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WAVE INTERACTIONS FOR THE PRESSURE GRADIENT
EQUATIONS∗

T. RAJA SEKHAR† AND V. D. SHARMA‡

Abstract. In this paper, we solve the Riemann problem for a coupled hyperbolic system of
conservation laws, which arises as an intermediate model in the flux splitting method for the compu-
tation of Euler equations in gasdynamics. We study the properties of solutions involving shock and
rarefaction waves, and establish their existence and uniqueness. We present numerical examples for
different initial data, and finally discuss all possible elementary wave interactions; it is noticed that
in certain cases the resulting wave pattern after interaction is substantially different from that which
arises in isentropic gasdynamics.
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1. Introduction. The exact solution to the Riemann problem is of great sig-
nificance. For instance, it constitutes the basic building block for the construction
of solutions to general initial value problems using the well known random choice
method proposed by Glimm [1]. Lax [2] solved the Riemann problem for the case
when the initial data consisting of constant states Ul and Ur are such that ||Ul −Ur||
is sufficiently small; here U is the vector of unknown variables with Ul to the left of
x = 0 and Ur to the right of x = 0 separated by a discontinuity at x = 0. Smoller [3]
solved the Riemann problem by considering Ul and Ur to be arbitrary constant vec-
tors; for details, the reader is referred to the book by Smoller [4]. Exact solutions of
the Riemann problem were proposed by Godunov [5] and Chorin [6]; however, Smoller
[4] proposed a rather different approach. Smoller and Temple [7] demonstrated the
existence of solutions with shocks for equations describing a perfect fluid in special
relativity. Toro [8] presented an efficient solver for computing the exact solution of
the Riemann problem for ideal and covolume gases; for detailed methodologies, the
reader is referred to the book by Toro [9]. The Riemann problem for kinematical
conservation laws and geometrical features of nonlinear wavefronts can be found in
Baskar and Prasad [10]. Interaction of shallow water waves and elementary wave in-
teractions in isentropic magnetogasdynamics have been discussed by Raja Sekhar and
Sharma [11, 12]. Shen [13] has discussed the wave interactions and stability of the
Riemann solutions for chromatography system under the local small perturbations of
the Riemann initial data. Concerning compressible duct flows, and two phase flows,
we refer to the papers of Andrianov and Warnecke [14, 15].

For interaction of elementary waves in unsteady one-dimensional Euler equations,
we refer to Smoller [4], and Chang & Hsiao [16]. The interactions of elementary waves
of the scalar conservation laws with discontinuous flux function have been discussed
by Wang and Sheng [17]. For an illuminating treatment on Riemann problem, we
also refer to an article by Liu [18], Slemrod and Tzavaras [19] and the books of

∗Received February 9, 2010; accepted for publication June 18, 2010.
†Department of Applied Mathematics, National Institute of Technology Rourkela, Rourkela, India

(tungalar@nitrkl.ac.in).
‡Department of Mathematics, Indian Institute of Technology Bombay, Mumbai–76, India

(vsharma@math.iitb.ac.in).

165



166 T. RAJA SEKHAR AND V. D. SHARMA

Godlewski and Raviart [20], Li−Tsien [21], Dafermos [22], Bressan [23], LeFloch [24]
and LeVeque [25].

This paper is devoted to the analysis of the following coupled system of partial
differential equations [26, 27]

∂
∂t (u) + ∂

∂x(p) = 0,
∂
∂t (p + u2/2) + ∂

∂x (pu) = 0, t > 0, x ∈ R
(1.1)

which arises as an intermediate model in the flux splitting technique, used for numer-
ical computation of Euler equations in gasdynamics, and is referred to as the pressure
gradient equations in the literature. Here, the unknown quantities are velocity u and
pressure p. Recently, the system (1.1) has been studied by Zhang et. al [28] to de-
scribe the interaction between two rarefaction waves; we, in the present paper, discuss
all possible interactions of elementary waves using a different approach, and observe
that when waves belonging to the same family of characteristic curves interact, the
resulting wave pattern deviates remarkably from that which appears in the isentropic
gasdynamic case. For instance, when a 1-shock wave overtakes another 1-shock wave,
the transmitted and reflected waves are respectively 1-shock wave and 2-shock wave,
i.e., S1S1 → S1S2, which is in contrast to the corresponding isentropic gasdynamic
case, where the transmitted and reflected waves are respectively 1-shock wave and
2-rarefaction wave, i.e., S1S1 → S1R2. Similar is the case with other interactions
such as S2S2, S2R2, R2S2, S1R1 and R1S1.

The paper is organized as follows; in Section 2, we show that the system is strictly
hyperbolic, and that its characteristic fields are genuinely nonlinear. We establish the
existence of shocks and rarefaction waves, and prove the stability conditions for shocks,
and discuss how pressure and velocity vary across shocks and rarefaction waves. We
show that the characteristic speed increases from left to right for rarefaction waves. In
Section 3, we consider the Riemann problem for arbitrary initial data, and show that
it is uniquely solvable, and establish the condition for the vacuum state. In Section
4, we discuss numerical results for different initial data. In Section 5, we discuss all
possible interactions of elementary waves.

2. Properties of shock and rarefaction waves. For carrying out the char-
acteristic analysis of (1.1), it is convenient to use the primitive variables U = (p, u)T ,
rather than the vector of conserved variables, where superscript T denotes transposi-
tion. Then for smooth solutions, system (1.1) is equivalent to

Ut + AUx = 0,(2.1)

where A is 2 × 2 matrix with elements A11 = A22 = 0, A12 = p and A21 = 1.
The eigenvalues of A are λ1 = −√

p and λ2 =
√

p with associated right eigenvectors
~r1 = (−√

p, 1)T and ~r2 = (
√

p, 1)T ; thus, the system (2.1) is strictly hyperbolic when
p > 0. Since, ∇λ1 ·~r1 = 1/2 = ∇λ2 ·~r2, the characteristic fields λ1 and λ2 are genuinely
nonlinear, and the waves associated with them are either shocks or rarefaction waves,
which are the weak solutions of (1.1) or (2.1).

2.1. Shocks. Suppose U is a weak solution of (1.1) or equivalently (2.1) such
that Ul and Ur are C1 and extend continuously to the shock x = x(t). Let [U ] =
Ul − Ur be the jump discontinuity across the shock and σ = dx/dt the shock speed.
Then, the following Rankine−Hugoniot jump conditions hold across the shock

σ[u] = [p],(2.2)

σ[p + u2/2] = [pu].(2.3)
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Since the system is genuinely nonlinear, which corresponds to the strict convexity of
the flux function, we require the following Lax conditions for a k-shock with speed
σk, k = 1, 2

λk(Ur) < σk < λk(Ul), λk−1(Ul) < σk < λk+1(Ur)(2.4)

for some k.

Lemma 2.1. Let the states Ul and U satisfy the Rankine−Hugoniot jump con-
ditions (2.2) and (2.3).Let S1 = S1(Ul) and S2 = S2(Ul) respectively denote 1-shock
and 2-shock curves associated with λ1 and λ2 characteristic fields. Then the shock
curves satisfy

u = ul ∓ (p − pl)

√

2

p + pl
,(2.5)

indeed, on S1, we have du
dp < 0 and d2u

dp2 > 0, whilst on S2 we have du
dp > 0 and d2u

dp2 < 0.

Proof. The σ-elimination of (2.2) and (2.3) yields (2.5), and then differentiating
(2.5) with respect to p, we obtain

du

dp
= ∓ (p + 3pl)√

2(p + pl)3/2
.(2.6)

It is easy to show using (2.6) that du
dp < 0 on S1, and du

dp > 0 on S2. Differentiating

(2.6) with respect to p, we get

d2u

dp2
= ± (p + 7pl)

2
√

2(p + pl)5/2
.(2.7)

For all values of p we obtain, in view of (2.7), that d2u
dp2 > 0 for 1-shock, and d2u

dp2 < 0
for 2-shock.

We now show that the shocks satisfy the Lax stability conditions.

Lemma 2.2. Across 1-shock (respectively, 2-shock), p > pl and u < ul (respec-
tively, p < pl and u < ul) if, and only if, the Lax conditions hold, i.e., 1-shock
satisfies

σ1 < λ1(Ul), λ1(U) < σ1 < λ2(U),(2.8)

while the 2-shock satisfies

λ1(Ul) < σ2 < λ2(Ul), λ2(U) < σ2,(2.9)

where σ1 and σ2 are propagation speeds of 1-shock and 2-shock respectively.

Proof. First let us consider 1-shock and prove σ1 < λ1(Ul). On 1-shock, pl < p,
implying thereby that pl < (pl + p)/2, which implies that −

√

(p + pl)/2 < −√
pl; for

1-shock, in view of equation (2.5), we obtain

σ1 =
p − pl

u − ul
< −√

pl = λ1(Ul).(2.10)
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Next, since pl < p on 1-shock, we have (p + pl)/2 < p, which implies that −√
p <

−
√

(p + pl)/2, or equivalently

λ1(U) = −√
p <

p − pl

u − ul
= σ1.(2.11)

Since 1-shock speed σ1 < 0, and λ2(U) is positive, we have

σ1 < λ2(U).(2.12)

Therefore 1-shock satisfies Lax conditions; proof for 2-shock follows on similar lines.
Conversely, we assume for 1-shock that the left and right hand states satisfy Lax
conditions (2.8), and show that p > pl and u < ul. From (2.8), we get −√

p < −√
pl

which implies that p > pl . Since 1-shock speed σ1 < 0 and p > pl, we obtain, in view
of (2.2), that u < ul. The corresponding results for 2-shock are proved in a similar
way, and we shall not reproduce the details.

2.2. Rarefaction waves. Here we construct the rarefaction wave curves, and
recall that an k rarefaction wave (k = 1, 2), connecting the states Ul and Ur, is a
solution to (2.1) of the form

U(x, t) =







Ul,
x
t ≤ λk(Ul)

U(x
t ), λk(Ul) ≤ x

t ≤ λk(Ur)
Ur,

x
t ≥ λk(Ur),

(2.13)

with λn(Ul) ≤ λn(Ur), and where U(η) with η = x
t is a solution to the system

of ordinary differential equations (A − ηI)(ṗ, u̇)T = 0, where I is 2 × 2 identity
matrix and an overhead dot denotes differentiation with respect to the variable η. If
(ṗ, u̇)T = (0, 0) then p and u are constant; but as we are interested in non-constant
solutions, we consider (ṗ, u̇)T 6= (0, 0) and then it follows that (ṗ, u̇)T is an eigenvector
of the matrix A corresponding to the eigenvalue η. Since the matrix A has two real
and distinct eigenvalues λ1 and λ2, there are two families of rarefaction waves, R1

and R2 which denote, respectively, 1-rarefaction waves and 2-rarefaction waves.
First we consider 1-rarefaction waves. Since, (A − λ1I)(ṗ, u̇)T = 0 with λ1 = −√

p,
we have, ṗ +

√
pu̇ = 0, implying thereby that

Π1 ≡ u + 2
√

p = constant,(2.14)

which represents R1 curves with Π1 as the 1-Riemann invariant. Similarly, 2-
rarefaction wave curves are given by

Π2 ≡ u − 2
√

p = constant,(2.15)

and Π2 is the 2-Riemann invariant; indeed, the integral curves of the vector fields ~r1

and ~r2 are nothing but the level sets of the Riemann invariants Π1 and Π2 respectively.
Let U be a k-rarefaction wave of the form (2.13), and let Π be a k-Riemann invariant;
here k = 1, 2. Since, U is continuous and Π is assumed to be smooth, the function Π
: (x, t) → Π(U) is continuous for t > 0. Obviously, Π(U) is constant for x

t ≤ λk(Ul)
and x

t ≥ λk(Ur).
Further, since η = x

t , we have

dΠ(U)

dη
= ∇Π(U) · U̇ .(2.16)
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As U̇ is parallel to ~rk, the right hand side of (2.16) is zero, and thus, it follows that
on Rk, the Riemann invariant Πk is constant.

Theorem 2.1. The R1 curve is convex and monotonic decreasing while R2 curve
is concave and monotonic increasing.

Proof. The 1-rarefaction curve is given by

u = ul + 2(
√

pl −
√

p), p ≤ pl(2.17)

which on differentiation with respect to p, yields du
dp = − 1√

p < 0, and subsequently,

d2u
dp2 = 1

2p
√

p > 0. and, therefore, u is convex with respect to p for 1-rarefaction waves.

In a similar way, we can prove for 2-rarefaction waves.

Lemma 2.3. Across 1-rarefaction waves (respectively, 2-rarefaction waves), p ≤
pl and ul ≤ u (respectively, p ≥ pl and u ≥ ul) if, and only if, the characteristic speed
increases from left hand state to right hand state.

Proof. Since p ≤ pl for 1-rarefaction waves, which implies that λ1(Ul) ≤ λ1(U).
In a similar way, we can prove λ2(Ul) ≤ λ2(U) for 2-rarefaction waves.
Conversely, for 1-rarefaction waves, since λ1(Ul) ≤ λ1(U), we have −√

pl ≤ −√
p

implying thereby that p ≤ pl. Further, since in 1-rarefaction wave region Π1 is
constant, we have u − ul = 2(

√
pl −

√
p) ≥ 0; hence, p ≤ pl and u ≥ ul. In the same

way, one can prove that for 2-rarefaction waves, p ≥ pl and u ≥ ul.

3. The Riemann Problem. We now consider the Riemann problem for the
system (1.1), which consists in finding weak solutions with piecewise constant initial
data of the form

U(x, 0) =

{

Ul, if x < 0,
Ur, if x > 0.

(3.1)

We solve this problem in the class of functions consisting of constant states, separated
by either shocks or rarefaction waves. The solution of the Riemann problem consists
of at most three constant states (including Ul and Ur), which are separated either by
a shock or a rarefaction wave.

Theorem 3.1. The curves of shock and rarefaction waves for 1-family, i.e., S1

and R1 (respectively 2-family, i.e., S2 and R2) have the second order contact at Ul.

Proof. In order to prove S1 and R1 have the second order contact at Ul, we have
to show that S1 and R1 curves at p = pl, upto second derivatives, are equal. The
equation for 1-rarefaction wave is given in (2.17), and we obtain

u|p=pl
= ul,

du

dp
|p=pl

= − 1√
pl

, (
d2u

dp2
)|p=pl

=
1

2pl
√

pl
.(3.2)

The equation for 1-shock is given in (2.5) and from (2.6) & (2.7), we get

u|p=pl
= ul,

du

dp
|p=pl

= − 1√
pl

, (
d2u

dp2
)|p=pl

=
1

2pl
√

pl
.(3.3)

Thus u, du
dp and d2u

dp2 at p = pl have the same value for 1-shock and 1-rarefaction wave
curve. Therefore, S1 and R1 have the second order contact at Ul. Proof for 2-family
follows on similar lines.
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When Ur is sufficiently close to Ul, the existence and uniqueness of the solution
of Riemann problem for system (1.1) in the class of elementary waves follow from
the general theorem of Lax, which applies to any system of conservation laws that is
strictly hyperbolic and genuinely nonlinear in each characteristic field (see [2], [20]).
For arbitrary initial data we discuss the existence of solution of the Riemann problem
for the system (1.1).

We consider the physical variables as coordinate system; we divide the (p, u)-plane
into five disjoint open regions namely I, II, III, IV and V . The first four regions
namely I, II, III and IV are separated by the curves S1, S2, R1 and R2, represented
by (2.5), (2.14) and (2.15), respectively; these curves are drawn in Fig. 3a for a given
left state Ul, and the regions IV and V are separated by the curve R2(Ul0) where
Ul0 = (0, ul + 2

√
pl). Indeed, we fix Ul and allow Ur to vary; if Ur lies on any of the

above five curves, then we have seen how to solve the problem. First we assume that
Ur belongs to one of the four open regions I, II, III and IV as shown in Fig. 3a.
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Fig. 3a. Wave curves in (p, u)-plane Fig. 3b. Ur is in region I

Following ([4]), we define, for Û ∈ R
+ × R, Sk(Û) = {(p, u) : (p, u) ∈ Sk(Û)},

Rk(Û) = {(p, u) : (p, u) ∈ Rk(Û)} and Tk(Û) = Sk(Û)
⋃

Rk(Û), k = 1, 2.
For fixed Ul ∈ R

+ × R, we consider the family of curves S = {T2(Û) : Û ∈ T1(Ul)}.
As the (p, u) plane is covered univalently by the family of curves S, i.e., through each
point Ur, there passes exactly one curve T2(Û) of S, the solution to the Riemann
problem is given as follows; we connect Û to Ul on the right by a 1-wave (either shock
or rarefaction wave), and then we connect Ur to Û on the right by a 2-wave (either S2

or R2). Indeed, depending on the position of Ur we have different wave configurations.

Theorem 3.2. Let Ul, Ur ∈ R
+×R with Ul fixed, and Ur is allowed to vary then

the Riemann problem is solvable.

Proof. We are allowing to vary Ur i.e., Ur is in region I, II, III or IV . If Ur ∈ I,
then draw a vertical line p = pr as shown in Fig. 3b, which meets R2 and S1 uniquely
at P = (p1, u1) and Q = (p2, u2) respectively. We notice that the subfamily of curves
in S, consisting of the set {T2(Û) ≡ T2(p̂, û) : pl ≤ p̂ ≤ pr} induces a continuous
mapping θ → φ(θ) from the arc UlQ to line segment PQ, see ([4]); indeed, the region
I is covered by curves in S. So, let us suppose that (pm, um) is the point which is
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mapped to Ur. Then

u = ul − (pm − pl)

√

2

pm + pl
− 2(

√
pm −√

pr),(3.4)

which on differentiation yields du
dpm

= −( (pm+3pl)√
2(pm+pl)3/2

+ 1√
pm

) < 0, implying thereby

that (pm, um) is unique. Similarly, we can prove uniqueness if Ur is in region II, III
or IV .
Thus if Ur ∈ I, then the solution to Riemann problem consists of 1-shock and a 2-
rarefaction wave connecting Ul to Ur. Suppose Ur is in region II, then the solution
consists of shocks S1 and S2 joining Ul to Ur. If Ur ∈ III, then the solution of
Riemann problem is obtained by connecting Ul to Ur by R1, followed by S2. If Ur

lies in region IV , then the solution consists of 1-rarefaction wave and 2-rarefaction
wave. Thus the set {T2(Û) : Û ∈ T1(Ul)} covers the region I, II, III and IV in a
1-1 fashion. Therefore, the solution to the Riemann problem is solvable for arbitrary
Ur lying in any of the regions I, II, III and IV .

If Ur ∈ V or R2(Ul0) then vacuum (p = 0) does occur, and we have the following
result:

Lemma 3.1. If ur − ul ≥ 2(
√

pl +
√

pr) then the vacuum occurs

Proof. Across 1-rarefaction wave, 1-Riemann invariant is constant, i.e.,
Π1(pl, ul) = Π1(pm, um) and similarly across 2-rarefaction wave, 2-Riemann in-
variant is constant, i.e., Π2(pm, um) = Π2(pr, ur). So Π2(pr, ur) − Π1(pl, ul) =
Π2(pm, um)−Π1(pm, um) implying thereby that 0 ≤ ur−ul−2(

√
pl+

√
pr) = −4

√
pm,

which implies that pm = 0. Hence, vacuum occurs.

4. Numerical examples. For a given left state Ul and a right state Ur, we give
numerical algorithm to find the unknown state Um (see Table 1) in (x, t)-plane.
Case a: For pl < pm and pm ≤ pr, we eliminate um from (2.5) and (2.15) to obtain

ur − ul + 2(
√

pm −√
pr) + (pm − pl)

√

2

pm + pl
= 0.(4.1)

Case b: For pl < pm and pr < pm, we obtain from (2.5) that

ur − ul + (pm − pl)

√

2

pm + pl
− (pr − pm)

√

2

pm + pr
= 0.(4.2)

Case c: For pm ≤ pl and pm ≤ pr, eliminating um from (2.14) and (2.15), we get

ur − ul − 2(
√

pl − 2
√

pm +
√

pr) = 0.(4.3)

Case d: For pm ≤ pl and pm > pr, eliminating um from (2.14) and (2.5), we get

ur − ul − 2(
√

pl −
√

pm) − (pr − pm)

√

2

pr + pm
= 0.(4.4)

Thus, for all the four possible wave patterns (4.1)-(4.4), we obtain a single nonlinear
equation

fr(pm, Ur) + fl(pm, Ul) + ur − ul = 0,(4.5)
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where

fl(pm, Ul) =

{

(pm − pl)
√

2
pl+pm

, if pm > pl,

2(
√

pm −√
pl), if pm ≤ pl,

and

fr(pm, Ur) =

{

(pm − pr)
√

2
pr+pm

, if pm > pr,

2(
√

pm −√
pr), if pm ≤ pr.

We solve (4.5) for pm by using Newton-Raphson iterative procedure with a stop
criterion when the relative error is less than 10−8; the initial guess for pm is taken to
be the average value of pl and pr. Once pm is known, the solution for the particle
velocity um can be obtained from (2.5) or (2.14) (respectively, from (2.5) or (2.15))
depending on whether the 1-wave (respectively, 2-wave) is a shock or a rarefaction
wave. In case of rarefaction waves, we have to find the solution inside the wave region.
For 1-rarefaction wave, the slope of the characteristic from (0, 0) to (x, t) is

dx

dt
=

x

t
= −√

p,(4.6)

then p is found from (4.6). Since Π1 is constant in 1-rarefaction wave region we have

u = ul + 2(
√

pl −
√

p),(4.7)

in view of (4.7) we can obtain the particle velocity u. In a similar way, we find the
solution inside the 2-rarefaction wave.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Test pl ul pm um pr ur Result
1 1.0 1.0 2.280776 0.0 1.0 −1.0 S1S2

2 1.0 −0.5 0.5625 0.0 1.0 0.5 R1R2

3 0.8 1.1 1.322781 0.592563 1.7 0.9 S1R2

4 3.0 0.0 2.187311 0.50619 1.5 0.0 R1S2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Table 1

5. Interaction of Elementary Waves. The interaction of elementary waves,
obtained from the Riemann problem (3.1), gives rise to new emerging elementary
waves. We define the initial function, with two jump discontinuities at x1 and x2, as
follows.

U(x, 0) =







Ul, if x ≤ x1,
U∗, if x1 < x ≤ x2,
Ur, if x2 < x,

(5.1)

with an appropriate choice of U∗ and Ur in terms of Ul and arbitrary x1 and x2 ∈ R.
With the above initial data, we have two Riemann problems locally. An elementary
wave of the first Riemann problem may interact with an elementary wave of the second
Riemann problem, and a new Riemann problem is formed at the time of interaction.

Here, we use the notation S2R1 → R1S2, which means that a 2-shock wave, S2,
of first Riemann problem (connecting Ul to U∗) interacts with 1-rarefaction wave, R1,
of second Riemann problem (connecting U∗ to Ur), and the interaction leads to a
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new Riemann problem (connecting Ul to Ur via Um), the solution of which consists of
1-rarefaction wave, R1, and a 2-shock wave S2 (i.e., R1S2). The possible interactions
of elementary waves belonging to different families are R2R1, R2S1, S2R1 and S2S1

while the elementary wave interactions belonging to the same family are R2S2, S2R2,
S1R1, R1S1, S1S1 and S2S2.

5.1. Interaction of Elementary Waves from Different Families.

(i) Collision of two shocks (S2S1). We consider that Ul is connected to U∗ by
a 2-shock, S2, of first Riemann problem and U∗ is connected to Ur by a 1-shock, S1, of
second Riemann problem. In other words, for a given Ul, we choose U∗ and Ur in such

a way that p∗ < pl, u∗ = ul+(p∗−pl)
√

2
pl+p∗

and p∗ < pr, ur = u∗−(pr−p∗)
√

2
pr+p∗

.

Since speed of 2-shock of the first Riemann problem is greater than speed of 1-shock of
the second Riemann problem, S2 overtakes S1. In order to show that for any arbitrary
state Ul, the state Ur lies in the region II (see Fig. 3a), it is sufficient to prove that

(p − pl)
√

2
p+pl

+ (p∗ − pl)
√

2
p∗+pl

− (p − pl)
√

2
p+pl

< 0 for p∗ < pl and p∗ < p.

We have (p − pl)
√

2
p+pl

+ (p∗ − pl)
√

2
p∗+pl

< (p − pl)
√

2
p+pl

< (p − p∗)
√

2
p+pl

<

(p− p∗)
√

2
p+p∗

(since p∗ < pl and p∗ < p). Hence (p− pl)
√

2
p+pl

+ (p∗ − pl)
√

2
p∗+pl

−

(p−pl)
√

2
p+pl

< 0, i.e., the curve S1(U∗) lies below the curve S1(Ul), and therefore Ur

lies in the region II. Thus, in view of the results presented in the preceding section,
it follows that the interaction result is S2S1 → S1S2.

(ii) Collision of a shock and rarefaction wave (S2R1). Here U∗ ∈ S2(Ul)
and Ur ∈ R1(U∗). That is, for a given Ul, we choose U∗ and Ur such that p∗ < pl,

u∗ = ul + (p∗ − pl)
√

2
p∗+pl

and pr ≤ p∗, ur = u∗ + 2(
√

p∗ −
√

pr). Since 2-shock has

greater velocity than 1-rarefaction wave, it follows that S2 overtakes R1. Moreover,

since for any given Ul, 2(
√

pl −
√

p∗)− (p∗ − pl)
√

2
p∗+pl

> 0 for pl > p∗ > p, it follows

that the curve R1(U∗) lies below the curve R1(Ul); hence Ur lies in the region III,
and subsequently S2R1 → R1S2.

(iii) Collision of two rarefaction waves (R2R1). We consider U∗ ∈ R2(Ul)
and Ur ∈ R1(U∗). In other words, for a given Ul, we choose U∗ and Ur such that
pl ≤ p∗, u∗ = ul − 2(

√
pl −

√
p∗) and pr ≤ p∗, ur = u∗ + 2(

√
p∗ −

√
pr). Since the

trailing end of 2-rarefaction wave has a greater velocity (bounded above) in (x, t)-
plane than that 1-rarefaction wave velocity (bounded above), interaction will take
place. Since pl < p∗, therefore 4(

√
p∗ −

√
pl) > 0, it follows that the curve R1(U∗)

lies above the curve R1(Ul); hence Ur lies in the region IV and the interaction result
is R2R1 → R1R2.

(iv) Collision of a rarefaction wave and a shock (R2S1). Here U∗ ∈ R2(Ul)
and Ur ∈ S1(U∗), i.e., for a given Ul, we choose U∗ and Ur such that pl ≤ p∗,

u∗ = ul −2(
√

pl −
√

p∗) and p∗ < pr, ur = u∗− (pr −p∗)
√

2
pr+p∗

. Since 1-shock speed

of second Riemann problem is less than the speed of trailing end of 2-rarefaction wave
of first Riemann problem in (x, t)-plane, and therefore S1 penetrates R2. For any
given Ul, we show that Ur ∈ I; for this, it is enough to show that

(p − pl)

√

2

p + pl
− (p − p∗)

√

2

p + p∗
− 2(

√
pl −

√
p∗) > 0.(5.2)
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We have (p − pl)
√

2
p+pl

> (p − p∗)
√

2
p+p∗

for pl < p∗; hence, the inequality (5.2)

follows, implying thereby that the curve S1(U∗) lies above the curve S1(Ul), and Ur

lies in the region I. Thus the interaction result is R2S1 → S1R2.

5.2. Interaction of Elementary Waves from Same Family.

(i) 1-rarefaction wave overtakes 1-shock (R1S1). In this case, Ul is con-
nected to U∗ by 1-rarefaction wave of the first Riemann problem and U∗ is connected
to Ur by 1-shock of the second Riemann problem. That is, for a given Ul, we choose
U∗ and Ur in such a way that p∗ ≤ pl, u∗ = ul + 2(

√
pl −

√
p∗) and p∗ < pr,

ur = u∗ − (pr − p∗)
√

2
p∗+pr

.

First we show that R1(Ul) lies below the curve S1(U∗) for p∗ < p ≤ pl; in other words,
for p∗ < p ≤ pl

2(
√

p −√
p∗) − (p − p∗)

√

2

p + p∗
> 0.(5.3)

Let us define φ1(p) = 2(
√

p−√
p∗)−(p−p∗)

√

2
p+p∗

so that φ1(p∗) = 0. Differentiating

φ1(p) with respect to p, we have to show that φ
′

1(p) > 0. Let us assume on contrary

that φ
′

1(p) ≤ 0, which implies that
√

2(p+p∗)
3

2 ≤ √
p(p+3p∗); squaring both sides and

simplifying it, we obtain (p3−p3
∗)+6p2

∗(p−p∗) ≤ 0, which is a contradiction since the
left hand side of the inequality is strictly positive. Thus, φ

′

1(p) > 0, implying thereby
that φ1(p) > φ1(p∗) = 0; hence R1(Ul) lies below the curve S1(U∗) for p∗ < p ≤ pl.
Next we prove that S1(Ul) lies below the curve S1(U∗) for pl < p; for this it is sufficient
to prove that

2(
√

pl −
√

p∗) + (p − pl)

√

2

p + pl
− (p − p∗)

√

2

p + p∗
> 0, ∀ p > pl > p∗.(5.4)

Since 2
√

pl + (p− pl)
√

2
p+pl

is a increasing function with respect to pl for pl < p; and

hence 2(
√

pl −
√

p∗) + (p − pl)
√

2
p+pl

− (p − p∗)
√

2
p+p∗

> 0 for p∗ < pl < p.

Lastly, we show that S1(U∗) and R2(Ul) intersect uniquely at some point (p̃1, ũ1),
where p∗ < pl < p̃1. To prove this, we define a new function φ2(p) = 4

√
pl − 2(

√
p∗ +

√
p) − (p − p∗)

√

2
p+p∗

for p∗ < pl < p. Since φ2(pl) = φ1(pl) > 0 and φ2(p) < 0 for

large values of p, by virtue of monotonicity and intermediate value property, there
exists a unique p̃1, for pl < p̃1, such that φ2(p̃1) = 0. Thus, the intersection of
R2(Ul) and S1(U∗) is uniquely determined. Indeed, depending on the value of pr, we
distinguish three cases:
a) When pr < p̃1, Ur ∈ IV and the interaction result is R1S1 → R1R2.
b) When pr = p̃1, Ur lies on R2(Ul) and the interaction result is R1S1 → R2; thus,
when two waves of first family interact, they annihilate each other, and give rise to a
wave of second family.
c) When pr > p̃1, Ur ∈ I and the interaction result is R1S1 → S1R2; this means that
1-shock of second Riemann problem, which is strong compared to the 1-rarefaction
wave of first Riemann problem, overtakes the trailing end of 1-rarefaction wave, and
a reflected rarefaction wave R2(Um, Ur), connecting a new constant state Um on the
left to the known state Ur on the right, is produced. The transmitted wave, after
interaction, is the 1-shock that joins Ul on the left to the state Um on the right.
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(ii) 1-shock overtakes 1-rarefaction wave (S1R1). Here U∗ ∈ S1(Ul) and
Ur ∈ R1(U∗). That is, for a given Ul, we choose U∗ and Ur such that pl < p∗,

u∗ = ul − (p∗ − pl)
√

2
p∗+pl

and pr ≤ p∗, ur = u∗ + 2(
√

p∗ − √
pr). In the (x, t)

plane the speed of trailing end of 1-rarefaction wave, λ1(U∗), is less than the velocity
σ1(Ul, U∗) and therefore 1-rarefaction wave from right overtakes 1-shock from left
after a finite time.
First we show that S1(Ul) lies below the curve R1(U∗) for pl < p < p∗; for this we
need to show that for p lying in the interval (pl, p∗)

(p − pl)

√

2

p + pl
− 2

√
p − ((p∗ − pl)

√

2

p∗ + pl
− 2

√
p∗) > 0.(5.5)

To prove this, we define a new function φ3(p) = (p − pl)
√

2
p+pl

− 2
√

p for pl < p.

Then one can show that φ
′

3(p) = (p+3pl)√
2(p+pl)

3
2

− 1√
p > 0 for pl < p, implying thereby

that φ3(p) > φ3(p∗), and thus we prove the inequality (5.5).
Next we show that R1(U∗) lies above the curve R1(Ul) for p ≤ pl < p∗, i.e.,

2(
√

p∗ − √
pl) − (p∗ − pl)

√

2
p∗+pl

> 0 for p ≤ pl < p∗. Since the left hand side

of this inequality, for p ≤ pl < p∗, turns out to be φ3(pl), which has already been
shown to be positive, the conclusion follows.
Lastly, we show that R2(Ul) and R1(U∗) intersect uniquely at some point, say, (p̃2, ũ2)
for pl < p̃2 < p∗; for this, it is enough to show that the equation 2(

√
pl +

√
p∗−2

√
p)−

(p∗−pl)
√

2
p∗+pl

= 0 has a unique root p̃2 such that p∗ > p̃2 > pl. To establish this, we

define a new function φ4(p) = 2(
√

pl +
√

p∗−2
√

p)−(p∗−pl)
√

2
p∗+pl

; since φ4(pl) > 0

and φ4(p∗) < 0, in view of monotonicity and intermediate value property, it follows
that the curves R1(U∗) and R2(Ul) intersect uniquely. Here again we distinguish three
cases depending on the value of pr:
a) When pr < p̃2, Ur ∈ IV and the interaction result is S1R1 → R1R2, i.e., 1-
rarefaction wave is sufficiently strong compared to 1-shock wave which, after interac-
tion, produces a new elementary wave.
b) When pr = p̃2, Ur ∈ R2(Ul) and the interaction result is S1R1 → R2, i.e., the
interaction of elementary waves of first family gives rise to a new elementary wave of
second family.
c) When pr > p̃2, Ur ∈ I and the interaction result is S1R1 → S1R2.

(iii) 2-shock overtakes 2-rarefaction wave (S2R2). The S2R2 interaction
takes place when U∗ ∈ S2(Ul) and Ur ∈ R2(U∗). In other words, for a given Ul, we

choose U∗ and Ur in such a way that p∗ < pl, u∗ = ul +(p∗− pl)
√

2
pl+p∗

and p∗ ≤ pr,

ur = u∗ − 2(
√

p∗ −
√

pr).
First we show that for p∗ < p < pl, S2(Ul) lies below R2(U∗), i.e.,

2
√

p − (p − pl)

√

2

p + pl
− (2

√
p∗ − (p∗ − pl)

√

2

p∗ + pl
) > 0, ∀ p ∈ (p∗, pl].(5.6)

To prove this we define a new function φ5(p) = 2
√

p− (p−pl)
√

2
p+pl

for p < pl. Since

φ
′

5(p) = 1√
p − (p+3pl)

(p+pl)
√

2(p+pl)
> 0, we have φ5(p) > φ5(p∗), and the inequality (5.6)

follows, implying thereby that S2(Ul) lies below R2(U∗).
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Next we show that the curve R2(Ul) lies below the curve R2(U∗) for p∗ < pl ≤ p; for

this it is enough to prove 2(
√

pl −
√

p∗) + (p∗ − pl)
√

2
p∗+pl

> 0 for p∗ < pl ≤ p. We

notice that the left hand side of this inequality is φ5(pl) − φ5(p∗) which has already
been shown to be positive, and hence the curve R2(Ul) lies below the curve R2(U∗)
for p∗ < pl ≤ p.
Lastly, we show that R2(U∗) and R1(Ul) intersect uniquely, say, at (p̃3, ũ3) for p∗ <
p̃3 < pl.

Let us define φ6(p) = 2(2
√

p − √
pl −

√
p∗) + (p∗ − pl)

√

2
p∗+pl

for p∗ < p ≤ pl so

that φ6(pl) > 0 and φ6(p∗) < 0. Then, there exists a p̃3 such that φ6(p̃3) = 0. Thus
R2(U∗) and R1(Ul) intersect uniquely at (p̃3, ũ3) as R2(U∗) and S1(Ul) are monotone.
Here again the following cases arise:
a) When pr < p̃3, Ur ∈ III and the interaction result is S2R2 → R1S2; this means that
the strength of R2 is small compared to the elementary wave S2, and S2 annihilates R2

in a finite time. The strength of reflected R1 wave is small compared to the incident
waves S2 and R2.
b) When pr = p̃3, Ur ∈ R1(Ul) and the interaction result is S2R2 → R1.
c) When pr > p̃3, Ur ∈ IV and the interaction result is S2R2 → R1R2, implying
thereby that R2 is stronger than S2.

(iv) 2-rarefaction wave overtakes 2-shock (R2S2). Here U∗ ∈ R2(Ul) and
Ur ∈ S2(U∗). Thus, for a given Ul, we choose U∗ and Ur such that pl ≤ p∗, u∗ =

ul − 2(
√

pl −
√

p∗) and pr < p∗, ur = u∗ + (pr − p∗)
√

2
pr+p∗

.

Now we show that R2(Ul) lies below S2(U∗) for pl ≤ p < p∗, i.e.,

2(
√

p∗ −
√

p) + (p − p∗)

√

2

p + p∗
> 0, ∀ pl ≤ p < p∗.(5.7)

To prove this we define a new function φ7(p) = 2(
√

p∗ − √
p) + (p − p∗)

√

2
p+p∗

for

pl ≤ p ≤ p∗ so that φ7(p∗) = 0. Since dφ7(p)
dp = (p+3p∗)

(p+p∗)
√

2(p+p∗)
< 0, implying thereby

that φ7(p) > φ7(p∗) = 0. Hence, the result.
Next we show that S2(Ul) lies below the curve S2(U∗) for p < pl < p∗; for this, it is
sufficient to prove that for p < pl < p∗, the following inequality holds

2
√

p∗ + (p − p∗)

√

2

p + p∗
− 2

√
pl − (p − pl)

√

2

p + pl
> 0.(5.8)

In order to prove this inequality, we define a new function φ8(p, p∗) = 2
√

p∗ + (p −
p∗)

√

2
p+p∗

for p < p∗; since dφ8(p,p∗)
dp∗

= 1√
p∗

− (3p+p∗)

(p+p∗)
√

2(p+p∗)
> 0, it follows that

φ8(p, p∗) > φ8(p, pl), and hence the inequality (5.8).
Lastly, we show that R1(Ul) and S2(U∗) intersect uniquely at a point, say, (p̃4, ũ4),
where p̃4 < pl < p∗. The proof for this follows on similar lines as discussed earlier.
Here also we encounter three possibilities:
a) When pr > p̃4, Ur ∈ IV and the interaction result is R2S2 → R1R2; this means
that R2 is strong compared to the elementary wave S2, and the strength of reflected
R1 is small compared to the incident waves R2 and S2.
b) When pr = p̃4, Ur ∈ R1(Ul) and the interaction result is R2S2 → R1.
c) When pr < p̃4, Ur ∈ III and the interaction result is R2S2 → R1S2, implying
thereby that the elementary wave S2 is strong compared to R2.
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(v) 1-shock overtakes another 1-shock (S1S1). We consider the situation in
which Ul is connected to U∗ by a 1-shock of first Riemann problem and U∗ is connected
to Ur by a 1-shock of second Riemann problem. In other words, for a given left state
Ul, the intermediate state U∗ and the right state Ur are chosen such that pl < p∗ and

u∗ = ul − (p∗ − pl)
√

2
p∗+pl

with Lax stability conditions

σ1(Ul, U∗) < λ1(Ul), λ1(U∗) < σ1(Ul, U∗) < λ2(U∗),(5.9)

and p∗ < pr, ur = u∗ − (pr − p∗)
√

2
p∗+pr

with Lax stability conditions

σ1(U∗, Ur) < λ1(U∗), λ1(Ur) < σ1(U∗, Ur) < λ2(Ur),(5.10)

where σ1(Ul, U∗) is the speed of shock connecting Ul to U∗, and similarly σ1(U∗, Ur) is
the speed of shock connecting U∗ to Ur. From (5.9) and (5.10) we obtain σ1(U∗, Ur) <
σ1(Ul, U∗), i.e., the 1-shock of second Riemann problem overtakes 1-shock of the first
Riemann problem after a finite time, and gives rise to a new Riemann problem with
data Ul and Ur. In order to solve this problem, we must determine the region in which
Ur lies with respect to Ul. We claim that Ur lies in region II so that the solution
of the new Riemann problem consists of S1 and S2. In other words, to prove our
claim, we need to show that S1(U∗) lies entirely in the region II; to show this we are
required to prove that for p > p∗ > pl,

(p − p∗)

√

2

p + p∗
− (p − pl)

√

2

p + pl
− (p∗ − pl)

√

2

p∗ + pl
> 0.(5.11)

Let us define a new function φ9(p) = (p−p∗)
√

2
p+p∗

−(p−pl)
√

2
p+pl

−(p∗−pl)
√

2
p∗+pl

,

so that φ9(p∗) = 0, and

dφ9

dp
=

√

2

p + p∗
− p − p∗√

2(p + p∗)
3

2

− (

√

2

p + pl
− p − pl√

2(p + pl)
3

2

).(5.12)

Now we define

φ10(p, p∗) =

√

2

p + p∗
− (p − p∗)√

2(p + p∗)
3

2

.(5.13)

Since φ10(p, p∗) is an increasing function with respect to second variable p∗ for p > p∗,
we have φ10(p, p∗) > φ10(p, pl), it follows from (5.12) that φ9(p) is a increasing function
of p, which implies that φ9(p) > φ9(p∗) = 0. Hence, S1S1 → S1S2.

(vi) 2-shock overtakes another 2-shock (S2S2). The analytical proof that
Ur lies in the region II, so that S2S2 → S1S2, is similar to the previous case.
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