)− c h(c).(9)

Any equilibrium isotherm related to a given species is always increasing with respect

to the corresponding concentration (see [29]) i.e.
∂q∗i
∂ci

≥ 0. Since c = c1 and c2 = 1−c,
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we get:

(10) q′1 ≥ 0 ≥ q′2.

Let us define the function H by

H(c) = 1 + (1− c) q′1(c)− c q′2(c)= 1 + q′1(c)− ch′(c).(11)

From (10), H satisfies H ≥ 1 and we have the following relation between f , H and h:

f ′′(c) = H ′(c)− h′(c).

2.1. Hyperbolicity. Concerning hyperbolicity, we refer to [21, 38, 39]. System
(6) takes the form

(12) ∂xU + ∂tΦ(U) = 0 with U =

(

u
m

)

and Φ(U) =





h(m/u)

I(m/u)



 .

The eigenvalues are:

0 and λ =
H(c)

u
,

thus, considering (11) the system is strictly hyperbolic. The zero eigenvalue is of

course linearly degenerate. Moreover the right eigenvector r =

(

h′(c)
1 + q′1(c)

)

asso-

ciated to λ satisfies dλ · r =
H(c)

u2
f ′′(c), so λ is genuinely nonlinear in each domain

where f ′′ 6= 0.

Proposition 2.1 ([10] Riemann invariants). System (6) admits the two Riemann
invariants:

c and w = ln(u) + g(c) = L+ g(c), where g′(c) =
−h′(c)

H(c)
and L = ln(u).

Furthermore this system can be rewritten for smooth solutions as:

∂xc+
H(c)

u
∂tc = 0, ∂x(ln(u) + g(c)) = ∂xw = 0.(13)

2.2. Entropies. Dealing with entropies, it is more convenient, as shown in [10],
to work with the functions

G(c) = exp(g(c)), W = exp(w) = uG(c).

Notice that G is a positive solution of HG′ + h′G = 0.
Let E(c, u) be any smooth entropy and Q = Q(c, u) any associated entropy flux.
Then, for smooth solutions, ∂xE + ∂tQ = 0. Moreover:

Proposition 2.2 ([10] Representation of all smooth entropies). The smooth
entropy functions for System (6) are given by

E(c, u) = φ(w) + uψ(c)
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where φ and ψ are any smooth real functions. The corresponding entropy fluxes satisfy

Q′(c) = h′(c)ψ(c) +H(c)ψ′(c).

In [8], the authors looked for convex entropies for System (12) (i.e. System (6)
written in the (u,m) variables) in order to get a kinetic formulation. The next propo-
sition gives us a family of degenerate convex entropies independently of a convex
assumption on the function f or on the isotherms.

Proposition 2.3 ([10] Existence of degenerate convex entropies). If ψ is convex
or degenerate convex, i.e. ψ′′ ≥ 0, then E = uψ(c) is a degenerate convex entropy.

There are some few cases (water vapor or ammonia for instance) where the
isotherm is convex. There is also the important case with an inert carrier gas and
an active gas with a concave or convex isotherm (see [9, 10, 11]). In these cases, the
next proposition ensures the existence of λ-Riemann invariants which are also strictly
convex entropies. In such cases, w is monotonic with respect to x for any entropy
solution.

Proposition 2.4 ([10] When λ-Riemann invariant is a convex entropy). There
are strictly convex entropies of the form E = φ(w) if and only if G′′ does not vanish.
More precisely, for α > 0, Eα(c, u) = uαGα(c) is an increasing entropy with respect
to the Riemann invariant W . It is strictly convex for α > 1 if G′′ > 0 and for α < 1
if G′′ < 0.

Unfortunately, a system where G has an inflexion point does not admit any strictly
convex entropy. This is always the case for an inert gas, if the sign of the second
derivative of the isotherm changes, see [10] for the BET isotherm.

w is a Riemann invariant associated with a linearly degenerate eigenvalue, namely
0, so through a contact discontinuity ∂xw = 0 (see for instance Theorem 8.5.2 page 223
from [21], the reader can also check it directly). Thus through a contact discontinuity,
∂xφ(w) = 0 for any φ, without any convexity hypothesis. Does this equality remain
valid through a λ− shock? When λ is genuinely nonlinear (f ′′ does not vanish),
the answer is affirmative if System (6) is a Temple system ([40, 41, 12]). We recall
that a 2 × 2 strictly hyperbolic system is a Temple system if there exists a system
of coordinates consisting of Riemann invariants and if shock and rarefaction curves
coincide. For instance, System (6) with two linear isotherms is a Temple system.
More generally System (6) is a Temple system if ∂xw = 0 through any λ−shock
for any entropy solution. Indeed, the fact that level curves of w are the rarefaction
curves and that ∂xw = 0 through any λ−shock, means that rarefaction and shock
curves coincide. The reader interested in this subject can consult [12], more precisely
Lemma 3.1 therein. But unfortunately we have the following remark proven in [12].

Remark 2.1 ([12]). In general, System (6) is not a Temple system. For an inert
gas (for instance the first one: q1 = 0) and an active gas with strictly convex isotherm
(q′′2 > 0), PSA system is not in the Temple class. It is the case if the active gas is the
ammonia or the water vapor. For other examples, see [10].

Proposition 2.5 ([10] Non Existence of strictly convex entropy). If the sign of
G′′ changes then System (6) does not admit strictly convex smooth entropy.
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2.3. Definition of weak entropy solution. We have seen that there are two
families of entropies: uψ(c) and φ(uG(c)).
The first family is degenerate convex (in variables (u, uc)) provided ψ′′ ≥ 0. So we
seek weak entropy solutions which satisfy ∂x (uψ(c)) + ∂tQ(c) ≤ 0 in the distribution
sense.
The second family is not always convex. There are only two interesting cases, namely
±G′′(c) > 0 for all c ∈ [0, 1]. When G′′ > 0 and α > 1, we expect to have
∂x(uG(c))

α ≤ 0 from Proposition 2.4. But the mapping W 7→ Wα is increasing
on R

+, so the last inequality reduces to ∂x(uG(c)) ≤ 0.
In the same way, if G′′ < 0, we get ∂x(uG(c)) ≥ 0.
Now we can state a mathematical definition of weak entropy solutions.

Definition 2.1. Let T > 0, X > 0, u ∈ L∞((0, T )× (0, X),R+), 0 ≤ c(t, x) ≤
ρ ≡ 1 for almost all (t, x) ∈ (0, T )× (0, X). Then (c, u) is a weak entropy solution

of System (6)-(7) with respect to the family of entropies uψ(c) if, for all convex (or
degenerate convex) ψ:

∂

∂x
(uψ(c)) +

∂

∂t
Q(c) ≤ 0,(14)

in D′([0, T [×[0, X [), where Q′ = Hψ′ + h′ψ, that is, for all φ ∈ D([0, T [×[0, X [;R+):

∫ X

0

∫ T

0

(uψ(c) ∂xφ+Q(c) ∂tφ) dt dx+

∫ T

0

ub(t)ψ(cb(t))φ(t, 0) dt

+

∫ X

0

Q(c0(x))φ(0, x) dx ≥ 0.

Remark 2.2. If ±G′′ ≥ 0 then uψ = ±uG(c) is a degenerate convex entropy,
with entropy flux Q ≡ 0, contained in the family of entropies uψ(c). So, if G′′ keeps
a constant sign on [0, 1], (c, u) has to satisfy:

(15) ±
∂

∂x
(uG(c)) ≤ 0, if ±G′′ ≥ 0 on [0, 1].

Notice that the entropies uψ(c) and the entropy uG(c) are linear with respect to the
velocity u.

2.4. About the Riemann problem. The implementation of the Front Track-
ing Algorithm used extensively in section 4 requires some results about the solvability
of the Riemann problem. We first recall the solution of the boundary Riemann prob-
lem, i.e. System (6) with the following data:

c(0, x) = c0 ∈ [0, 1], x > 0,

{

c(t, 0) = c+ ∈ [0, 1],
u(t, 0) = u+ > 0,

t > 0.(16)

We restrict ourselves to the case f ′′ 6= 0, thus there is no λ−discontinuity wave and
no composite wave as in [10].
The complete Riemann problem (6), (17)

{

c(t, 0) = c− ∈ [0, 1],
u(t, 0) = u− > 0,

t < 0,

{

c(t, 0) = c+ ∈ [0, 1],
u(t, 0) = u+ > 0,

t > 0.(17)
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is simply solved by a 0-contact discontinuity wave followed by a λ−wave given by
following propositions (see Fig. 2 below).

For the boundary Riemann problem (6), (16), we are classically looking for a self-

similar solution, i.e.: c(t, x) = C(z), u(t, x) = U(z) with z =
t

x
> 0 (see Fig. 1).

z=
x
t

c

c  , u

increasing z

+ +

0

O

t

x

Fig. 1. Data for the boundary Riemann problem

In the domain t > 0, x > 0, the boundary Riemann problem is solved with
a λ−wave since λ is the only positive eigenvalue of the system. Let us recall the
following results obtained in [10], where f and H are given by (9, 11).

Proposition 2.6 ( λ−rarefaction waves). Any smooth non-constant self-similar
solution (C(z), U(z)) of (6) in an open domain Ω = {0 ≤ α < z < β} where f ′′(C(z))
does not vanish, satisfies:

dC

dz
=

H(C)

z f ′′(C)
, U(z) =

H(C)

z
.

In particular,
dC

dz
has the same sign as f ′′(C).

Assume for instance that 0 ≤ a < c0 < c+ < b ≤ 1 and f ′′ > 0 in ]a, b[. Then the
only smooth self-similar solution of (6) is such that:

(18)















C(z) = c0, 0 < z < z0,
dC

dz
=

H(C)

z f ′′(C)
, z0 < z < z+,

C(z) = c+, z+ < z,

where z+ =
H(c+)

u+
, z0 = z+ e−Φ(c+) with Φ(c) =

∫ c

c0

f ′′(ξ)

H(ξ)
dξ. Moreover u0 =

H(c0)

z0

and U is given by:

(19)











U(z) = u0, 0 < z < z0,

U(z) =
H(C(z))

z
, z0 < z < z+,

U(z) = u+ z+ < z.

Proposition 2.7 (λ−shock waves). If (c0, c+) satisfies the following admissibil-
ity condition, equivalent to the Liu entropy-condition ([30]):

for all c between c0 and c+,
f(c+)− f(c0)

c+ − c0
≤
f(c)− f(c0)

c− c0
,
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then the boundary Riemann problem (6), (16) is solved by a shock wave defined as:

(20) C(z) =

{

c0 if 0 < z < s,
c+ if s < z

, U(z) =

{

u0 if 0 < z < s,
u+ if s < z,

where u0 and the speed s of the shock are obtained through

[f ]

u0 [c]
+

1 + h0

u0
= s =

[f ]

u+ [c]
+

1 + h+

u+
,

where [c] = c+ − c0, [f ] = f+ − f0 = f(c+)− f(c0), h+ = h(c+), h0 = h(c0).

A 0−wave always appears on the line {t = 0}.

Proposition 2.8 (0−contact discontinuity waves). Two distinct states U− and
U0 are connected by a 0−contact discontinuity if and only if c− = c0 (with of course
u− 6= u0).

In conclusion the solution of the Rieman problem for x > 0 and a convex function
f is

• (c, u) = (c−, u−) for t < 0,
• a 0−contact discontinuity for t = 0,
• a λ− wave for t > 0,

In practice, since c0 = c−, we first solve the boundary Riemann Problem. Thus u0 is
well defined and the 0−contact discontinuity is automatically solved.

c  , u− − c  , u− 0

c  , u− −

c  , u− − c  , u− 0

c  , u+ +

λ− shockλ− rarefaction

−

c  > c− +c  < c− +

x

O
t

x

O
t

0−contact disc. 0−contact disc.

c  , u− c  , u+ +

Fig. 2. Solution of the Riemann problem when f ′′ > 0.

3. Case with smooth concentration. System (6) has the strong property that
there exist weak entropy solutions with smooth concentration c(., .) on (0, T )× (0, X)
but not necessarily smooth velocity u(., .), for some positive constants T and X .
Furthermore, c(., .) is the solution of a scalar conservation law.

3.1. Existence of weak entropy solutions with smooth concentration.

About existence of weak entropy solutions of some hyperbolic systems with one com-
ponent less smooth than the others, we refer the reader to [18, 19, 31]. Here, we obtain
by the classical method of characteristics existence and uniqueness of weak entropy
solutions with smooth concentration and L∞ velocity. We have a similar result in [9]
but only with smooth velocity.
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Theorem 3.1 (Unique weak entropy solution with smooth concentration). Let
T0 > 0, X > 0, c0 ∈ W 1,∞([0, X ], [0, 1]), cb ∈ W 1,∞([0, T0], [0, 1]), lnub ∈
L∞([0, T0],R).
If c0(0) = cb(0) then there exists T ∈]0, T0] such that System (6)-(7) admits a unique

weak entropy solution (c, u) on [0, T ]× [0, X ] with

c ∈W 1,∞([0, T ]× [0, X ], [0, 1]), lnu ∈ L∞([0, T ],W 1,∞([0, X ],R)).

Furthermore, for any ψ ∈ C1([0, 1],R), setting

F ′(c) = (H(c)G(c))−1 and Q′ = H ψ′ + h′ ψ,

(c, u) satisfies:

∂x(uψ(c)) + ∂tQ(c) = 0, ∂x(uG(c)) = 0,(21)

∂tc+ ub(t)G(cb(t)) ∂xF (c) = 0.(22)

Equations (21) mean that entropy inequalities become equalities. This fact easily
implies the stratified structure (8) of the velocity, see equation (23) below. Notice
that system (6) degenerates into scalar equation (22).

Proof. We build a solution using the Riemann invariants and we check that such
a solution is an entropy solution. Next, we prove uniqueness.
Using the Riemann invariant W = uG(c) (∂xW = 0) and the boundary data, we
define u by:

u(t, x) =
ub(t)G(cb(t))

G(c(t, x))
,(23)

so u is smooth with respect to x. Then, the first equation of (13) can be rewritten as
follows:

∂tc+ µ∂xc = 0, with µ = λ−1 =
u

H(c)
=
ub(t)G(cb(t))

H(c)G(c)
= µ(t, c).(24)

We solve (24), supplemented by initial-boundary value data (c0, cb) by the standard
characteristics method. For a given (τ, x), let us define, X(·, τ, x) as the solution of:

dX(s, τ, x)

ds
= µ(s, c(s,X(s, τ, x))), X(τ, τ, x) = x.

Since
dc

ds
(s,X(s, τ, x)) = 0, from (24) we have

X(s, τ, x) = x− b(s, τ)F ′(c(τ, x)) with b(s, τ) =

∫ τ

s

ub(σ)G(cb(σ)) dσ.

Now, for some T ∈ [0, T0] defined later on, we split Ω = [0, T ] × [0, X ] according
to the characteristic line Γ issuing from the corner (0, 0), i.e. we define the sets
Ω± = {(t, x) ∈ Ω, ±(x−X(t, 0, 0)) ≥ 0}.
Since ∂xX(t, 0, x) = 1− b(t, 0)F ′′(c0(x)) ∂xc0(x), b(0, 0) = 0 and b(., 0) ∈W 1,∞(Ω+),
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the mapping x 7→ X(t, 0, x) is a Lipschitz diffeomorphism for 0 ≤ t ≤ T with T ∈]0, T0]
small enough. Then we define ξ(t, x) on Ω+: for each t ∈ [0, T ], X(t, 0, ξ(t, x)) = x.
Then we have c(t, x) = c0(ξ(t, x)) on Ω+. Furthermore ∂tξ = −∂sX/∂xX and thus c
is Lipschitz continuous in time and space on Ω+.
We work in a similar way on Ω− and c ∈W 1,∞(Ω−). Since c is continuous on Γ from
the compatibility conditions c0(0) = cb(0), we have c ∈ W 1,∞(Ω).
By construction (c, u) satisfies (13), rewritten as follows:

∂x lnu = −∂xg(c),u ∂xc+H ∂tc = 0.

These equations imply:

∂xu = −u ∂xg(c) = −u g′(c) ∂xc = −u g′(c)

(

−
H(c)

u
∂tc

)

= −h′(c) ∂tc = −∂th(c).

Now we check that (c, u) satisfies (21). Let ψ be a C1 function. Using the identity
Q′ = h′ψ +Hψ′, the previous equations and the differentiability almost everywhere
of u with respect to x, we have:

∂x(uψ(c)) + ∂tQ(c) = ψ ∂xu+ uψ′ ∂xc+Q′ ∂tc

= ψ (∂xu+ h′ ∂tc) + ψ′ (u∂xc+H ∂tc) = ψ × 0 + ψ′ × 0 = 0.(25)

Obviously, (21) implies (14), so (c, u) is an entropy solution of System (6).
We now prove the uniqueness of such a weak entropy solution.
Precisely, if both c ∈ W 1,∞([0, T ] × [0, X ], [0, 1]) and lnu ∈ L∞((0, T ),W 1,∞(0, X))
satisfy (14) in D′([0, T [×[0, X [) with initial-boundary data c0, cb, ub, then we show
that (c, u) is necessarily the previous solution built by the characteristics’ method.
Choosing the convex functions ψ(c) = ±1 and ψ(c) = ±c we obtain (6). The main
element to achieve the proof is the fact that u admits almost everywhere a classical
partial derivative with respect to x. Thus we use the classical chain rule formula
which allows to obtain (13) with smooth functions, see the proof of Proposition 2.1
from [9]. Indeed, computations are similar as in (25) where the chain rule formula is
valid almost everywhere.
Now (c, u) satisfies (13), which implies, using the beginning of the proof of Theorem
3.1, that (c, u) is necessarily our previous solution.

Remark 3.1.
1. Notice that T,X are only depending on ‖ ln(ub)‖L∞, ‖cb‖W 1,∞ , ‖c0‖W 1,∞ .

Thus, if (uεb)0<ε≤1 is a sequence of boundary velocity data such that (lnuεb) is
uniformly bounded in L∞(0, T0), and if (cε0), (c

ε
b) are some initial and bound-

ary concentration data uniformly bounded inW 1,∞ with the compatibility con-
dition at the corner cε0(0) = cεb(0), then there exist T > 0 and X > 0 and
Lipschitz bounds for cε, lnuε on [0, T ]× [0, X ] independent of ε.

2. As in [9], we have a global solution with smooth concentration if λ is genuinely
nonlinear (for instance an inert gas case and a Langmuir isotherm), with
monotonic assumptions on c0 and cb.

3.2. Strong stability with respect to velocity. In the case of a Lipschitz
continuous concentration, we now give a strong stability result for the concentration
with respect to a weak limit of the boundary velocity.

Theorem 3.2 (Strong stability for smooth concentration). Let T0 > 0, X >
0, c0 ∈ W 1,∞([0, X ], [0, 1]), cb ∈ W 1,∞([0, T0], [0, 1]) such that c0(0) = cb(0), and
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(lnuεb)0<ε≤1 a bounded sequence in L∞(0, T0). Then, there exists T ∈]0, T0[ such that
System (6) admits a unique weak entropy solution (cε, uε) with cε ∈ W 1,∞([0, T ] ×
[0, X ], [0, 1]), lnuε ∈ L∞([0, T ],W 1,∞([0, X ],R)) and with initial and boundary values:

(26)















cε(0, x) = c0(x) ∈ [0, 1], x > 0,

cε(t, 0) = cb(t) ∈ [0, 1], t > 0,

uε(t, 0) = uεb (t) > 0, t > 0.

If (uεb) converges towards ub in L
∞(0, T0) weak−∗ when ε goes to 0, then (cε) converges

in L∞([0, T ]× [0, X ]) towards the unique smooth solution of

∂tc+ ub(t)G(cb(t)) ∂xF (c) = 0, c(t, 0) = cb(t), c(0, x) = c0(x).(27)

Furthermore we have:

lim
ε→0

∥

∥

∥

∥

uε(t, x) − uεb(t)
G(cb(t))

G(c(t, x))

∥

∥

∥

∥

L∞([0,T ]×[0,X])

= 0.

Proof. Thanks to Theorem 3.1 and Remark 3.1 1., there exists T > 0 such that
System (6), with initial and boundary values (26) admits the unique weak entropy
solution (cε, uε), with smooth concentration in the previous sense on [0, T ]× [0, X ].
Since (cε) is bounded in W 1,∞, up to a subsequence, (cε) converges strongly in L∞ to
c. Using (22) in conservative form, we can pass to the limit and get (27). Problem (27)
has a unique solution using the characteristics’ method. Thus, the whole sequence
(cε) converges. We recover the last limit for uε thanks to ∂x(u

εG(cε)) = 0.

Notice that if ub is a constant function, for instance uεb(t) = ub(t/ε) with ub pe-
riodic, we can compute the concentration using only a constant velocity (the mean
velocity) as in liquid chromatography.

An example from geometric optics: if uεb(t) = ub

(

t,
t

ε

)

where ub(t, θ) ∈

L∞((0, T ), C0(R/Z)) and inf ub > 0, we have a similar result with Equation (27)

for c(., .) where ub(t) =

∫ 1

0

ub(t, θ) dθ and a profile U :

lim
ε→0

∥

∥

∥

∥

uε(t, x)− U

(

t, x,
t

ε

)∥

∥

∥

∥

L∞

= 0 where U(t, x, θ) = ub(t, θ)
G(cb(t))

G(c(t, x))
.

Other examples can be found in [17, 16].

4. Front tracking algorithm. In Section 3, where c is smooth and lnub is
in L∞(0, T ), we have seen that there exists a stratified structure for the velocity:
u(t, x) = ub(t) v(t, x), see (8). Furthermore c satisfies the scalar conservation law
(22). For only BV data we cannot expect to obtain such a scalar conservation law
for the concentration, except in the case of linear isotherms. In that case, the scalar
conservation law (22) and System (6) have the same solution for the Riemann problem,
but linear isotherms are of poor interest from a chemical engineering point of view.
The first interesting case is the case with an inert gas and a Langmuir isotherm, which
was mathematically studied for the first time in [9].

Nevertheless we guess that (8) is still true with v ∈ BV . From [9, 10] we have
already obtained BV regularity with respect to x with a Godunov scheme. To get
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BV regularity with respect to t we will use a more precise algorithm to study wave
interactions, namely a Front Tracking Algorithm (FTA).

The Front Tracking method for scalar conservation laws was introduced by Dafer-
mos, [20]. The method was extended to genuinely nonlinear systems of two conser-
vation laws by DiPerna [22]. For our purpose, we do not use the generalization to
genuinely nonlinear systems of any size by Bressan [13] or Risebro [35].

The FTA is much more complicated when an eigenvalue is piecewise genuinely
nonlinear, see [2, 1, 24]. This is why, we restrict ourselves to the case where λ is
genuinely nonlinear, which allows us to treat some relevant cases from the point of
view of chemical engineering, like an inert gas with a Langmuir isotherm, or two active
gases with a binary Langmuir isotherm. For this purpose we work in the framework
expounded in the recent and already classical Bressan’s Book [14]. In this framework
we assume f ′′ ≥ 0, thus a Riemann problem presents only two waves:

1. a contact discontinuity with speed 0,
2. a rarefaction wave with speed λ > 0 or a shock wave with speed between λ−

and λ+, characteristic speeds associated to the left and right states, respec-
tively.

Let δ > 0. A δ-approximate Front Tracking solution of System (6) is a pair of
piecewise constant functions cδ(t, x), uδ(t, x), whose jumps are located along a finite
number of straight lines t = tα(x) in the t − x plane and approximately satisfy the
entropy conditions. For each x > 0 and ψ′′ ≥ 0, one should thus have an estimate of
the form:

∑

α

(

[uδ ψ(cδ)]−
dtα
dx

[Q(cδ)]

)

(tα, x) ≤ O(δ),(28)

where [u] = u+ − u− is the jump across a jump line, and the sum is taken over all
jump for x fixed. Inequality (28) implies that (cδ, uδ) is “almost an entropy solution”:

(29) ∂x
(

uδψ(cδ)
)

+ ∂tψ(c
δ) ≤ O(δ).

That’s enough to get an entropy solution “issued from FTA” when δ tends to zero.
Since we only want to use piecewise constant functions, it is convenient to ap-

proximate a continuous rarefaction wave by a piecewise constant function. For this
purpose, the rarefaction curve is discretized with a step of order δ and thus (28) still
holds.

We now briefly describe an algorithm which generates these Front Tracking ap-
proximations. The construction starts on the initial line x = 0 and the boundary
t = 0, by taking a piecewise constant approximation of the initial value cb(t), ub(t)
and boundary values c0(x). Let t1 < · · · < tN , x̃1 < · · · < x̃M be the points where
initial-boundary values are discontinuous. For each α = 1, · · · , N , the Riemann prob-
lem generated by the jump of initial constant values at (tα, x = 0) is approximately
solved on a forward neighbourhood of (tα, 0) in the t− x plane, by a function invari-
ant on line t − tα = a x, for all positive a, and piecewise constant. Notice that the
boundary is characteristic, thus we only have one wave associated with the speed λ
in the corner (0, 0).

The approximate solution (cδ, uδ) can then be prolonged until x1 > 0 is reached,
when the first set of interactions between two wave-fronts takes place. If x1 > x̃1 we
first have to solve the characteristic boundary Riemann problem at (t = 0, x = x̃1).
Since (cδ, uδ)(., x1) is still a piecewise constant function, the corresponding Riemann
problems can again be approximately solved within the class of piecewise constant
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functions. The solution is then continued up to a value x2 where the next characteristic
boundary Riemann problem occurs or the second set of wave interactions takes place,
and so on.

According to this algorithm, contact discontinuity fronts travel with speed zero,
shock fronts travel exactly with Rankine-Hugoniot speed, while rarefaction fronts
travel with an approximate characteristic speed. However, one exception to this rule
must be allowed if three or more fronts meet at the same point. To avoid this situation,
we must change the positive speed λ of one of the incoming shock fronts or rarefaction
fronts. Of course this change of speed can be chosen arbitrarily small and we have
again Inequality (28).

Notice that, for 2× 2 system the number of wave-fronts cannot approach infinity
in finite x > 0. DiPerna shows in [22] that the process of regenerating the solution
by solving local Riemann problems yields an approximating solution within the class
of piecewise constant functions that is globally defined and that contains only a finite
number of discontinuities in any compact subset of the t−x quarter plane t ≥ 0, x ≥ 0.
We then do not consider non-physical fronts as in [14] for general n× n systems with
n ≥ 3.

5. About the shock and rarefaction curves. In this section, we present the
necessary hypothesis to use the FTA with large data. Precisely we work in the classical
hyperbolic case, namely, eigenvalues are linearly degenerate or genuinely nonlinear.
We assume that:

λ =
H(c)

u
is genuinely nonlinear i.e f is convex on [0, 1].(30)

Actually λ is genuinely nonlinear for f ′′ 6= 0, but since f = c1q2 − c2q1 (see (9)), we
can assume that f ′′ > 0, exchanging the gas indexes if necessary.
Our analysis of wave interactions in Section 6 is more precise with monotonic λ-wave
curves, then we also assume:

λ-wave curves are monotonic.(31)

To state precisely this last assumption, let us introduce some notations. Let (c−, L−)
be a left constant state, connected to (c+, L+), a right constant state, by a λ-wave
curve. In the genuinely linear case, with Assumption (30), λ-wave curve is a rarefac-
tion curve with c− < c+ or a shock curve with c− > c+. The sign of [c] = c+ − c−
comes from the general study of the Riemann problem in [10]. From the Riemann
invariant w = lnu + g(c) and the Rankine-Hugoniot conditions, a λ-wave curve can
be written as follows (see [10]):

[L] = L+ − L− = lnu+ − lnu− = T (c+, c−)

=

{

−[g] = −(g(c+)− g(c−)) if c− < c+
S(c+, c−) else.

(32)

We give an explicit formula for S in Lemma 5.1.
Notice that we only use one Riemann invariant, namely c, to write λ-wave curves.
Indeed L = lnu and c have quite different behavior as seen in [9, 10] and in this
paper. Furthermore we can give some simple criterion to have monotonic λ-wave
curves. For instance, as g′ = −h′/H , the rarefaction curve is monotonic if and only
if h is monotonic. A chemical example, investigated in [9], is the case of an inert gas
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(q1 = 0) and an active gas with a Langmuir isotherm: q∗2(c2) = Q2
K2c2

1 +K2c2
. In this

case we have

f ′′ > 0, h′ < 0,
∂S

∂c−
≥ 0 ≥

∂S

∂c+
.(33)

The first condition of (33) gives us (30) and the last one gives us (31).
Notice that if we exchange gas indexes, Inequalities (33) simply become:

f ′′ < 0 < h′,
∂S

∂c−
≤ 0 ≤

∂S

∂c+
.

Let us give some isotherm examples which satisfy (30) and (31) .

Proposition 5.1. In the following examples, Assumptions (30), (31) are valid:
1. one gas is inert: q1 = 0, and the other has a concave isotherm: q

′′

2 ≤ 0,
2. two active gases with linear isotherms: q∗i (c1, c2) = Kici, i = 1, 2,
3. two active gases with binary Langmuir isotherms: q∗i (c1, c2) =

QiKici
1 +K1c1 +K2c2

, i = 1, 2, where positive constants Q1, Q2,K1 ≥ K2 sat-

isfy: Q1K1 < Q2K2.
Furthermore, for two active gases with binary Langmuir isotherms, λ is genuinely
nonlinear, i.e. (30) is satisfied, if Q1K1 6= Q2K2.

The first case is the most classical case, where only one gas is active and its
isotherm has no inflexion point, like with the Langmuir isotherm.
The second case is less interesting in chemistry and only valid when the concentra-
tions are near a constant state.
For the third case, notice that K1 ≥ K2 is not really an assumption (exchange the
indexes if necessary).

Proof of Proposition 5.1. We use some technical Lemmas postponed to Subsection
5.1. The point is to satisfy (33).

1. Case with an inert gas: we have h = q2, f(c) = −c h(c), f ′ = −h − ch′, f ′′ =
−2h′ − c h′′, which implies h′ = q′2 ≤ 0, h′′ = q2” ≤ 0 and then f ′′ ≥ 0. We conclude
thanks to Lemmas 5.3 and 5.4.

2. Case with linear isotherms: linear isotherms are q1(c) = K1c, q2(c) = K2(1−c)
with K1 ≥ 0, K2 ≥ 0 then q′1(c) = K1 ≥ 0, q′2(c) = −K2 ≤ 0, h′(c) = q′1(c) + q′2(c) =
K1−K2, f

′′(c) = 2(K2−K1). We assume K1 ≤ K2, then we have h′ ≤ 0 ≤ f ′′. Since
qi” = 0, i = 1, 2, we conclude thanks to Lemmas 5.3 and 5.5.

3. Case with a binary Langmuir isotherm: we have q1(c) =
Q1K1c

D
, q2(c) =

Q2K2(1− c)

D
where D = 1 + K1c + K2(1 − c). Then q′1(c) =

Q1K1(1 +K2)

D2
≥

0, q′2(c) = −
Q2K2(1 +K1)

D2
≤ 0,

h′(c) = q′1(c) + q′2(c) ≤ 0 if and only if Q1K1(1 +K2) ≤ Q2K2(1 +K1),

q′′1 (c) =
2Q1K1(1 +K2)(K2 −K1)

D3
≤ 0 if and only if K1 ≥ K2,

q′′2 (c) =
2Q2K2(1 +K1)(K1 −K2)

D3
≥ 0 if and only if K1 ≥ K2,
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f ′′(c) =
2(Q2K2 −Q1K1)(1 +K1)(1 +K2)

D3
≥ 0 if and only if Q2K2 ≥ Q1K1.

Since Q1K1 ≤ Q2K2, we get f” ≥ 0 and
Q1

Q2
≤
K2

K1
. 1 ≤

1 +K1

1 +K2
because K1 ≥ K2,

so we have
Q1

Q2
≤
K2

K1

1 +K1

1 +K2
, i.e. h′ ≤ 0. Now we conclude with Lemmas 5.3 and

5.5.

5.1. Technical lemmas about shock curves. We express the shock curves as
follows.

Lemma 5.1. We have exp{S(c+, c−)} =
u−
u+

=
α+ h−
α+ h+

, where h± = h(c±) and

α =
[f ]

[c]
+ 1.

Proof. First, from the Rankine Hugoniot conditions:
[uc]

[c+ q1(c)]
=

[u]

[h]
, i.e. [h] =

[u][c+ q1(c)]

[uc]
, we obtain

u+
u−

=
[c+ q1(c)] − c−[h]

[c+ q1(c)]− c+[h]
(34)

where [c] = c+ − c− and [h] = h(c+) − h(c−) = h+ − h−, and we get (34) thanks to
the following computations:

[c+ q1(c)]− c−[h] = [c+ q1(c)]− c−
[u][c+ q1(c)]

[uc]
=

[c+ q1(c)]

[uc]
([uc]− c−[u])

=
[c]u+
[uc]

[c+ q1(c)],

[c+ q1(c)]− c+[h] = [c+ q1(c)]− c+
[u][c+ q1(c)]

[uc]
=

[c+ q1(c)]

[uc]
([uc]− c+[u])

=
[c]u−
[uc]

[c+ q1(c)].

Rewriting (34) we get

u−
u+

=
[c+ q1(c)]− c+[h]

[c+ q1(c)]− c−[h]
=

[q1] + [c]− c+[h]

[q1] + [c]− c−[h]
=

[q1] + [c] + c+(h− − h+)

[q1] + [c] + c−(h− − h+)

=
[q1]− c+h+ + [c] + h−c+
[q1] + c−h− + [c]− h+c−

=
[f ] + [c] + h−[c]

[f ] + [c] + h+[c]
=
α+ h−
α+ h+

,

which concludes the proof.

We need to know the sign of α+ h± before studying the sign of
∂S

∂c±
.

Lemma 5.2. If h′ ≤ 0 and c+ < c < c− then α+h(c+) ≥ α+h(c) ≥ α+h(c−) > 0.
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Proof. Since h′ ≤ 0 and c+ < c−, we have h(c+) ≥ h(c−) and this is enough to

show that
[f ]

[c]
+ 1+h(c−) > 0. This inequality is equivalent to [f ]+ [c]+ [c]h(c−) < 0

because [c] = c+ − c− < 0. Since f(c) = q1(c) − ch(c) the inequality is equivalent to
[q1] + [c] < c+[h]. We know that q′1 ≥ 0, c+ < c−, h

′ ≤ 0 such that [q1] ≤ 0, [c] <
0, [h] ≥ 0 and thus [q1] + [c] < 0 < c+[h].

Lemma 5.3. If h′ ≤ 0, if f is convex and if c+ < c− then we have
∂S

∂c+
(c+, c−) ≤

0.

Proof. Thanks to Lemma 5.1, we have S(c+, c−) = [L] = ln(u+) −

ln(u−) = ln(
u+
u−

) and
∂

∂c+

u+
u−

=
∂

∂c+

α+ h+
α+ h−

. A calculus gives
∂

∂c+

α+ h+
α+ h−

=

1

(α+ h−)2

(

−
∂α

∂c+
[h] + h′(c+)(α+ h−)

)

. Now
∂α

∂c+
≥ 0 because f is convex, next

[h] ≥ 0 since h′ ≤ 0 and c+ < c−. Lastly α + h− > 0 from Lemma 5.2 and we get
∂S

∂c+
(c+, c−) ≤ 0.

The following result concerns the case with an inert gas:

Lemma 5.4. If q1 = 0 and q′′2 ≤ 0 then
∂S

∂c−
≥ 0 for c− > c+.

Proof. If q1 = 0 then f(c) = −ch(c), h(c) = q2(c) then h′(c) = q′2(c) ≤ 0. By a
direct computation and thanks to Lemma 5.1, we have

u+
u−

=
[c]− c−[h]

[c]− c+[h]
=

[c]− c+[h] + [c][h]

[c]− c+[h]
= 1 +

1
1

[h]
−
c+
[c]

.

But as
∂

∂c−

1

[h]
< 0 and −

c+
[c]

decreases,
u+
u−

increases with respect to c−.

In the case of two active components we have the following result:

Lemma 5.5. If q
′′

1 ≤ 0 ≤ q
′′

2 and if f is convex then
∂S

∂c−
(c+, c−) ≥ 0.

Proof. Let c be between c+ and c−. From Lemma 5.2 we get:

u(c) =
f(c+)− f(c)

c+ − c
+ 1 + h(c+) > 0, v(c) =

f(c+)− f(c)

c+ − c
+ 1 + h(c) > 0.

We rewrite S using the functions u, v. With Lemma 5.1 we immediately get:

S(c+, c−) = ln

(

[f ]/[c] + 1 + h+
[f ]/[c] + 1 + h−

)

= ln

(

u(c−)

v(c−)

)

.

The function f is convex, so u is increasing. From equality f(c) = q1(c) − ch(c) we
have

(v(c)− 1)(c+ − c) = q1(c+)− c+h(c+)− q1(c) + ch(c) + h(c)(c+ − c)

= q1(c+)− q1(c)− c+(h(c+)− h(c)).
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Recall that h(c) = q1(c) + q2(c), so we have:

(v(c) − 1)(c+ − c) = q1(c+)− q1(c)− c+(q1(c+) + q2(c+)− q1(c)− q2(c))

= (1 − c+)(q1(c+)− q1(c))− c+(q2(c+)− q2(c)).

Finally, v(c) − 1 = (1 − c+)
q1(c+)− q1(c)

c+ − c
− c+

q2(c+)− q2(c)

c+ − c
with 0 ≤ c+ ≤ 1.

Now, q1 is concave and q2 is convex, so v is decreasing. Finally,
u

v
is increasing and

∂S

∂c−
≥ 0.

6. Interactions estimates. In this section we study the evolution of the total
variation of L = ln(u), noted TV L, through waves interactions. It is a key point to
obtain some BV bounds and a special structure for the velocity.

Let us note (c0, L0), (c1, L1), (c2, L2), three constant states such that:
• the Riemann problem with (c0, L0) for the left state and (c1, L1) for the right
state is solved by a simple wave W1,

• the Riemann problem with (c1, L1) for the left state and (c2, L2) for the right
state is solved by a simple wave W2,

• W1 and W2 interact.
Just after the interaction we have two outgoing waves W∗

1 , W
∗
2 , and the intermedi-

ary constant state (c∗1, L
∗
1). We note by TV L the total variation of lnu just before

interaction:

TV L = |L0 − L1|+ |L1 − L2|.

We note by TV L∗ the total variation of lnu just after the interaction:

TV L∗ = |L0 − L∗
1|+ |L∗

1 − L2|.

We use a similar notation for the concentration.
Let us note by α− the negative part of α: α− = max(0,−α) = −min(0, α) ≥ 0. We
have the following key estimates:

Theorem 6.1 (Variation of TV lnu and TV c through two waves interaction).
Assume (30). Then there exists a constant Γ ≥ 0 such that:

TV L∗ ≤ TV L+ Γ |c0 − c1| |c1 − c2|,(35)

TV c∗ ≤ TV c.(36)

Furthermore, if (31) is also satisfied then:

TV L∗ ≤ TV L+ Γ(c1 − c0)− × (c2 − c1)−,(37)

in addition, if S, from (32), satisfies the following triangular inequality:

(38) (c2, c0) ≤ S(c2, c1) + S(c1, c0)

when c0 > c1 > c2, then

TV L∗ ≤ TV L.(39)

Inequality (36) means that the total variation of c does not increase and Inequality
(37) means that the total variation of lnu does not increase after a wave interaction
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except when two shocks interact. If (30), (31) and (38) are satisfied then (39) means
(35) holds with Γ = 0. In this last case the increase of TV lnu is quadratic with
respect to the concentration variation.

Such estimates are only valid when f has no inflexion point. Conversely, λ-wave
curves are only Lipschitz and we lose the quadratic control for the total variation of
L.

Proof of Inequality (36). The decay of the total variation of the concentration is
straightforward since c is constant through a contact discontinuity, i.e. c∗1 = c0 :
TV c∗ = |c2 − c∗1|+ |c∗1 − c0| = |c2 − c0| ≤ |c0 − c1|+ |c1 − c2| = TV c.

Proof of Inequality (35). This proof is much more complicated. We only assume
(30). The proof is a consequence of the following lemmas.

Lemma 6.1. If a λ-wave interacts with a contact discontinuity then we have
TV L∗ = TV L.

Proof. It is the simplest case. We have c1 = c2 from the contact discontinuity,
so, with T defined in (32), L1−L0 = T (c1, c0) = T (c2, c0) and, since c

∗
1 = c0, we have

L2 − L∗
1 = T (c2, c

∗
1) = T (c2, c0). Then

L2 − L∗
1 = L1 − L0,

which implies L2 − L1 = L∗
1 − L0 and TV L∗ = TV L.

Lemma 6.2. There exists a constant Γ > 0 such that, for all c0, c1, c2 ∈ [0, 1]:

|T (c2, c0)− T (c2, c1)− T (c1, c0)| |≤ Γ | c2 − c1 || c1 − c0|.

Proof. We define R by R(α, β) = T (c2, c0)−T (c2, c1)−T (c1, c0). We have to prove
that R(α, β) = O(αβ), where α = c1−c0, β = c1−c2. We note c = c2, b = c1, a = c0.
We have T ∈ C3([0, 1],R) since λ is genuinely nonlinear. Notice that T (b, b) = 0. We
now apply the Taylor’s formula:

T (c, a) = T (b− β, b + α) = T (b, b)− β∂1T (b, b) + α∂2T (b, b)

+

∫ 1

0

(1 − t)(β2∂21S + α2∂22T − 2αβ∂212T )(b− tβ, b + tα)dt,

T (b, a) = T (b, b+ α) = T (b, b) + α∂2T (b, b) +

∫ 1

0

(1− t)α2∂22T (b, b+ tα)dt,

T (c, b) = T (b− β, b) = T (b, b)− β∂1T (b, b) +

∫ 1

0

(1− t)β2∂21T (b− tβ, b)dt,

R(α, β) = T (c, a)− T (c, b)− T (b, a)

= −T (b, b) +

∫ 1

0

(1− t)(β2(∂21T (b− tβ, b+ tα)− ∂21T (b− tβ, b)) +

α2(∂22T (b− tβ, b+ tα) − ∂22T (b, b+ tα)) − 2αβ∂1∂2T (b− tβ, b + tα))dt.

Since

∂21T (b− tβ, b+ tα)− ∂21T (b− tβ, b) = O(tα) = O(α),

∂22T (b− tβ, b+ tα)− ∂22T (b, b+ tα) = O(tβ) = O(β),

∂1∂2T (b− tβ, b+ tα) = O(1),
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we conclude that R(α, β) = O(β2α+ α2β + αβ) = O(αβ).

To conclude the proof of Inequality (35) it suffices to use the next lemma.

Lemma 6.3. If two λ-waves interact then we have

TV L∗ ≤ TV L+ Γ|c2 − c1| |c1 − c0|.

Proof. By definition of TV L and TV L∗ it suffices to prove that

L∗
1 = L0 +O(|c2 − c1| |c1 − c0|),

since TV L∗ = |L2 − L∗
1|+ |L∗

1 − L0| ≤ |L2 − L0|+ 2|L∗
1 − L0| ≤ TV L+ 2|L∗

1 − L0|.
Indeed, we have: L1 − L0 = T (c1, c0), L2 − L1 = T (c2, c1), L2 − L∗

1 = T (c2, c
∗
1) =

T (c2, c0). Next: L2 − L0 = T (c2, c1) + T (c1, c0) and then

L∗
1 − L0 = T (c2, c1) + T (c1, c0)− T (c2, c0),

which allows us to conclude the proof of Lemma 6.3 with Lemma 6.2.

The proof of Inequality (35) is now complete.

Proof of Inequalities (37), (39). We assume again (31) and also (33) to fix the
signs. There are more cases to study:

• first, we have already studied in Lemma 6.1 the interaction of a shock wave or
a rarefaction wave (λ-wave) with a contact discontinuity (1-wave): the contact
discontinuity is “transparent” since TV L∗ = TV L and the concentration
variation is also invariant.

• second, we study the interaction of a shock wave with a rarefaction wave
(λ-waves with different types): see Lemmas 6.4, 6.5, 6.6 and 6.7. We get
TV L∗ < TV L and the concentration variation decreases. It is the only case
where TV L and TV c decrease.

• finally, we study the interaction of two shock waves. In this situation TV L∗ ≥
TV L and TV c is invariant.
Furthermore, if S satisfies some “triangular inequality”, we get TV L∗ =
TV L.

In order to simplify the notations we note by D a contact discontinuity, R a rarefaction
wave and S a shock wave. “ RD → DR ” means that a rarefaction wave coming from
the left interacts with a contact discontinuity and produces a new left wave, namely
a contact discontinuity, and a new right wave, namely a rarefaction.
Since a contact discontinuity has a null speed and a λ-wave has a positive speed, the
only cases for W1, W2 are: RD, SD, RS, SR and SS.
For the resulting waves W∗

1 ,W
∗
2 , there are 7 cases.

The first two cases RD → DR and SD → DS have already been studied in Lemma
6.1.

Lemma 6.4. In the case RS → DR, TV L decreases i.e. TV L∗ < TV L.

Proof. In the beginning, we have a rarefaction, so c0 < c1, L0 > L1, then we have
a shock, so c2 < c1, L2 > L1. After the interaction, we have a contact discontinuity,
so c0 = c∗1, then a rarefaction, so c∗1 < c2, L

∗
1 > L2. Finally, we have c0 = c∗1 < c2 < c1

so g(c0) = g(c∗1) ≤ g(c2) ≤ g(c1). We can write

TV L = | L0 − L1 | + | L1 − L2 |= L0 − L1 + L2 − L1,

TV L∗ = | L0 − L∗
1 | + | L2 − L∗

1 |=| L0 − L∗
1 | +L∗

1 − L2.

There are two cases:
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• the simplest is L0 > L∗
1, then TV L∗ = L0 − L∗

1 + L∗
1 − L2 = L0 − L2 <

L0 − L1 < TV L,
• the second case is L0 < L∗

1. Let us define L̃2 by

L0 − L̃2 = L∗
1 − L2,

then L0 − L̃2 = L∗
1 − L2 = g(c2) − g(c∗1) = g(c2) − g(c0) ≤ g(c1) − g(c0) =

L0 − L1 because [L] = −[g] for a rarefaction and c∗1 = c0. Since shock curves
are decreasing, we know that L̃2 > L1, so TV L

∗ = L∗
1 − L0 + L∗

1 − L2 =
L2 − L̃2 + L0 − L̃2 < L2 − L1 + L0 − L1 = TV L.

Lemma 6.5. In the case RS → DS we get TV L∗ ≤ TV L.

Proof. This case needs the assumption
∂S

∂c−
≥ 0. In the beginning, we have

a rarefaction: c1 > c0 and L1 < L0 with a shock: c2 < c1 and L2 > L1. The
state (c2, L2) is connected with a shock (c∗1, L

∗
1): c2 < c∗1 and L∗

1 < L2. The state
(c0, L0) is connected with a contact discontinuity (c∗1, L

∗
1): c0 = c∗1. Finally, we have

c2 < c0 = c∗1 < c1. Then TV L =| L0 − L1 | + | L1 − L2 |= L0 − L1 + L2 − L1 and
TV L∗ =| L0 − L∗

1 | + | L2 − L∗
1 |= L2 − L∗

1+ | L∗
1 − L0 | . But, with the assumption,

∂S

∂c−
≥ 0, S(c2, c0) = S(c2, c

∗
1) = L2 − L∗

1 < S(c2, c1) = L2 − L1 then L∗
1 > L1.

There are two cases:
• if L0 > L∗

1 then TV L∗ = L0 − L∗
1 + L2 − L∗

1 < L0 − L1 + L2 − L1 = TV L,
• otherwise L0 < L∗

1 then TV L∗ = −L0+L
∗
1+L2−L∗

1 = L2−L0 < L2−L1 <
TV L.

Lemma 6.6. In the case SR → DR we have TV L∗ ≤ TV L.

Proof. In the beginning, we have a shock that interacts with a rarefaction so
c1 < c0, L1 > L0 and c2 > c1, L1 > L2.
After the interaction, we have a contact discontinuity so c0 = c∗1 then a rarefaction
so c2 > c∗1 and L∗

1 > L2. Finally, we have c1 < c0 = c∗1 < c2. Since g
′ ≥ 0, we have

g(c1) ≤ g(c0) ≤ g(c2).
For a rarefaction [L] = −[g] so L2−L∗

1 = g(c∗1)−g(c2) = g(c0)−g(c2) because c∗1 = c0,
L2 − L1 = g(c1)− g(c2) ≤ g(c0)− g(c2) because c1 < c0 and g′ ≥ 0.
So we have: L2 − L1 ≤ g(c∗1)− g(c2) = L2 − L∗

1 and
TV L =| L1 − L0 | + | L2 − L1 |= L1 − L0 + L1 − L2 ≥ L1 − L2,
TV L∗ =| L∗

1 − L0 | + | L2 − L∗
1 |=| L∗

1 − L0 | +L∗
1 − L2.

There are two cases:
• the first is L∗

1 > L0 then TV L∗ = L∗
1 − L0 − L2 + L∗

1 = 2L∗
1 − L0 − L2 =

−(L2 −L∗
1)+L∗

1 −L0 < −(L2−L1)+L∗
1 −L2 +L2 −L0 < −L2+L1 −L2+

L1 + L2 − L0 = 2L1 − L2 − L0 = TV L,
• the second case is L∗

1 < L0 then TV L∗ = −L∗
1 + L0 − L2 + L∗

1 = L0 − L2 ≤
L1 − L2 ≤ TV L.

Lemma 6.7. In the case SR → DS, TV L decreases i.e. TV L∗ ≤ TV L.

This situation is illustrated in Fig. 3.

Proof. It is the most difficult case. In the beginning, we have a shock so c1 < c0
and L1 > L0. The shock interacts with a rarefaction so c2 > c1 and L2 < L1.
We then have TV L =| L1 − L0 | + | L2 − L1 |= L1 − L0 + L1 − L2.
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The state (c2, L2) is connected to (c∗1, L
∗
1) by a shock so c2 < c∗1 and L∗

1 < L2.
The state (c0, L0) is connected to (c∗1, L

∗
1) by a contact discontinuity so c0 = c∗1.

Finally, we have c1 < c2 < c∗1 = c0, S(c1, c0) = S10 > S(c2, c0) = S20 = S(c2, c
∗
1) =

L2 − L∗
1, L1 − L0 = S10 > S20 = L2 − L∗

1, because
∂S

∂c+
< 0.

There are two cases:
• if L0 < L∗

1 (see Fig. 4, left) then L2 < L1 and

TV L
∗ =| L∗

1 −L0 | + | L2 −L
∗
1 |= L

∗
1 −L0 +L2 −L

∗
1 = L2 −L0 < L1 −L0 < TV L,

• if L∗
1 < L0 (see Fig. 4, right) then we define L̃2 by L̃2−L0 = S20 = L2−L∗

1 <
S10 = L1 − L0 and TV L∗ =| L∗

1 − L0 | + | L2 − L∗
1 |= L0 − L∗

1 + L2 − L∗
1 =

L̃2 − L2 + S20 < L1 − L0 + L1 − L0 = TV L.

C0

C1
C2

C1
*

= C0

t

x

rarefactionshock

shock

contact discontinuity

Fig. 3. Case SR → DS.

C1 C2
C0

L 2

L 1
*

L 1

L 0

L=ln u

C
C2

C0

L 1

L 0
L 2 L 1

*

C1

C

L=ln u

2L
~

Fig. 4. SR → DS: first case, left, and second case, right.
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The following case is the only one where TV L increases, except if S satisfies a
“triangular inequality”.

Lemma 6.8. In the case SS → DS we have

TV L∗ = TV L+ 2max(S20 − S21 − S10, 0) = TV L+ 2max(L0 − L∗
1, 0) ≥ TV L.

Proof. In the beginning, we have a shock: c1 < c0 and L1 > L0. It interacts with
an another shock: c2 < c1 and L2 > L1.
The state (c2, L2) is connected to (c∗1, L

∗
1) by a shock so c2 < c∗1 and L∗

1 < L2.
The state (c0, L0) is connected with (c∗1, L

∗
1) by a contact discontinuity so c0 = c∗1.

Finally, we have c2 < c1 < c0 = c∗1 and L0 < L1 < L2.
With L2 − L1 = S21 > 0, L1 − L0 = S10 > 0, L2 − L∗

1 = S20 > 0, we have:
TV L =| L2 − L1 | + | L1 − L0 |= L2 − L1 + L1 − L0 = S21 + S10,
TV L∗ =| L2 − L∗

1 | + | L∗
1 − L0 |=| S20 | + | L∗

1 − L2 + L2 − L0 | = S20+ |
−S20 + L2 − L0 | .
There are two cases to study:

• if −S20 +L2 −L0 ≥ 0 i.e. S20 = L2 −L∗
1 ≤ S21 +S10 = L2 −L0 i.e. L0 < L∗

1

then TV L∗ = S20 − S20 + L2 − L0 = L2 − L0 = TV L,
• otherwise L∗

1 < L0 and we have

TV L∗ = S20 + S20 − L2 + L0 = 2S20 − 2L2 + 2L0 + L2 − L0

= 2(S20 − (L2 − L0)) + TV L,= 2(S20 − S21 − S10) + TV L

= 2(L0 − L∗
1) + TV L,

which concludes the proof of Lemma 6.8.

The proof of Theorem 6.1 is now complete.

7. BV estimates with respect to time for the velocity. In System (1)-
(2)-(3), there is no partial derivative with respect to t for u. Nevertheless, the hy-
perbolicity of this system ( with x as the evolution variable) suggests that a BV
regularity of the ”initial” data ub for x = 0 is propagated. Furthermore, in the case
with smooth concentration, the Riemann invariant uG(c) suggests that when lnub is
only in L∞(0, T ), we can hope u(t, x)/ub(t) to be still BV in time for almost all x.
We prove that this BV structure of the velocity is still valid with a convex assump-
tion, using a Front Tracking Algorithm (FTA). We conjecture that this structure is
still valid for the general case without convex assumption, i.e. with a piecewise gen-
uinely nonlinear eigenvalue λ = H(c)/u. But, in this last case, the FTA becomes very
complicated (see Dafermos’ comments in [21]).

7.1. The case lnub ∈ BV (0, T ). We first precise the notations used in the next
theorem. We define the function cI on (0, T ) by

cI(s) =

{

c0(s) if 0 < s < X
cb(−s) if 0 < −s < T

,

and we set TV cI = TV cI [−T,X ].
There exists a positive constant γ such that if (c−, L−) is connected to (c+, L+) by a
λ-wave then |L+ − L−| ≤ γ |c+ − c−|. That is a simple consequence of (32). Indeed,
it is already proven in [9], Lemma 3.1, with an inert gas, or in [10], Lemma 4.1, for
two active gases.
The constant Γ comes from Theorem 6.1.
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Theorem 7.1 (Propagation of BV regularity with respect to time for the ve-
locity). Assume (30). If lnub ∈ BV (0, T ), if c0, cb ∈ BV and if (u, c) is a weak
entropy solution of System (1)-(2)-(3), coming from the Front Tracking Algorithm,
then c ∈ BV ((0, T )× (0, X)) and u ∈ L∞((0, T ), BV (0, X)) ∩ L∞((0, X), BV (0, T )).
More precisely:

max

(

sup
0<t<T

TVxc(t, .)[0, X], sup
0<x<X

TVtc(., x)[0, T ]

)

≤ TV cI ,

sup
0<t<T

TVx ln u(t, .)[0, X] ≤ TV ln ub + γ TV cI ,

sup
0<x<X

TVt lnu(., x)[0, T ] ≤ TV ln ub + 2γ TV cI +
Γ

2
(TV cI)

2
.

Furthermore, if (30), (31) and (38) are satisfied then Γ = 0 in the last inequality.

Compared to [9, 10], the new result is that u(t, x) is BV with respect to time if ub
is in BV (0, T ) i.e. the last inequality of Theorem 7.1. This is the stratified structure
(8) for the velocity with BV concentration. With the Godunov scheme used in [9, 10],
we did not obtain such time regularity for the velocity. It is the reason why we use
the FTA to get more precise estimates. Notice that we consider a local problem (in
time and space) for realism reasons ; we could have considered a global one as well,
i.e. for (t, x) ∈ (0,+∞)2.

Proof. The easiest BV estimate on the concentration c after interaction (estimate
(36) in Theorem 6.1), which is always valid independently of the velocity u, yields to
a control of c in L∞

t BVx ∩ L∞
x BVx as in [10], since λ waves always have a positive

speed. From Lemma 4.8 of [10] p.80 (or more simply Lemma 3.1 of [9] p. 557) we
get L∞

t,x ∩L
∞
t BVx bounds for the velocity u. It follows, from a natural adaptation of

the estimates and of the compactness argument in the proof of Theorem 5.1 p 563. in
[9] or Theorem 6.1 p.83 in [10], that there exists a subsequence which converges to a
solution of the initial boundary value problem with the prescribed data c0, cb, ub when
δ goes to zero, thanks to the approximate entropy inequality (29). Furthermore, as
in [9, 10], we recover strong traces at t = 0 and x = 0.

Notice that this existence proof is also valid without any BV assumption on the
velocity at the boundary: we only need lnub in L∞(0, T ).

The BV estimate with respect to time for lnu, i.e. the third estimate in the
theorem, is a consequence of the two following lemmas.

Let (u, c) be an entropy solution coming from FTA. For δ > 0, representing the
distance from the boundary x = 0 or t = 0, let us define:

L(s, δ) =

{

lnu(t = |s|, x = δ) if − T < s < 0
lnu(t = δ, x = s) if 0 < s < X

,

TV L(0) = lim sup
δ→0

TV L(., δ)[−T,X ].

For piecewise data, TV L(0) is the total variation of lnu just before the first interac-
tion.

Lemma 7.1. Before wave-interactions we have TV L(0) ≤ TV lnub + 2γ TV cI .

Proof. It suffices to prove this inequality for a piecewise constant approximate
solution issued from the FTA. We discretize [0, T ] and [0, X ] as follows:
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T = s1 > s2 · · · > sm > sm+1 = 0 < sm+2 < · · · < sN = X .
For i = 1, · · · ,m let us define the following piecewise approximations of c and lnu:

ci =
1

si − si+1

∫ si

si+1

cb(t)dt,Li =
1

si − si+1

∫ si

si+1

ln(ub(t))dt.

Since t = 0 is a characteristic boundary, we define only ci for i = m + 1, · · · , N − 1
by:

ci =
1

si − si+1

∫ si

si+1

c0(x)dx.

For i < m we solve the ith Riemann Problem with left state (ci, Li) and right state
(ci+1, Li+1) and we note c∗i , L

∗
i the intermediate state. Indeed c∗i = ci+1 since c is

constant through a contact discontinuity. From Lemma 3.1 p. 557 of [9] (or Lemma
4.1 p.78-79 of [10] for two active gases) we know that:

|Li − L∗
i | ≤ γ |ci − c∗i | = γ |ci − ci+1|.

We now estimate the total variation of lnu for the ith Riemann problem:

|Li − L∗
i |+ |L∗

i − Li+1| ≤ |Li − L∗
i |+ (|L∗

i − Li|+ |Li − Li+1|)

≤ 2γ |ci − ci+1|+ |Li − Li+1|.

Now, we look at the corner t = 0, x = 0 and i = m. There is only one λ-wave since
the boundary is characteristic. With the left state (cm, Lm) and only (cm+1) for the
right state, the resolution of the Riemann problem gives us a new constant value for
lnu, namely Lm+1 = L∗

m. We have again the estimate |Lm − L∗
m| = |Lm − Lm+1| ≤

γ |cm−cm+1|. So for i = m+1,m+2, · · · , N−1 we define Li solving the characteristic
Riemann problems with the estimate:

|Li − Li+1| ≤γ|ci − ci+1|.

Summing up with respect to i, we obtain the total variation on L just before the first
wave interaction:

TV L ≤
∑

i<m

(2γ |ci − ci+1|+ |Li − Li+1|) +
∑

i≥m

γ |ci − ci+1|

≤ TV ln ub + 2γ TV cI .

Lemma 7.2. We have the following estimate: TV L ≤ TV L(0) +
Γ

2
(TV cI)

2.

Proof. We prove this estimate for any piecewise constant approximation built
from the FTA. The same estimate is still true passing to the limit.

First we enumerate, from the left to the right, the absolute values of the concen-
tration jumps for the initial-boundary values :

αi = ci − ci−1 i = 1, · · · , N.

Notice that we have N + 1 constant states for the initial-boundary data:
(c0, L0), · · · , (cN , LN).
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From Theorem 6.1, the increase of the total variation of lnu is governed by the
following inequality TV L∗ ≤ TV L + Γ|αi−1||αi| if the wave number i − 1 interacts
with the wave number i.
Since c is constant through a contact discontinuity (c is a 2-Riemann invariant) and
the jump of c adds up when two λ-waves interact, we consider only the interaction
between λ-waves. We measure the strength of the λ-wave with the jump of c through
the wave. We have a positive or a negative sign whether we have a rarefaction or a
shock wave.
Let

(

αk
i

)

1≤i≤N−k
be the strength of the λ-wave number i (labeled from left to right)

after the interaction number k. We have α0
i = αi and note jk the index such that

the interaction number k occurs with the λ-waves number jk and jk + 1 where 1 <
jk ≤ N − k. For 1 ≤ i < N − k, the strengths of λ-waves after the interaction number
k > 0 are given by:

αk
i =







αk−1
i if i < jk

αk−1
i + αk−1

i+1 if i = jk

αk−1
i+1 if i > jk

,

and the increasing of TV L is less or equal than ΓSk where, according to Theorem
6.1, Sk satisfies:

S0 = 0, Sk = Sk−1 + |αk−1
i ||αk−1

i+1 |.

Let us define the integers lki as follows:
l0i = i and at each interaction

lki =

{

lk−1
i if i < jk,

lk−1
i+1 if i = jk, ..., N − k + 1.

Notice that after each interaction with two λ-waves, there is only one outgoing λ-
wave. Thus, the number of λ-waves decreases at each interaction, which proves again
(see [22]) that the number of interactions is finite and the FTA is well posed.

By induction, we see that: αk
i =

∑

lk
i
≤l<lk

i+1

αl where l
k
1 = 1 < lk2 < · · · < lkN−k+1 =

N − k+1, l0i = i and lki is non decreasing with respect to k. Now, from the definition
of Sk, we can deduce that:

Sk = Sk−1 +
∑

(i,j)∈Jk

|αi||αj |,(40)

where Jk = {(i, j); lk−1
jk

≤ i < lk−1
jk+1

≤ j < lk−1
jk+2

}.
Let us check that:

Sk =
∑

(i,j)∈Ik

|αi||αj |,(41)

where ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂ Ik ⊂ · · · ⊂ I = {(i, j); 1 ≤ i < j ≤ N}.
This is true for k = 0. It is also true for all k if Ik−1∩Jk = ∅ and so Ik = Ik−1∪Jk.

The only point to be proved is that Ik−1 ∩ Jk = ∅. The terms |αi||αj | in the last
sum of (40) have indexes i and j which appear in two consecutive intervals, i.e.
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lk−1
jk

≤ i < lk−1
jk+1

≤ j < lk−1
jk+2

and after, for i = jk, lki = lk−1
i and lki+1 = lk−1

i+2 . So

i and j reside in the same interval and so the terms |αi||αj | cannot appear again in
Sk+1, Sk+2, . . . , since such intervals are not decreasing.
The same is true for all indexes in Ik. They can appear at most once in Sk. We then
have Ik−1 ∩ Jk = ∅ and (41) is true.

We easily estimate Sk, which concludes the proof:

Sk ≤
∑

(i,j)∈I

|αi||αj | ≤
1

2

N
∑

i=1

N
∑

j=1

|αi||αj | =
1

2

(

N
∑

i=1

|αi|

)2

≤
1

2
(TV cI)

2
.

7.2. The case lnub ∈ L∞(0, T ). For lnub ∈ L∞ and c0, cb ∈ BV we get a BV
structure for the velocity.

Theorem 7.2 (BV structure for the velocity). We assume (30). If lnub ∈
L∞(0, T ), if c0, cb ∈ BV and if (c, u) is a weak entropy solution issued from the FTA,
then

max

(

sup
0<t<T

TVxc(t, .)[0, X ], sup
0<x<X

TVtc(., x)[0, T ]

)

≤ TV cI

and there exists a function v and constants γ, Γ > 0 such that u(t, x) = ub(t)× v(t, x)
with

ln v ∈ {L∞((0, X), BV (0, T )) ∩ L∞((0, T ), BV (0, X))} ⊂ BV ((0, T )× (0, X)),

sup
0<t<T

TVx ln v(t, .)[0, X ] ≤ γ TV cI ,

sup
0<x<X

TVt ln v(., x)[0, T ] ≤ 2 γ TV cI +
Γ

2
(TV cI)

2
.

Furthermore, if (30), (31) and (38) are satisfied then Γ = 0 in the last inequality.

The new result in this theorem is that
u(t, x)

ub(t)
is BV with respect to time,

although ub is not assumed to be BV, but just in L∞. The other regularity properties
have already been proved in [9, 10].

Proof. The first estimates for c are easily obtained as in Theorem 7.1 since
the total variation of the concentration does not increase after an interaction. The
existence proof of such an entropy solution follows the beginning of the proof of
Theorem 7.1, which is a natural adaptation of the existence proof from [9, 10] with
only L∞ velocity.
We now study the new BV estimates for v. We can define v by the relation u(t, x) =
ub(t)v(t, x) because ub > 0. Let M = ln v and Mb = ln v(·, x = 0). The initial total
variation of M on x = 0 is TVMb = 0 since v(t, x = 0) = 1.
We approach ub with a piecewise constant data (thus in BV ) and we show that the
BV estimate for M is independent of ub. Notice the fundamental relation:

[L] = lnu+ − lnu− = ln(ub(t) v+)− ln(ub(t) v−) = ln v+ − ln v− = [M ].

The equality [L] = [M ] implies that the λ-waves (32) are the same in coordinates
(c, L) and (c,M). So, Theorem 6.1 is still valid replacing L by M . We repeat the
proof of Theorem 7.1 to get BV estimates for v.
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8. Weak limit for velocity with BV concentration. When c is only in BV ,
we cannot reduce System (6) to a scalar conservation law for c as in section 3. Indeed,
since the shock speeds depend on the velocity, we have a true 2×2 hyperbolic system.
Nevertheless we can state following stability result.

Theorem 8.1 (Stability with respect to weak limit for the velocity). Let
(ln(uεb))0<ε<1 be a bounded sequence in L∞(0, T ), such that

uεb ⇀ ub in L∞(0, T ) weak *.

Let c0 ∈ BV ((0, X), [0, 1]) and cb ∈ BV ((0, T ), [0, 1]). Let (cε, uε) be a weak en-
tropy solution of System (6) on (0, T )× (0, X) issuing from the FTA with initial and
boundary values:















cε(0, x) = c0(x), X > x > 0,

cε(t, 0) = cb(t), T > t > 0,

uε(t, 0) = uεb (t) , T > t > 0.

Then, there exists (u(t, x), c(t, x)), a weak entropy solution of System (6), supple-
mented by initial and boundary values:

(42)















c(0, x) = c0(x), x > 0,

c(t, 0) = cb(t), t > 0,

u(t, 0) = ub(t), t > 0,

such that, when ε goes to 0, up to a subsequence:

cε(t, x) → c(t, x) strongly in L1([0, T ]× [0, X ]),

uε(t, x)⇀ u(t, x) weakly in L∞([0, T ]× [0, X ]) weak *,

uε(t, x) = uεb(t)× v(t, x) + o(1) strongly in L1([0, T ]× [0, X ]), where v(t, x) =
u(t, x)

ub(t)
.

For the convergence of the whole sequence, we need the uniqueness of the entropy
solution for the initial-boundary value problem: (6), (7).
Proof. From Theorem 7.2 we know that uε(t, x) = uεb(t)v

ε(t, x), where the sequences
(ln vε)0<ε and (cε)0<ε are uniformly bounded in BV ((0, T ) × (0, X)). So, up to a
subsequence, we have the following strong convergence in L1((0, T )× (0, X)): vε → v,
cε → c.

(cε, uε) is a weak entropy solution for (6) which means that for all ψ such that
ψ” ≥ 0 and Q such that Q′ = h′ψ + Hψ′ we have, in the distribution sense:
∂x (u

ε(t, x)ψ(cε))+∂tQ(cε) ≤ 0,which is rewritten as follows: ∂x (u
ε
b(t)v

ε(t, x)ψ(cε))+
∂tQ(cε) ≤ 0. Passing again to the weak-limit against a strong limit we get:
∂x (ub(t)v(t, x)ψ(c)) + ∂tQ(c) ≤ 0. i.e. (c, u = ub × v) is a weak entropy solution
for System (6). We can also pass to the limit on initial-boundary data.

Since there exists δ such that 0 < δ < uεb < δ−1, vε(t, x) → v(t, x) means that
uε(t, x)/uεb(t)−v(t, x) → 0 and also that uε(t, x)−uεb(t)×v(t, x) → 0, which concludes
the proof.

An example of high oscillations for the velocity: As an example of weak limit,
we consider the case of high oscillations for velocity on the boundary.
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Let ub(t, θ) ∈ L∞((0, T ), C0(R/Z,R)), ub(t) =

∫ 1

0

ub(t, θ)dθ and assume that

inf ub > 0. With uεb(t) = ub

(

t,
t

ε

)

and the same notations as in Theorem 8.1 we

have:

• first, oscillations do not affect the behavior of the concentration, since up to
a subsequence, (cε) converges strongly in L1 towards c and the limit system
depends only on the average ub and not on the oscillations, i.e. it is System
(6) with initial boundary data (42);

• second, up to a subsequence, (uε) converges weakly towards ub(t) × v(t, x)
and we have a strong profile for uε, U(t, x, θ) = ub(t, θ)× v(t, x) and

lim
ε→0

∥

∥

∥

∥

uε(t, x) − U

(

t, x,
t

ε

)∥

∥

∥

∥

L1((0,T )×(0,X))

= 0.
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