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SMOOTHNESS CRITERION FOR NAVIER-STOKES EQUATIONS IN

TERMS OF REGULARITY ALONG THE STREAMLINES∗

CHI HIN CHAN†

Abstract. This article is devoted to a regularity criterion for solutions to the Navier-Stokes
equations in terms of regularity along the streamlines. More precisely, we prove that if u is a
suitable weak solution to the Navier-Stokes equations on [0, T ] × R

3 satisfying the condition that
|u·∇F |
|u|γ

6 A|F |, in which F = div( u
|u|

), A is some given constant, and γ is some positive number

with 0 < γ < 1
3
, then it follows that u is smooth over (0, T ] × R

3.
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1. Introduction. In this article, we consider the Navier-Stokes equation on R
3,

given by

∂tu−△u+ div(u⊗ u) + ∇P = 0

div(u) = 0
(1.1)

in which u is a vector-valued function representing the velocity of the fluid, and P is the
pressure. Note that the pressure depends in a non local way on the velocity u. It can
be seen as a Lagrange multiplier associated to the incompressible condition div(u) =
0. The initial value problem of the above equations is endowed with the condition
that u(0, ·) = u0 ∈ L2(R3). Leray [12] and Hopf [8] had already established the
existence of global weak solutions to the Navier-Stokes equations. In particular, Leray
introduced a notion of weak solutions for the Navier-Stokes equation, and proved
that, for every given initial datum u0 ∈ L2(R3), there exists a global weak solution
u ∈ L∞(0,∞;L2(R3))∩L2(0,∞; Ḣ1(R3)) verifying the Navier-Stokes equation in the
sense of distribution. From that time on, much effort has been devoted to establish the
global existence and uniqueness of smooth solutions to the Navier-Stokes equations.
Different Criteria for regularity of the weak solutions have been proposed. The Prodi-
Serrin condition (see Serrin [16], Prodi [14], and [17]) states that any weak Leray-Hopf
solution verifying u ∈ Lp(0,∞;Lq(R3)) with 2/p+ 3/q = 1, 2 ≤ p <∞, is regular on
(0,∞) × R

3. The limit case of L∞(0,∞;L3(R3)) has been solved very recently by L.
Escauriaza, G. Seregin, and V. Sverak (see [7]) (see also the work [21] of Y. Zhou, in
which a regularity criterion is obtained with a type of Prodi-Serrin condition to be
imposed on only one velocity component) . Here, we just mention a piece of work [4]
by Ch.-H. Chan and A. Vasseur which is devoted to a log improvement of the Prodi-
Serrin criterion in the case of p = q = 5. Other criteria have been later introduced,
dealing with some derivatives of the velocity. Beale, Kato and Majda [1] showed the
global regularity of solutions under the condition that the vorticity ω = curl u lies
in L∞(0,∞;L1(R3)) (see Kozono and Taniuchi for improvement of this result [10]).
Beirão da Veiga proved in [2] that the boundedness of ∇u in Lp(0,∞;Lq(R3)) for
2/p + 3/q = 2, 1 < p < ∞ ensures the global regularity (see also [22], [11], and
[23]). In [5], Constantin and Fefferman gave a regularity criterion with a condition
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involving only the direction of the vorticity (For further works along this direction,
see, for instance, the works [24], and [25] of Y. Zhou and the references therein).
Here, let us mention that there are also some regularity criteria established under
some conditions to be imposed on the pressure term. For instance, in [15], G. Seregin
and V. Sverak established a regularity criterion for solutions to the Navier-Stokes
equations under the condition that the pressure term has a certain lower bound. On
the other hand, regularity criteria in terms of Serrin-type conditions imposed on the
gradient of the pressure are obtained in the works [26], [27] of Y. Zhou.

Until more recently, in a short paper [20], A. Vasseur gave another regularity cri-
terion which states that any Leray-Hopf weak solution u to the Navier-Stokes equa-
tions satisfying div( u

|u| ) ∈ Lp(0,∞;Lq(R3)) with 2
p

+ 3
q

6 1
2 is necessary smooth on

(0,∞)×R
3. As we can see, the regularity criterion given in [20] is the one with some

integrable condition imposed on div( u
|u| ). However, the goal of this paper is to obtain

the full regularity of a suitable weak solution u under some suitable assumption about
the smoothness of div( u

|u| ) along the streamlines of the fluid. More precisely, the goal

of this paper is to prove the following theorem

Theorem 1.1. Let u be a suitable weak solution to the Navier-Stokes equation

on (0, T ] × R
3 which satisfies the condition that |u·∇F|u|γ | 6 A|F |, in which A is some

positive constant, and γ is some positive constant for which 0 < γ < 1
3 . Then, it

follows that u is a smooth solution on (0, T ]× R
3.

As for Theorem 1.1, we note that F = div( u
|u| ) can be rewritten as F = −u·∇|u|

|u|2 ,

and hence is the derivative of |u| along the streamlines of the fluid. Then, the
condition appearing in the hypothesis of Theorem 1.1 can be seen as a constraint on
the second derivative of |u| along the streamlines. Theorem 1.1 itself shows that such
a constraint on the second derivative of |u| along the streamlines is enough to give
the full regularity of the solution.

Before we proceed any further, let us say something about the term suitable weak
solution. The concept of suitable weak solutions for Navier-Stokes equations was first
introduced by Caffarelli, Kohn, and Nirenberg in [3] for the purpose of developing the
partial regularity theory for solutions to the Navier-Stokes equations. By a suitable
weak solution for the Navier-Stokes equations, we mean a Leray-Hopf weak solution
u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1(R3)) which satisfies the following inequality in
the sense of distribution on (0, T )× R

3.

∂t(
|u|2

2
) + div(

|u|2

2
u) + div(Pu) + |∇u|2 −△(

|u|2

2
) 6 0. (1.2)

Here, we decide to work with suitable weak solutions instead of just Leray-Hopf
weak solutions because suitable weak solutions satisfy some very nice properties such
as the partial regularity Theorem due to Caffarelli, Kohn, and Nirenberg in their joint
work [3] (see also the related works of F. Lin [13], A. Vasseur [19], G. Tian and Z.
Xin [18] ). Now, let us turn our attention back to Theorem 1.1. Indeed the conclusion
of Theorem 1.1 will follow at once provided if we can prove the following proposition.

Proposition 1.2. Let u be a suitable weak solution to the Navier-Stokes equa-

tions on (0, 1] × R
3 which satisfies the condition that |u·∇F|u|γ | 6 A|F |, where A is

some positive constant, and γ is some positive number satisfying 0 < γ < 1
3 . It then
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follows that u is essentially bounded over the region [ 34 , 1] × R
3. That is, we have

‖u‖L∞([ 34 ,1]×R3) <∞.

Before we devote our effort to prove proposition 1.2, let us first explain why
proposition 1.2 will lead to the conclusion of Theorem 1.1 as follows. Assume that
proposition 1.2 is indeed true. Without the loss of generality, let us assume that u
is a suitable weak solution to the Navier-Stokes equations on (0, 1] × R

3 satisfying
the hypothesis of Theorem 1.1 (we note that if our suitable weak solution u is over
(0, T ] × R

3, with T to be some positive number other than 1, we can always rescale
our weak solution u). Now, proposition 1.2 automatically tells us that u is essentially
bounded on the region [34 , 1] × R

3. So, over such a region, we can apply the Serrin
criterion with p = q = ∞ to conclude that u is smooth over (3

4 , 1) × R
3. So, the only

question remains is how to justify that u is also smooth over (0, 7
8 )×R

3. So, to finish
our job, let τ ∈ (0, 7

8 ) be arbritary chosen and fixed, and let us consider the function

uλ(t, x) = λu(λ2t, λx), with λ = (8τ
7 )

1
2 . Notice that uλ is then another suitable weak

solution on (0, 1] × R
3, which satisfies the same hypothesis of Theorem 1.1(with a

different constant Aλ, of course). So, we can invoke proposition 1.2 again to conclude
that uλ is essentially bounded over [34 , 1] × R

3. However, this means the same thing
as saying that our original suitable weak solution u is essentially bounded over the
region [6τ7 ,

8τ
7 ]×R

3, and hence u must be smooth over the region (6τ
7 ,

8τ
7 )×R

3. Since
the number τ ∈ (0, 7

8 ) is arbritary chosen in the above argument, we conclude that u
must be smooth over (0, 1)×R

3, provided that proposition 1.2 is valid. So, it is clear
that the main task of the whole paper is to prove proposition 1.2, which is what we
will do in the following sections.

2. Basic setting of the whole paper. In order to prove proposition 1.2, we
would like to use the method of energy decompositions with respect to a sequence
of cutting functions vk = {|u| − R(1 − 1

2k )}+ as introduced by A. Vasseur in [19].
Indeed, A. Vasseur was the first to use such a method of energy decompositions
inherted from De Giorgi [6] to give a new proof of the famous Partial Regularity
Theorem of Caffarelli, Kohn and Nirenberg (see [19]). So, we would like to introduce
some notations first. Then, we will state one lemma and one proposition which are
related to the proof of proposition 1.2. So, let us fix our notations as follow.

• for each k > 0, let Qk = [Tk, 1] × R
3, in which Tk = 3

4 − 1
4k+1 .

• for each k > 0, let vk = {|u| −R(1 − 1
2k )}+.

• for each k > 0, let dk =
R(1− 1

2k )

|u| χ{|u|>R(1− 1

2k )}|∇|u||2 + vk

|u| |∇u|
2.

• for each k > 0, let Uk = 1
2‖vk‖

2
L∞(Tk,1;L2(R3)) +

∫ 1

Tk

∫
R3 d

2
kdx dt.

With the above setting, we are now ready to state the lemma and proposition which
are related to proposition 1.2 as follow.

Proposition 2.1. Let u be a suitable weak solution for the Navier-Stokes equa-

tion on [0, 1] × R
3 which satisfies the condition that |u·∇F|u|γ | 6 A|F |, where A is some

finite-positive constant, and γ is some positive number satisfying 0 < γ < 1
3 . Then,

there exists some constant Cp,β, depending only on 1 < p < 5
4 , and β > 6−3p

10−8p ,and

also some constants 0 < α,K <∞, which do depend on our suitable weak solution u,
such that the following inequality holds
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Uk 6Cp,β2
10k
3 {

1

Rβ
10−8p

3p
− 2−p

p

‖u‖
2(1− 1

p
)

L∞(0,1;L2(R3))U
5−p
3p

k−1 +

(1 +A)(1 +
1

α
)(1 +K1− 1

p )(1 + ‖u‖L∞(0,1;L2(R3)))×

[(
1

R
10
3 −2pβ+1−γ−p

)
1
pU

5
3p

k−1 +
1

R
10
3 −2β−γ

U
5
3

k−1]},

(2.1)

for every sufficiently large R > 1.

Here, let us make some important comments on the conclusion of proposition 2.1.
As indicated by the inequality which appears in the conclusion of proposition 2.1, it is

important for us to emphasis that those terms such as Rβ
10−8p

3p
− 2−p

p , R
10
3 −2pβ+1−γ−p,

and R
10
3 −2β−γ should all appear in the denomerator. But unfortunately, the standard

approach of carrying out decompositions on both the energy and pressure by using the
same sequence of cutting functions vk = {|u|−R(1− 1

2k )}+ is not powerful enough to
ensure such a result as promised by proposition 2.1. So, in proving proposition 2.1, we
will carry out the decomposition of the pressure P by introducing another sequence
of cutting functions wk = {|u| − Rβ(1 − 1

2k )}+, for k > 1, where β > 3
2 should be

some suitable index sufficiently close to 3
2 (for more detail, see inequalities (4.3),

(4.4), and (4.5) ). We remark that the inequality ‖χ{wk>0}‖Lq(Qk−1) 6
2

10k
3q

R
β 10

3q

CqU
5
3q

k−1,

for q > 1 provides us with the term 1

R
10β
3q

which decays to 0 in a way much faster

than 1

R
10
3q

as R → ∞, and this is the reason why we use the cutting functions wk

instead of vk in carrying out the decomposition of the pressure P .

Let us first show that Proposition 2.1 provides the result of Proposition 1.2. First,
we show that the sequence {Uk}k>1 converges to 0, when k goes to infinity. We can
use for instance the following easy lemma (see [19]):

Lemma 2.2. For any given constants B, β > 1, there exists some constant C∗
0

such that for any sequence {ak}k>1 satisfying 0 < a1 ≤ C∗
0 and ak 6 Bkaβk−1, for any

k > 1, we have limk→∞ak = 0 .

With the assistance of lemma 2.2, we will derive the conclusion of proposition 1.2
from proposition 2.1 in the following way. Let u be a suitable weak solution which
satisfies the hypothesis of proposition 1.2. Then, according to inequality (2.1), which
is the conclusion of proposition 2.1, we know that if the number p with 1 < p < 5

4

is chosen to be sufficiently close to 1, and if the number β > 6−3p
10−8p is chosen to be

sufficiently close to 3
2 , it follows that the sequence {Uk}

∞
k=1 will satisfies the following

inequality

Uk 6
D

RΦ(p,β,γ)
2

10k
3 {U

5−p
3p

k−1 + U
5
3p

k−1 + U
5
3

k−1}, (2.2)

in which the constants D and Φ(p, β, γ) are given by

• D = Cp,β‖u‖
2(1− 1

p
)

L∞(0,1;L2(R3)) + (1 +A)(1 + 1
α
)(1 +K1− 1

p )(1 + ‖u‖L∞(0,1;L2(R3)))
,

• Φ(p, β, γ) = min{β(10−8p
3p ) − 2−p

p
, (10

3 − 2pβ + 1 − γ − p) 1
p
, (10

3 − 2β − γ)}.
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Notice that the constant D depends on the choice of the suitable weak solution
u but independent of R , and Φ(p, β, γ) is some positive index which depends only on
p, β, and γ.

Now, let us apply Lemma 2.2 to deduce that there is some constant C∗
0 , such that

for any sequence {ak}
∞
k=1 satisfying 0 < a1 6 C∗

0 and ak 6 2
10k
3 a

5−p
3p

k−1for all k > 1, we
have limk→∞ak = 0. We then choose R0 > 1 to be sufficiently large, so that we have

3D

R
Φ(p,β,γ)
0

< 1, and that U1 6 min{ 1
4 , C

∗
0}. Then, notice that dk and d1 are related by

the following inequality

d2
k =

R0(1 − 1
2k )

R0

2

R0

2

|u|
χ{|u|>R0(1−

1

2k )}|∇|u||2 +
vk
|u|

|∇u|2

6 2{
R0

2

|u|
χ
{|u|>

R0
2 }

|∇|u||2 +
[|u| − R0

2 ]+

|u|
|∇u|2}

6 2d2
1,

which, together with the definition of Uk and the condition U1 6 min{ 1
4 , C

∗
0}, will

imply that

Uk 6 2U1 6
1

2
< 1, ∀k > 1. (2.3)

Since 5−p
3p < 5

3p <
5
3 is valid for 1 < p < 5

4 , it follows from (2.3) and the condition
3D

R
Φ(p,β,γ)
0

< 1 that the following estimation is valid for all k > 2

Uk 6
D

R
Φ(p,β,γ)
0

2
10k
3 {U

5−p
3p

k−1 + U
5
3p

k−1 + U
5
3

k−1} 6
3D

R
Φ(p,β,γ)
0

2
10k
3 U

5−p
3p

k−1 6 2
10k
3 U

5−p
3p

k−1 .

With this choice of R0, we see that the sequence {Uk}
∞
k=1 will satisfy the con-

ditions that U1 6 C∗
0 and Uk 6 2

10k
3 U

5−p
3p

k−1 , for all k > 2. Hence it follows that

limk→∞Uk = 0. However, because for almost every t ∈ [ 34 , 1], we have

∫
R3

|u(t, x) −R0|
2dx 6 2limk→∞Uk = 0.

It follows at once that |u| 6 R0, almost everywhere over [ 34 , 1] × R
3. This

indicates that u is essentially bounded over [34 , 1] × R
3. Hence, we see that the

conclusion of proposition 1.2 follows provided that proposition 2.1 is indeed valid.

For this reason, the main task of this paper is to give a detailed proof of proposi-
tion 2.1, which is what we will achieve in the following sections. More precisely, after
we have given some preliminaries in section 3, we will actually carry out the proof
of proposition 2.1 in section 4. Moreover, the proof of proposition 2.1 as presented
in section 4 will be splitted into five successive steps. In step one, we will derive the
inequality of the level set energy which gives an estimate of Uk with respect to the

pressure term
∫ 1

Tk−1
|
∫

R3
vk

|u|u∇Pdx|ds. In step two, we will decompose the pressure P

into P = Pk1+Pk2+Pk3 by using the cutting functions wk = {|u|−Rβ(1− 1
2k )}+, with

β > 3
2 to be some sutiable index sufficiently close to 3

2 (for more detail see equations
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(4.3), (4.4), and (4.5)). Here, we remark that Pk2 and Pk3 represent the effect of large
velocity values |u|χ{|u|>Rβ(1− 1

2k )} on the pressure, while Pk1 represents the effect of

those velocity values smaller than Rβ(1− 1
2k ) on the pressure. Step three is dedicated

to the control of the two pressure terms involving big velocity values. Thanks to the
introduction of the cutting functions wk = {|u| −Rβ(1− 1

2k )}+ in the decomposition
of the pressure, the control on these two terms can then be performed successfully. In

step four and step five, we will control the pressure term
∫ 1

Tk−1
|
∫

R3 ∇( vk

|u| )uPk1dx|ds

which depends on those velocity values smaller than Rβ(1 − 1
2k ). In step four, we

will show that such a pressure term depending on those velocity values smaller than
Rβ(1 − 1

2k ) can be controlled by a weighted |F |log+|F | norm of div( u
|u| ). We will

finally show in step five that, in some specific way, we can eventually control the

pressure term
∫ 1

Tk−1
|
∫

R3 ∇( vk

|u|)uPk1dx|ds successfully by employing the hypothesis
|u·∇F |
|u|γ 6 A|F | of proposition 2.1.

3. Preliminaries for the proof of proposition 2.1.

Lemma 3.1. There exists some constant C > 0, such that for any k >

1, and any f ∈ L∞(Tk, 1;L2(R3)) with ∇f ∈ L2(Qk), we have ‖f‖
L

10
3 (Qk)

6

C‖f‖
2
5

L∞(Tk,1;L2(R3))‖∇f‖
3
5

L2(Qk).

Proof. By Sobolev-embedding Theorem, there is a constant C, depending only
on the dimension of R

3, such that

(

∫
R3

|f(t, x)|6dx)
1
6 6 C(

∫
R3

|∇f(t, x)|2dx)
1
2 .

for any t ∈ [Tk, 1], where k > 1, and f is some function which verifies f ∈
L∞(Tk, 1;L2(R3)), and ∇f ∈ L2(Qk). By taking power 2 on both sides of the above
inequality and then taking integration along the variable t ∈ [Tk, 1], we yield

∫ 1

Tk

(

∫
R3

|f |6dx)
1
3 dt 6 C2

∫ 1

Tk

∫
R3

|∇f |2dx dt.

On the other hand, by Holder’s inequality, we have

‖f‖
10
3

L
10
3 (Qk)

=

∫ 1

Tk

∫
R3

|f |2|f |
4
3 dx dt

6

∫ 1

Tk

(

∫
R3

|f |6dx)
1
3 (

∫
R3

|f |2dx)
2
3 dt

6 ‖f‖
4
3

L∞(Tk,1;L2(R3))‖f‖
2
L2(Tk,1;L6(R3)).

By taking the advantage that ‖f‖L2(Tk,1;L6(R3)) 6 C‖∇f‖L2(Qk), we yield

‖f‖
10
3

L
10
3 (Qk)

6 C2‖f‖
4
3

L∞(Tk,1;L2(R3))‖∇f‖
2
L2(Qk).

Hence, we have
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‖f‖
L

10
3 (Qk)

6 C‖f‖
2
5

L∞(Tk,1;L2(R3))‖∇f‖
3
5

L2(Qk).

so, we are done.

Lemma 3.2. For any 1 < q <∞, we have ‖χ{vk>0}‖Lq(Qk−1) 6 2
10k
3q

R
10
3q

C
1
qU

5
3q

k−1 .

Proof. First, we have to notice that {vk > 0} is a subset of {vk−1 >
R
2k }, hence

we have

∫
Qk−1

χ{vk>0} 6

∫
Qk−1

χ{vk−1>
R

2k } 6
2

10k
3

R
10
3

∫
Qk−1

|vk−1|
10
3 .

By our previous lemma, we have

‖vk−1‖
10
3

L
10
3 (Qk−1)

6 C2‖vk−1‖
4
3

L∞(Tk−1,1;L2(R3))‖∇vk−1‖
2
L2(Qk−1)

6 C2(U
1
2

k−1)
4
3 ‖dk−1‖

2
L2(Qk−1)

6 C2U
2
3

k−1Uk−1

= C2U
5
3

k−1.

So, it follows that
∫
Qk−1

χ{vk>0} 6 2
10k
3

R
10
3
C2U

5
3

k−1, and hence we have

‖χ{vk>0}‖Lq(Qk−1) 6
2

10k
3q

R
10
3q

C
1
qU

5
3q

k−1,

in which C is some universal constant. So, we are done.
Just as we have said before, we will need to decompose the pressure by employing

the sequence of cutting functions wk = {|u| − Rβ(1 − 1
2k )}+, for k > 1. We also

said that we prefer to do this because the cutting functions wk satisfy the following
inequality which can be justified in the same way as Lemma 3.2.

Lemma 3.3. For every q > 1, we have ‖χ{wk>0}‖Lq(Qk−1) 6
1

R
10β
3q

2
10k
3q CqU

5
3q

k−1,

for all k > 1, in which Cq is some constant depending only on q.

Indeed, in dealing with the pressure terms, we will invoke the Lemma 3.3 without
explicit mention.

In the proof of Lemma 3.2, we have used the fact that |∇vk| 6 dk, whose justifi-
cation will be given immediately in the following paragraph.
Before we leave this section, we also want to list out some inequalities which will often
be used in the proof of proposition 2.1 as follow:

• |(1 − vk

|u| )u| 6 R(1 − 1
2k ).

• vk

|u| |∇u| 6 dk.

• χ{vk>0}|∇|u|| 6 dk.
• |∇vk| 6 dk.
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• |∇( vk

|u|u)| 6 3dk.

Now, we first want to justify the validity of |(1 − vk

|u| )u| 6 R(1 − 1
2k ). In the case

in which the point (t, x) satisfies |u(t, x)| < R(1− 1
2k ), we have vk(t, x) = 0, and hence

it follows that

|{1 −
vk(t, x)

|u(t, x)|
}u(t, x)| = |u(t, x)| < R(1 −

1

2k
).

In the case in which (t, x) satisfies |u(t, x)| > R(1− 1
2k ), we have vk(t, x) = |u(t, x)| −

R(1 − 1
2k ), and hence it follows that

|{1 −
vk
|u|

}u(t, x)| = |1 −
|u| −R(1 − 1

2k )

|u|
||u| = R(1 −

1

2k
).

So, no matter in which case, we always have the conclusion that |(1 − vk

|u|)u| 6

R(1 − 1
2k ).

Next, according to the definition of d2
k, we can carry out the following estimation

d2
k >

vk
|u|

|∇u|2 > {
vk
|u|

|∇u|}2.

Hence, by taking square root, it follows at once that dk >
vk

|u| |∇u|.

We now turn our attention to the inequality χ{|u|>R(1− 1

2k )}|∇|u|| 6 dk. To justify

it, we recall that |∇u| > |∇|u||. Hence, it follows from the definition of d2
k that

d2
k >

R(1 − 1
2k )

|u|
χ{|u|>R(1− 1

2k )}|∇|u||2 + {1 −
R(1 − 1

2k )

|u|
}χ{|u|>R(1− 1

2k )}|∇|u||2.

So, by simplifying the right-hand side of the above inequality, we can deduce that
d2
k > χ{|u|>R(1− 1

2k )}|∇|u||2. Hence, we have dk > χ{|u|>R(1− 1

2k )}|∇|u||. In addition,

since it is obvious to see that ∇vk = χ{|u|>R(1− 1

2k )}∇|u|, we also have the result that

|∇vk| 6 dk.
Finally, we want to justify the inequality that |∇( vk

|u|u)| 6 3dk. So, we notice

that, by applying the product rule, we have

∇(
vk
|u|
u) = ∇(vk)

u

|u|
+
vk
|u|

∇u−
vk
|u|2

u∇|u|.

However, since vk

|u| |∇u| 6 dk, and | vk

|u|2u∇|u|| 6 χ{|u|>R(1− 1

2k )}|∇|u|| 6 dk, it

follows at once from the above expression that |∇( vk

|u|u)| 6 3dk.

4. Proof of proposition 2.1.

Step one. To begin the argument, we recall that, according to Lemma 5 in [19],
the truncations vk = {|u|−R(1− 1

2k )} of a given suitable weak solution u : [0, 1]×R
3 →

R
3 satisfy the following inequality in the sense of distribution.

∂t(
v2
k

2
) + d2

k −△(
v2
k

2
) + div(

v2
k

2
u) +

vk
|u|
u∇P 6 0. (4.1)
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As mentioned in Remark 2 of [19], inequality (4.1) can not be derived from the

notion of Leray-Hopf weak solutions alone, and the validity of inequality (4.1) is
based on the local energy inequality (1.2) which characterizes the notion of suitable
weak solutions.

Next, let us consider the variables σ , t verifying Tk−1 6 σ 6 Tk 6 t 6 1. Then,
we have

•
∫ t
σ

∫
R3 ∂t(

v2k
2 )dx ds =

∫
R3

v2k(t,x)
2 dx−

∫
R3

v2k(σ,x)
2 dx.

•
∫ t
σ

∫
R3 △(

v2k
2 )dx ds = 0.

•
∫ t
σ

∫
R3 div(

v2k
2 u)dx ds = 0.

So, it is straightforward to see that

∫
R3

v2
k(t, x)

2
dx+

∫ t

σ

∫
R3

d2
kdx ds 6

∫
R3

v2
k(σ, x)

2
dx+

∫ t

σ

|

∫
R3

vk
|u|
u∇Pdx|ds,

for any σ, t satisfying Tk−1 6 σ 6 Tk 6 t 6 1. By taking the average over the variable
σ, we yield

∫
R3

v2
k(t, x)

2
dx+

∫ t

Tk

∫
R3

d2
kdx ds

6
4k+1

6

∫ Tk

Tk−1

∫
R3

v2
k(s, x)dx ds +

∫ t

Tk−1

|

∫
R3

vk
|u|
u∇Pdx|ds.

By taking the sup over t ∈ [Tk, 1]. the above inequality will give the following

Uk 6
4k+1

6

∫
Qk−1

v2
k +

∫ 1

Tk−1

|

∫
R3

vk
|u|
u∇Pdx|ds.

But, from Lemma 3.2 and Holder’s inequality, we have

∫
Qk−1

v2
k =

∫
Qk−1

v2
kχ{vk>0}

6 (

∫
Qk−1

v
10
3

k )
3
5 ‖χ{vk>0}‖

L
5
2 (Qk−1)

6 ‖vk‖
2

L
10
3 (Qk−1)

2
4k
3

R
4
3

C
2
5U

2
3

k−1

6 ‖vk−1‖
2

L
10
3 (Qk−1)

2
4k
3

R
4
3

C
2
5U

2
3

k−1

6 CU
5
3

k−1

2
4k
3

R
4
3

.

As a result, we have the following conclusion

Uk 6
2

10k
3

R
4
3

CU
5
3

k−1 +

∫ 1

Tk−1

|

∫
R3

vk
|u|
u∇pdx|ds. (4.2)
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Step two. Now, in order to estimate the term
∫ 1

Tk−1
|
∫

R3
vk

|u|u∇Pdx|ds, we would

like to carry out the following computation

−△P =
∑

∂i∂j(uiuj)

=
∑

∂i∂j{(1 −
wk
|u|

)ui(1 −
wk
|u|

)uj} + 2
∑

∂i∂j{(1 −
wk
|u|

)ui
wk
|u|
uj}

+
∑

∂i∂j{
wk
|u|
ui
wk
|u|
uj},

in which wk is given by wk = {|u|−Rβ(1− 1
2k )}+, and β is simply the arbritary index

involved in proposition 2.1. This motivates us to decompose P as P = Pk1+Pk2+Pk3,
in which

−△Pk1 =
∑

∂i∂j{(1 −
wk
|u|

)ui(1 −
wk
|u|

)uj}, (4.3)

−△Pk2 =
∑

∂i∂j{2(1 −
wk
|u|

)ui
wk
|u|
uj} (4.4)

−△Pk3 =
∑

∂i∂j{
wk
|u|
ui
wk
|u|
uj}. (4.5)

Here, we have to remind ourself that the cutting functions which are used in the
decomposition of the pressure are indeed wk = {|u| −Rβ(1− 1

2k )}+, for all k > 0 , in

which β is some suitable index strictly greater than 3
2 . With respect to the cutting

functions wk, we need to define the respective Dk as follow:

D2
k =

Rβ(1 − 1
2k )

|u|
χ{wk>0}|∇|u||2 +

wk
|u|

|∇u|2.

Then, just like what happens to the cutting functions vk, we have the following
assertions about the cutting functions wk, which are easily verified.

• |∇wk| 6 Dk, for all k > 0.
• |∇(wk

|u|ui)| 6 3Dk, for all k > 0, and 1 6 i 6 3.

• |∇(wk

|u| )ui| 6 2Dk, for any k > 0, and 1 6 i 6 3.

Besides these, we also need the following lemma which links Dk to dk.

Lemma 4.1. There is some sufficiently large R0 > 1, such that whenever R > R0

and k > 1, we have Dk 6 5
1
2 dk.

Proof. Since Rβ−R
Rβ trends to the limiting value 1, as R trends to ∞. So, there is

some sufficiently large R0 > 1 for which (Rβ −R) > Rβ

2 , for all R > R0. Now, notice
that {wk > 0} is a subset of {vk > (Rβ −R)(1− 1

2k )}, for all k > 0. Hence, it follows

that {wk > 0} is a subset of {vk >
Rβ

4 }, for all k > 1 and R > R0. As a result, we
can carry out the following computation
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D2
k =

Rβ(1 − 1
2k )

|u|
χ{wk>0}|∇|u||2 +

wk
|u|

|∇u|2

6
Rβ

|u|
χ{wk>0}|∇|u||2 +

vk
|u|

|∇u|2

6
4vk
|u|

χ{wk>0}|∇|u||2 +
vk
|u|

|∇u|2

6
5vk
|u|

|∇u|2 6 5d2
k,

for any k > 1, and R > R0. Hence, we have Dk 6 5
1
2 dk, for all k > 1, and all R > R0.

So, we are done.
Now, let us recall that we have already used the cutting functions wk to obtain

the decomposition P = Pk1 + Pk2 + Pk3, in which Pk1, Pk2, andPk3 are described in
equations (4.3), (4.4), and (4.5) respectively.

Due to the incompressible condition div(u) = 0, we have the following two iden-
tities

•
∫

R3
vk

|u|u∇Pk2dx =
∫

R3(
vk

|u| − 1)u∇Pk2dx.

•
∫

R3
vk

|u|u∇Pk3dx =
∫

R3(
vk

|u| − 1)u∇Pk3dx.

Hence, it follows that

∫ 1

Tk−1

|

∫
R3

vk
|u|
u∇Pdx|dt 6

∫ 1

Tk−1

|

∫
R3

∇(
vk
|u|

)uPk1dx|dt +

∫
Qk−1

(1 −
vk
|u|

)|u||∇Pk2|

+

∫
Qk−1

(1 −
vk
|u|

)|u||∇Pk3|.

Step 3. We are now ready to deal with the term
∫
Qk−1

(1 − vk

|u| )|u||∇Pk2|. For

this purpose, let p be such that 1 < p < 5
4 , and let q = p

p−1 , so that 2 < q < ∞. We

remark that the purpose of the condition 1 < p < 5
4 is to ensure that the quantity

2p
2−p will satisfy the condition 2 < 2p

2−p <
10
3 , which is required in the forthcoming

inequality estimation (4.8). Next, by applying Holder’s inequality, we find that

‖(1 −
vk
|u|

)u‖Lq(R3) 6 ‖(1 −
vk
|u|

)u‖
2
q

L2(R3)‖(1 −
vk
|u|

)u‖
1− 2

q

L∞(R3)

6 R1− 2
q ‖(1 −

vk
|u|

)u‖
2
q

L2(R3)

6 R
2
p
−1‖u‖

2(1− 1
p
)

L∞(0,1;L2(R3))

Hence, it follows from Holder’s inequality that

∫
R3

(1 −
vk
|u|

)|u||∇Pk2|dx 6 R
2
p
−1‖u‖

2(1− 1
p
)

L∞(0,1;L2(R3)){

∫
R3

|∇Pk2|
pdx}

1
p .

Hence, we have
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∫
Qk−1

(1 −
vk
|u|

)|u||∇Pk2| 6 R
2
p
−1‖u‖

2(1− 1
p
)

L∞(0,1;L2(R3))‖∇Pk2‖Lp(Qk−1). (4.6)

But, we recognize that

∇Pk2 =
∑

RiRj{2(1 −
wk
|u|

)ui∇[
wk
|u|
uj ] + 2(1 −

wk
|u|

)uj [
wk
|u|

∇ui] − 2∇[
wk
|u|

]ui
wk
|u|
uj}.

Moreover, it is straightforward to see that for any 1 6 i, j 6 3, we have
• |2(1 − wk

|u| )ui∇[wk

|u|uj ] + 2(1 − wk

|u| )uj [
wk

|u|∇ui]| 6 8RβDk.

• |2∇[wk

|u| ]ui
wk

|u|uj| 6 8wkDk.

So, we can decompose ∇Pk2 as ∇Pk2 = Gk21 + Gk22, where Gk21 and Gk22 are
given by

• Gk21 =
∑
RiRj{2(1 − wk

|u| )ui∇[wk

|u|uj] + 2(1 − wk

|u| )uj [
wk

|u|∇ui]}.

• Gk22 = −
∑
RiRj{2∇[wk

|u| ]ui
wk

|u|uj}.

In order to use inequality (4.6), we need to estimate ‖Gk21‖Lp(Qk−1) and

‖Gk22‖Lp(Qk−1) respectively, for p with 1 < p < 5
4 . Indeed, by applying the Zygmund-

Calderon Theorem, we can deduce that
• ‖Gk21‖Lp(Qk−1) 6 CpR

β‖Dk‖Lp(Qk−1),
• ‖Gk22‖Lp(Qk−1) 6 Cp‖wkDk‖Lp(Qk−1),

where Cp is some constant depending only on p. But it turns out that

‖Dk‖
p

Lp(Qk−1) =

∫
Qk−1

Dp
kχ{wk>0}

6 {

∫
Qk−1

D2
k}

p
2 ‖χ{wk>0}‖

L
2

2−p (Qk−1)

6
5

p
2

R
5
3β(2−p)

‖dk‖
p

L2(Qk−1)
2

5k
3 (2−p)CpU

5
6 (2−p)

k−1

6
1

R
5
3β(2−p)

CpU
5−p
3

k−1 2
5(2−p)k

3 .

That is , we have

‖Dk‖Lp(Qk−1) 6
1

R
5
3p
β(2−p)

CpU
5−p
3p

k−1 2
5(2−p)k

3p .

Hence, it follows that

‖Gk21‖Lp(Qk−1) 6
1

Rβ( 10−8p
3p

)
CpU

5−p
3p

k−1 2
5(2−p)k

3p . (4.7)

On the other hand, we have

‖wkDk‖
p

Lp(Qk−1) =

∫
Qk−1

wpkD
p
k

6 {

∫
Qk−1

w
2p

2−p

k }
2−p
2 {

∫
Qk−1

D2
k}

p
2

6 Cp{

∫
Qk−1

w
2p

2−p

k }
2−p
2 U

p
2

k−1.
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Now, let us recall that 1 < p < 5
4 , and put r = 2p

2−p . we then recognize that

2 < r = 2p
2−p <

10
3 , if 1 < p < 5

4 . So, we can have the following estimation

∫
Qk−1

w
2p

2−p

k =

∫
Qk−1

wrkχ{wk>0}

6

∫
Qk−1

wrkχ{wk−1>
Rβ

2k }

6
1

Rβ( 10
3 −r)

2k(
10
3 −r)

∫
Qk−1

w
10
3

k

6
1

Rβ
20−16p
3(2−p)

2
k(20−16p)

3(2−p) U
5
3

k−1.

(4.8)

Hence, it follows that

‖Gk22‖Lp(Qk−1) 6 ‖wkDk‖Lp(Qk−1) 6 Cp
2k

10−8p
3p

Rβ
10−8p

3p

U
5−p
3p

k−1 . (4.9)

By combining inequalities (4.6), (4.7), (4.9), we deduce that

∫
Qk−1

(1 −
vk
|u|

)|u||∇Pk2| 6
1

Rβ
10−8p

3p
− 2−p

p

Cp‖u‖
2(1− 1

p
)

L∞(0,1;L2(R3))U
5−p
3p

k−1 2
10−5p

3p
k. (4.10)

Notice that β(10−8p
3p ) − (2−p

p
) > 0 if and only if β > 6−3p

10−8p . Moreover, we know

that the term 6−3p
10−8p is always positive, for 1 < p < 5

4 . In addition, we know that as p

trends to 1, 6−3p
10−8p trends to 3

2 . This means that even though β cannot be exactly 3
2 ,

β > 3
2 can be adjusted to be as close to 3

2 as we desire.

As for the term
∫
Qk−1

(1 − vk

|u|)|u||∇Pk3|. We first notice that

Pk3 =
∑

RiRj{
wk
|u|
ui
wk
|u|
uj}.

So, we know that

∇Pk3 =
∑

RiRj{∇[
wk
|u|
ui]
wk
|u|
uj +

wk
|u|
ui∇[

wk
|u|
uj ]},

with

|∇[
wk
|u|
ui]
wk
|u|
uj +

wk
|u|
ui∇[

wk
|u|
uj]| 6 6wkDk.

So, it follows again from the Risez’s theorem that ‖∇Pk3‖Lp(R3) 6

Cp‖wkDk‖Lp(R3), in which Cp is some constant depending only on p. So, we see
that we can repeat the same type of estimation, just as what we have done to the
term

∫
Qk−1

(1 − vk

|u| )|u||∇Pk2|, to conclude that
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∫
Qk−1

(1 −
vk
|u|

)|u||∇Pk3| 6 R
2
p
−1‖u‖

2(1− 1
p
)

L∞(0,1;L2(R3))‖∇Pk3‖Lp(Qk−1)

6
Cp‖u‖

2(1− 1
p
)

L∞(0,1;L2(R3))

Rβ
10−8p

3p
− 2−p

p

U
5−p
3p

k−1 2
(10−5p)k

3p .

(4.11)

Step four. Now, let us turn our attention to the term∫ 1

Tk−1
|
∫

R3 ∇( vk

|u|)uPk1dx|ds. Before we deal with the term written as above,

let us recall that the weak solution u that we are dealing with now is the one verifying
the following condition

|u · ∇F |

|u|γ
6 A|F |,

where F = −u·∇|u|
|u|2 , and γ is some index with 0 < γ < 1

3 . We need to introduce

the following classical theorem of harmonic analysis which is due to John and Niren-
berg [9].

Theorem 4.2. Let B be a ball with finite radius sitting in R
3. Then, there exists

some constants α, and K, with 0 < α < ∞, and 0 < K < ∞, depending only on the

ball B and n, such that for any given f ∈ BMO(Rn), we have
∫
B
exp(α |f−fB |

‖f‖BMO
) 6 K,

where the symbol fB stands for the mean value of f over B.

We now need to establish the following lemma by using the theorem quoted as
above.

Lemma 4.3. Let B be a ball with finite radius sitting in R
3. There exists some

finite positive constants α and K,depending only on B, such that for every µ > 0,
every f ∈ BMO(R3) with

∫
B
fdx = 0, and p with 1 < p < ∞, we have

∫
B
µ|f | 6

2p
α(p−1){1 +K1− 1

p }‖f‖BMO{(
∫
B
µ)

1
p +

∫
B
µlog+µ}.

Proof. For any given µ > 0, and any f ∈ BMO(R3) with
∫
B
fdx = 0, we do the

following splitting

∫
B

µ|f | =

∫
B

µ|f |χ
{µ6exp( α|f|

2‖f‖BMO
)}

+

∫
B

µ|f |χ
{µ>exp( α|f|

2‖f‖BMO
)}
.

Given p be such that 1 < p < ∞, and let q = p
p−1 be the conjugate exponent of

p. So, it follows from Holder’s inequality that

∫
B

µ|f |χ
{µ6exp( α|f|

2‖f‖BMO
)}

6 {

∫
B

µχ
{µ6exp(

α|f|
2‖f‖BMO

)}
}

1
p {

∫
B

µ|f |qχ
{µ6exp(

α|f|
2‖f‖BMO

)}
}

1
q (4.12)

Since t < exp(t), for all t ∈ R
+, we have α|f |

2q‖f‖BMO
< exp( α|f |

2q‖f‖BMO
). Hence, it

follows that
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{

∫
B

µ|f |qχ
{µ6exp( α|f|

2‖f‖BMO
)}
}

1
q

≤
2q

α
‖f‖BMO{

∫
B

exp(
α|f |

2‖f‖BMO

)[exp(
α|f |

2q‖f‖BMO

)]q}
1
q

=
2q

α
‖f‖BMO{

∫
B

exp(
α|f |

2‖f‖BMO

)exp(
α|f |

2‖f‖BMO

)}
1
q

=
2q

α
‖f‖BMO{

∫
B

exp(
α|f |

‖f‖BMO

)}
1
q

≤
2q

α
‖f‖BMOK

1
q ,

(4.13)

in which we employ Theorem 4.2 due to John and Nirenberg [9] and the condition∫
B
f = 0 to deduce the last inequality.
Due to inequalities (4.12) and (4.13), we have

∫
B

µ|f |χ
{µ6exp( α|f|

2‖f‖BMO
)}

6 {

∫
B

µ}
1
p
2q

α
‖f‖BMOK

1− 1
p (4.14)

But, on the other hand, we have

∫
B

µ|f |χ
{µ>exp( α|f|

2‖f‖BMO
)}

6

∫
B

2

α
‖f‖BMOµlog

+µ. (4.15)

By combining inequalities (4.14), and (4.15), we conclude that

∫
B

µ|f | 6
2p

α(p− 1)
{1 +K1− 1

p }‖f‖BMO{(

∫
B

µ)
1
p +

∫
B

µlog+µ}.

We are now ready to work with the term
∫ 1

Tk−1
|
∫

R3 ∇( vk

|u| )uPk1dx|ds.

Indeed, by a simple application of the partial regularity theorem due to Caffarelli,
Kohn, and Nirenberg, it can be shown that, if B is a sufficiently large open ball
centered at the origin of R

3(we will choose B to be large enough so that it will satisfy
|B| > 1), then it follows that the following assertion holds.

• [ 12 , 1] × R
3 ∩ {vk > 0} is a subset of [ 12 , 1] × B, for all k > 1, and if R is

sufficiently lage.
Now, let us show the validity of the above assertion more precisely. Here, we will

employ the notation Bx(r) = {y ∈ R
3 : |y − x| < r}. Recall that, the key lemma

which leads to the partial regularity theorem of Caffarelli, Kohn, Nirenberg basically

asserts that
• there exists a universal constant η∗ such that for any pair of suitable weak

solutions (u, P ) on [0, 1]×B0(1) satisfying the condition ‖u‖L3([0,1]×B0(1)) +

‖P‖
L

3
2 ([0,1]×B0(1))

6 η∗, we have |u| 6 1 on [ 12 , 1] ×B0(
1
2 ) (Here, we closely

follow the version in [13], see also [3] and [19]).
Since we assume that our suitable weak solution u : [0, 1] × R

3 → R
3 satisfies u ∈

L∞(0, 1;L2(R3))∩L2(0, 1; Ḣ1(R3)) and P =
∑
RiRjuiuj , we have ‖u‖

L
10
3 ([0,1]×R3)

+

‖P‖
L

5
3 ([0,1]×R3)

< ∞. This indicates that, if we choose the radius r0 > 1 to be

sufficiently large, we will have
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• ‖u‖
L

10
3 ([0,1]×R3−B0(r0))

+ ‖P‖
L

5
3 ([0,1]×R3−B0(r0))

< η∗

|B(1)|
2
30

.

So, we can apply the Holder’s inequality to deduce that, for any x ∈ R
3−B0(r0 +

1), we have

‖u‖L3([0,1]×Bx(1)) + ‖P‖
L

3
2 ([0,1]×Bx(1))

6 |B(1)|
2
30 {‖u‖

L
10
3 ([0,1]×R3−B0(r0))

+ ‖P‖
L

5
3 ([0,1]×R3−B0(r0))

}

6 η∗,

(4.16)

which in turns implies that for any x ∈ R
3 − B0(r0 + 1), we have |u| 6 1 on

[12 , 1] × Bx(
1
2 ). That is, we will have |u| 6 1 on R

3 − B0(r0 + 1). As a result, if we
choose B = B0(r0 + 1), then it follows that, for each k > 1, vk = [|u| − R(1 − 1

2k )]+
will vanish identically on [12 , 1]×R

3 −B, for any R > 2, and hence the validity of the
assertion for B = B0(r0 + 1) (Here, let us remark that the above idea has also been
used in the work [7] of L. Escauriaza, G. Seregin, and V. Sverak ).

On the other hand, since ∇( vk

|u|)u = −R(1 − 1
2k )Fχ{vk>0}. So, we have

|

∫
R3

∇(
vk
|u|

)uPk1dx| = |

∫
B

R(1 −
1

2k
)Fχ{vk>0}Pk1dx|

6 R

∫
B

|F |χ{vk>0}|Pk1 − (Pk1)B|dx

+R

∫
B

|F |χ{vk>0}|(Pk1)B|dx,

for all k > 1, and all 1
2 < t < 1, provided that R is sufficiently large (here, the symbol

(Pk1)B stands for the average value of Pk1 over the ball B ).

Now, since Pk1 =
∑
RiRj{(1 − wk

|u| )ui(1 − wk

|u| )uj}, it follows from the Risez’s

Theorem in the theory of singular integral that ‖Pk1(t, ·)‖L2(R3) 6 C2R
β‖u(t, ·)‖L2(R3),

for all t ∈ [0, 1], in which C2 is some universal constant. So, we can use the Holder’s
inequality to carry out the following estimation

|(Pk1)B(t)| 6
1

|B|

∫
B

|Pk1(t, x)|dx

6
1

|B|
1
2

‖Pk1(t, ·)‖L2(B)

6
1

|B|
1
2

C2R
β‖u(t, ·)‖L2(R3)

6 C2R
β‖u‖L∞(0,1;L2(R3)).

We remark that the last line of the above inequality holds since our open ball B
is sufficiently large so that |B| > 1. As a result, it follows that

|

∫
R3

∇(
vk
|u|

)uPk1dx| 6 R

∫
B

|F |χ{vk>0}|Pk1 − (Pk1)B|dx

+ C2R‖u‖L∞(0,1;L2(R3))

∫
B

Rβ|F |χ{vk>0}.

(4.17)
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Indeed, the operator RiRj is indeed a Zygmund- Calderon operator, and so RiRj
must be a bounded operator from L∞(R3) to BMO(R3). Hence we can deduce that

‖Pk1(t, ·) − (Pk1)B(t)‖BMO = ‖Pk1(t, ·)‖BMO

6 C0‖(1 −
wk
|u|

)ui(1 −
wk
|u|

)uj‖L∞(R3)

6 C0R
2β ,

for all t ∈ (0, 1), in which C0 is some universal constant. So, we now apply Lemma 4.3
with µ = |F |χ{vk>0}, and f = Pk1 − (Pk1)B to deduce that

∫
B

|F |χ{vk>0}|Pk1 − (Pk1)B |dx 6
2pC0

α(p− 1)
{1 +K1− 1

p }×

{(

∫
B

R2pβ |F |χ{vk>0})
1
p +

∫
B

R2β|F |log+|F |χ{vk>0}},

in which the symbol (Pk1)B stands for the mean value of Pk1 over the open ball B.
Since we know that {vk > 0} is a subset of {|u| > R

2 }, for all k > 1, so it follows from
the above inequality that∫

B

|F |χ{vk>0}|Pk1 − (Pk1)B |dx 6
2C0

α

p

p− 1
4pβ{1 +K1− 1

p }×

{(

∫
B

|u|2pβ |F |χ{vk>0})
1
p

+

∫
B

|u|2β|F |log+|F | · χ{vk>0}}.

So, we can conclude from inequality (4.17), and the above inequality that
∫ 1

Tk−1

|

∫
R3

∇(
vk
|u|

)uPk1dx|dt 6 R
2C0

α

p

p− 1
4pβ(1 +K1− 1

p )×

{(

∫
Qk−1

|u|2pβ |F |χ{vk>0})
1
p

+

∫
Qk−1

|u|2β |F |log(1 + |F |)χ{vk>0}}

+ C22
βR‖u‖L∞(0,1;L2(R3))

∫
Qk−1

|u|β |F |χ{vk>0}.

(4.18)

Now, notice that

∫
Qk−1

|u|2β|F |log(1 + |F |)χ{vk>0} 6

∫
Qk−1

|u|2β |F |log(1 + |F |)χ{|F |6 1
R
}χ{vk>0}

+

∫
Qk−1

|u|2β |F |log(1 + |F |)χ{|F |> 1
R
}χ{vk>0}

6
log2

R

∫
Qk−1

|u|2βχ{vk>0}

+

∫
Qk−1

|u|2β |F |log(1 + |F |)χ{|F |> 1
R
}χ{vk>0}.

(4.19)
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Step five. To deal with the second term in the last line of inequality (4.19), we
consider the sequence {φk}

∞
k=1 of nonnegative continuous functions on [0,∞), which

are defined by

• φk(t) = 0, for all t ∈ [0, Ck].
• φk(t) = t− Ck, for all t ∈ (Ck, Ck + 1).
• φk(t) = 1, for all t ∈ [Ck + 1,+∞).

where the symbol Ck stands for Ck = R(1 − 1
2k ), for every k > 1. Here, we remark

that, for the purpose of taking spatial derivative, the composite function φk(|u|) is a
good substitute for χ{vk>0} = χ{|u|>R(1− 1

2k )}, since φk is Lipschitz.

Moreover, we also need a smooth function ψ : R → R satisfying the following
conditions that:

• ψ(t) = 1, for all t >
1
R

.
• 0 < ψ(t) < 1, for all t with 0 < t < 1

R
.

• ψ(0) = 0.
• −1 < ψ(t) < 0, for all t with − 1

R
< t < 0.

• ψ(t) = −1, for all t 6 − 1
R

.

• 0 6
d
dt
ψ 6 2R, for all t ∈ R.

We further remark that the smooth function ψ : R → R characterized by the
above properties must also satisfy the property that dψ

dt
(t) = 0, on t ∈ (−∞,− 1

R
) ∪

( 1
R
,∞), which will be employed in forthcoming inequality estimations (4.21) and

(4.24) without explicit mention. With the above preperation, let β be such that
3 < 2β < 10

3 + 1 − γ. We can then carry out the following calculation

div{|u|2β−1uψ(F )log(1 + |F |)φk(|u|)} = −(2β − 1)|u|2βFψ(F )log(1 + |F |)φk(|u|)

− |u|2β+1Fψ(F )log(1 + |F |)χ{Ck<|u|<Ck+1}

+ |u|2β−1 dψ

dt
(F )(u · ∇F )log(1 + |F |)φk(|u|)

+ |u|2β−1ψ(F )
u · ∇|F |

1 + |F |
φk(|u|).

(4.20)

Since our weak solution u on (0, 1]× R
3 satisfies |u·∇F |

|u|γ 6 A|F |, it follows that

• |u · ∇F |(t, x) 6 A
R
|u(t, x)|γ , if it happens that (t, x) satisfies |F (t, x)| 6 1

R
.

• |u·∇|F |
1+|F | | 6

|u·∇|F ||
|F | = |u·∇F |

|F | 6 A|u|γ .

So, it follows from inequality (4.20) that
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Λ1 + Λ2 6

∫
Qk−1

|u|2β−1|
dψ

dt
(F )| · |u · ∇F |log(1 + |F |)φk(|u|)

+

∫
Qk−1

|u|2β−1|ψ(F )| · |
u · ∇|F |

1 + |F |
|φk(|u|)

6

∫
Qk−1

|u|2β−1(2R)(
A

R
|u|γ)log(1 +

1

R
)φk(|u|)

+

∫
Qk−1

|u|2β−1 · A · |u|γφk(|u|)

6 A(1 + 2log2)

∫
Qk−1

|u|2β−1+γφk(|u|)

6 A(1 + 2log2)

∫
Qk−1

|u|2β−1+γχ{vk>0},

(4.21)

in which the terms Λ1, and Λ2 are given by
• Λ1 = (2β − 1)

∫
Qk−1

|u|2βFψ(F ) · log(1 + |F |)φk(|u|).

• Λ2 =
∫
Qk−1

|u|2β+1(ψ(F )F ) · log(1 + |F |)χ{Ck<|u|<Ck+1} .

We then notice that
• Since 2β > 3 > 2, we have Λ1 >

∫
Qk−1

|u|2β(Fψ(F ))log(1 + |F |)χ{|u|>Ck+1}.

• Λ2 >
R
2

∫
Qk−1

|u|2βFψ(F )log(1+ |F |)χ{Ck<|u|<Ck+1}, for every k > 1. Notice

that this is true because Ck = R(1 − 1
2k ), and that (1 − 1

2k ) > 1
2 , for every

k > 1.
Hence, it follows from inequality (4.21) that∫

Qk−1

|u|2βFψ(F )log(1 + |F |)χ{vk>0}

=

∫
Qk−1

|u|2βFψ(F )log(1 + |F |)χ{Ck<|u|<Ck+1}

+

∫
Qk−1

|u|2βFψ(F )log(1 + |F |)χ{|u|>Ck+1}

6
2

R
Λ2 + Λ1

6 3C · A

∫
Qk−1

|u|2β−1+γχ{vk>0}.

(4.22)

As a matter of fact, inequality (4.22) leads us to raise up the index for the term∫
Qk−1

|u|θχ{vk>0}, for any θ with 0 < θ < 10
3 , in the following way

∫
Qk−1

|u|θχ{vk>0} =

∫
Qk−1

{R(1 −
1

2k
) + vk}

θχ{vk>0}

6 Cθ{R
θ

∫
Qk−1

χ{vk>0} +

∫
Qk−1

vθkχ{vk>0}}

6
Cθ

R
10
3 −θ

{2
10k
3 + 2( 10

3 −θ)k}

∫
Qk−1

v
10
3

k−1

6
Cθ

R
10
3 −θ

2
10k
3 U

5
3

k−1,
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for every θ with 0 < θ < 10
3 , where Cθ is some positive constant depending only on θ.

Hence it follows from inequalities(4.19), (4.22), and our last inequality that

∫
Qk−1

|u|2β |F | · log(1 + |F |)χ{vk>0} 6
log2

R

∫
Qk−1

|u|2βχ{vk>0}

+

∫
Qk−1

|u|2β|F |log(1 + |F |)χ{|F |> 1
R
}χ{vk>0}

6
log2

R

C2β2
10k
3

R
10
3 −2β

U
5
3

k−1

+ 3C ·A

∫
Qk−1

|u|2β−1+γχ{vk>0}

6 Cβ,γ(1 +A) · 2
10k
3 U

5
3

k−1{
1

R
10
3 −2β+1

+
1

R
10
3 −2β+1−γ

},

(4.23)

in which β > 3
2 , and that β is sufficiently close to 3

2 , and Cβ,γ is some constant
depending only on β, andγ.

Next, we also need to deal with (
∫
Qk−1

|u|2pβ |F |χ{vk>0})
1
p , and∫

Qk−1
|u|β|F |χ{vk>0}, which appear in inequality (4.18). For this purpose, we

will consider λ which satisfies 3
2 < λ < 10

3 + 1 − γ (we will take λ to be 2pβ and β
respectively in forthcoming inequality estimates (4.25) and (4.26) ), and let us carry
out the following computation, in which ψ and φk etc are just the same as before.

div{|u|λ−1uψ(F )φk(|u|)} = −(λ− 1)|u|λFψ(F )φk(|u|)

+ |u|λ−1 dψ

dt
(F )(u · ∇F )φk(|u|)

− |u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}.

Hence, we have

(λ− 1)

∫
Qk−1

|u|λFψ(F )φk(|u|) +

∫
Qk−1

|u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}

6

∫
Qk−1

|u|λ−1|
dψ

dt
(F )| · |u · ∇F |φk(|u|)

6

∫
Qk−1

|u|λ−1(2R)(
A

R
|u|γ)χ{vk>0}

6 2A

∫
Qk−1

|u|λ−1+γχ{vk>0}.

(4.24)
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By the same calculation as in inequality (4.21), we can see that

∫
Qk−1

|u|λFψ(F )χ{vk>0} =

∫
Qk−1

|u|λFψ(F )χ{Ck<|u|<Ck+1}

+

∫
Qk−1

|u|λFψ(F )χ{|u|>Ck+1}

6
2

R

∫
Qk−1

|u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}

+

∫
Qk−1

|u|λFψ(F )φk(|u|)

6 3{

∫
Qk−1

|u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}

+ (λ− 1)

∫
Qk−1

|u|λFψ(F )φk(|u|)}

6 6A

∫
Qk−1

|u|λ−1+γχ{vk>0},

in which λ satisfies 3
2 < λ < 10

3 + 1 − γ. Now, put λ = 2pβ, with β > 3
2 to be

sufficiently close to 3
2 , and 1 < p < 5

4 to be sufficiently close to 1, it follows from our
last inequality that

∫
Qk−1

|u|2pβ |F |χ{vk>0} =

∫
Qk−1

|u|2pβ |F |χ{|F |6 1
R
}χ{vk>0}

+

∫
Qk−1

|u|2pβχ{|F |> 1
R
}χ{vk>0}|F |

6
1

R

∫
Qk−1

|u|2pβχ{vk>0}

+ 6A

∫
Qk−1

|u|2pβ−1+γχ{vk>0}

6 C(1 +A){
1

R
10
3 −2pβ+1

+
1

R
10
3 −2pβ+1−γ

}2
10k
3 U

5
3

k−1.

(4.25)

In exactly the same way, by setting λ to be β, with β > 3
2 to be sufficiently close

to 3
2 , it also follows that

∫
Qk−1

|u|β|F |χ{vk>0} =

∫
Qk−1

|u|β |F |χ{|F |6 1
R
}χ{vk>0}

+

∫
Qk−1

|u|β|F |χ{|F |> 1
R
}χ{vk>0}

6
1

R

∫
Qk−1

|u|βχ{vk>0} + 6A

∫
Qk−1

|u|β−1+γχ{vk>0}

6 Cβ,γ(1 +A){
1

R
10
3 −β+1

+
1

R
10
3 −β+1−γ

}2
10k
3 U

5
3

k−1.

(4.26)
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By combining inequalities (4.18), (4.23), and (4.25),and (4.26) we now conclude
that ∫ 1

Tk−1

|

∫
R3

∇(
vk
|u|

)uPk1dx|ds

6 (1 +A)(1 +
1

α
)Cp,β(1 +K1− 1

p )×

(1 + ‖u‖L∞(0,1;L2(R3)))×

{(
1

R
10
3 −2pβ+1−γ−p

)
1
p 2

10k
3p U

5
3p

k−1 +
1

R
10
3 −2β−γ

2
10k
3 U

5
3

k−1}.

(4.27)

Notice that if p → 1+, and β → 3
2

+
, then,we have (10

3 − 2pβ + 1 − p − γ) →
(1
3 − γ) > 0, and that (10

3 − 2β − γ) → (1
3 − γ) > 0.

So, finally, we recognize that by combining inequalities (4.10), (4.11), and (4.27),
we conclude that we are done in proving proposition 2.1 .
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