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BOUNDS ON FRONT SPEEDS FOR INVISCID
AND VISCOUS G-EQUATIONS∗

JAMES NOLEN† , JACK XIN‡ , AND YIFENG YU§

Abstract. G-equations are well-known front propagation models in combustion and describe
the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus
the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton-Jacobi
equations with convex (L1 type) but non-coercive Hamiltonians. We study front speeds of both
inviscid and viscous G-equations in mean zero flows, and compare the qualitative speed properties
with those of quadratically nonlinear Hamilton-Jacobi equations and KPP (Kolmogorov-Petrovsky-
Piskunov) fronts (with minimal speed). For the inviscid case, we analyze a variational solution
formula (control representation) by choosing suitable test functions. For the viscous case, we analyze
traveling front equations which agree with the cell problem of homogenization. We found that
viscosity can drastically alter the front speed growth law of G-equations. Without viscosity, front
speed grows like O(A/ log A) in cellular flows of large amplitude A. With proper viscosity, the front
speed grows no faster than O(

√

log A). In contrast, the KPP front speed grows like O(A1/4) in
general cellular flows at any fixed viscosity. The L1 type nonlinearity appearing in the G-equation
makes the key difference.

Key words. Non-coercive Hamilton-Jacobi equations, inviscid-viscous fronts, cellular flows,
distinct speed growth laws.
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1. Introduction. Front or interface propagation in fluid flows is a ubiquitous
nonlinear phenomenon in various areas of science and technology such as chemical
reaction fronts in liquids and premixed flame propagation in fluid turbulence [28, 26].
Mathematical models range from reaction-diffusion-advection equations (RDA) to
advective Hamilton-Jacobi equations (HJ), [32, 34]. A particular HJ equation, the so
called G-equation, is most popular in the combustion science literature, [19, 30, 35, 5]
among others. The G equation reads:

Gt + v(x) · ∇G = sl|∇G| + κ ∆G, (1.1)

where G is a scalar function, v(x) is a prescribed flow velocity field, sl is a positive
constant (laminar front speed), κ ≥ 0 is a diffusion coefficient. If κ = 0 (inviscid
regime), the G-equation (1.1) is the level set equation of the interface motion law:
the exterior normal velocity of the interface equals the laminar speed sl plus the
projection of the fluid velocity along the normal, see chapter 6 of [24] and [25]. The
viscous term κ ∆G introduces an additional length scale; κ > 0 is proportional to the
so called Markstein length [5, 25]. The viscous term is also proposed as a simplification
of curvature [5]. The fundamental problem in turbulent combustion is to study the
large time front speed, or the asymptotic growth rate limt→+∞ G(x, t)/t, and analyze
its dependence on parameters of the advection v. Such a limit (if it exists) is called
the turbulent front speed (sT ), [26, 34].
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Another approach is based on reaction-diffusion theory and begins with a coupled
system of RDA equations. The system in the case of equal species diffusion (unit Lewis
number) reduces to a reactive passive scalar equation [26, 34]:

ut + v(x) · ∇u = κ∆u +
1

τr
f(u). (1.2)

f(u) a nonlinear reaction function, f(0) = f(1) = 0. The quadratic reaction is
f(u) = u(1 − u), or more generally 0 < f(u) < uf ′(0) for u ∈ (0, 1), the so called
Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. The two positive constants are:
κ, the species diffusion constant; τr, the reaction time scale. If the initial data of u is a
nonnegative function of compact support, the large time behavior of u is a propagating
front. Fronts also form and propagate under other reaction nonlinearities with proper
initial data, such as ignition and bistable nonlinearities [32, 34]. The question of large
time front speed and its dependence on flows is posed similar to that for G-equations.
In many classes of flows, qualitative properties of non-KPP front speeds are found to
agree with those of KPP speeds ([4, 20, 36, 34, 38] and references therein).

Though the inviscid G-equation can be derived from ignition or bistable RDA
equations in hyperbolic scaling limits (κ = τr → 0) [3, 32, 34], the large time front
speeds can be quite different due to the effects of multiscale structures in the flow
field and slow diffusion in longer time scales. A comparison of front speeds in KPP
and G-equations for shear flows with non-zero mean [7] showed that the front speeds
from G-equation can be much less than the KPP speeds. The amount of discrepancy
may vary depending on the alignment of the mean flow and the shear flow.

In this paper, we compare reaction-diffusion front speeds (KPP and non-KPP)
and those of inviscid and viscous G-equations for mean zero flows including gradient
flows, shear flows, and cellular flows. The large time front speed for the (inviscid) G-
equation is same as the homogenized Hamiltonian of G-equation. The Hamiltonian of
the G-equation is H(p, x, t) = sl|p|−v(x) ·p, which is not coercive, or H 6→ +∞ for all
x if |p| → ∞, as long as the amplitude of v is large enough. The existing theory of HJ
homogenization does not apply [8, 15, 18, 16, 17, 13, 27, 31]. However, a variational
control formula for the solution allows us to estimate front speeds by selecting trial
controls and extracting their dependence on flow structures and scaling laws in the
regime of large advection. Divergence of the front speed in unbounded shear flows
appears in the G-equation similarly to KPP [33] and quadratically nonlinear HJs [6].
Further qualitative agreement between KPP fronts and G-equation fronts is found in
the slow down of front speeds in gradient flow, and linear growth in shear flows. For
the G-equation, it is the behavior of optimally controled characteristics that determine
the front speed. For KPP fronts, it is drift-diffusion processes (Ito equations). In the
above examples, the presence of viscosity in KPP and the different nonlinearities
in KPP and G-equations do not matter much. However for cellular flows in two
dimensions, inviscid G-equation front speed grows like O(δ/ log δ) if v is scaled to δ v,
with δ ≫ 1, [1, 29]. In contrast, the (minimal) front speed of nonnegative reactions
(including KPP and ignition) grows like O(δ1/4) for any viscosity coefficient κ > 0,
[2, 22, 38].

Does the viscous G-equation agree better with KPP (or combustion type)
reaction-diffusion models in cellular flows? Surprisingly, the answer is no, if κ is
sufficiently larger than sl, but independent of v. The viscosity term in G-equation
reduces the speed enhancement dramatically. An upper bound of viscous front speed
is O(

√
log δ) in the regime δ ≫ κ ≫ sl. A simple way to explain this new phenomenon
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is to notice that the nonlinearity in the G-equation is L1 type, or sT = sl E[|∇G|]
at large t, where E[·] is the ensemble (cell) average in the random (periodic) flows.
On the other hand, KPP fronts are related to viscous HJ with quadratic nonlinear-
ity and the front speed is approximately sT = sl E[|∇u|2]. The L1 and L2 norms
give very different results for cellular flows where the key contribution resides in nar-
row boundary layers near separatrices at large δ. Our analysis relies on estimates of
advection-diffusion equations and properties of cellular flows [10, 12, 22, 23].

The paper is organized as follows. In section 2, we outline the minimization for-
mula or control representation of inviscid G-equation. In section 3, we show examples
and bounds of front speeds of the inviscid G-equation based on the control formula.
This approach extends the treatment of [29], and allows one to extract the unique
limiting asymptotics or homogenization from a Lagrangian point of view. In section
4, we derive the standard cell problem of homogenization of the viscous G-equation by
looking for a traveling front, then estimate solutions of the cell problem based on as-
ymptotic properties of cellular flows. We present a rigorous bound on slowly growing
speeds for the G-equation in large amplitude cellular flows, and give heuristic expla-
nation of the slowly growing speeds using the stochastic version of the minimization
formula or control representation of viscous G-equation. In section 5, we conclude
with remarks on future work.

The work was partially supported by an NSF Postdoctoral Fellowship (JN), NSF
grants DMS-0712881 (JX), DMS-0848378 and DMS-0901460 (YY). We thank A. Fan-
njiang, A. Novikov, and L. Ryzhik for helpful remarks on cellular flows.

2. Representation formulas for G-equations. In the G-equation model, the
front Γt is defined to be the zero-level set Γt = {x : G(x, t) = 0} of a function
G(x, t), and the level sets of G move in the direction n̂ with speed sn = sn(x, t) given
by

sn = sl + v(x) · n̂. (2.1)

The constant sl is the laminar flame speed, and n̂ = n̂(x, t) = −∇G/|∇G| is a unit
vector normal to the level set at the point (x, t). Therefore, at points where G is
smooth and |∇G| 6= 0, G satisfies the equation

Gt + v(x) · ∇G = sl|∇G|. (2.2)

See [26] for more details. Although solutions may develop singularities, the initial
value problem with initial data G0(x) ∈ C1 is well-posed in the viscosity-sense. We
will also consider a “viscous G equation”

Gt + v(x) · ∇G = sl|∇G| + κ∆G (2.3)

in order to determine the effect of viscosity on the large-time behavior of the front Γt.
Solutions to equations (2.2) and (2.3) admit an optimal control representation.

Suppose that u(x, t) satisfies (2.2) for t > 0, x ∈ R
n with initial condition u(x, 0) =

u0(x). Then u(x, t) has the representation

u(x, t) = supu0(y(t)) (2.4)

where the supremum is over all y ∈ W 1,∞([0, t]; Rd) satisfying y(0) = x and the
constraint

|y′(τ) + V (y(τ))| ≤ sl (2.5)
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for all τ ∈ [0, t]. This representation may be derived as in [9], Section 10.3. For
the viscous equation (2.3), the control problem becomes stochastic [11, 13]. Suppose
w(x, t) satisfies (2.3) for t > 0, x ∈ R

n with initial condition w(x, 0) = w0(x), then
w(x, t) has the representation

w(x, t) = sup E [u0(Yt)] (2.6)

where Yt satisfies the stochastic equation

dYτ = (ατ − V (Yτ )) dτ +
√

2κdWτ , Y0 = x. (2.7)

The supremum in (2.6) is over all stochastic controls ατ which are progressively mea-
sureable with respect to the Brownian filtration, and satisfy |ατ | ≤ sl.

3. Examples and inviscid speed bounds. In this section, we give bounds
of front speeds for the inviscid G-equation with concrete examples. Consider spatial
flow v = V (x), and the G-equation:

ut + V (x) · ∇u = sl|∇x u|, (3.1)

with affine initial data u(x, 0) = p · x, where p is a unit vector in R
d. We will assume

that p = (1, 0, . . . , 0). The solution is given by the control formula:

u(x, t) = sup
α

p · y(t), (3.2)

where y = y(t; x) is the solution to the ODE with continous control α, |α| ≤ sl:

y′(τ) = −V (y(τ)) + α(τ), (3.3)

and initial data y(0) = x.

Example 1 (gradient flow). First, we analyze the one-dimensional case.
Clearly, α = sl is an admissible control. Let p = 1. By an ODE comparison ar-
gument, α = sl is the optimal control as it facilitates the largest velocity to the right.
So the solution formula is:

u(x, t) = y, (3.4)

where y = y(t; x) is the solution to the ODE:

y′(τ) = −V (y(τ)) + sl, (3.5)

with initial data y(0) = x. Two regimes arise. If min−V (y) + sl > 0 for all y, then
(3.5) is solvable in closed form:

∫ y

x

dη

−V (η) + sl
= t. (3.6)

To find the asymptotic front speed, send t → +∞. It follows from (3.6) that if V is
a stationary ergodic process, then

sT = lim
t→∞

u(x, t)/t = lim
t→∞

y(t)/t = 1/E[(−V (·) + sl)
−1] (3.7)
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holds almost surely. Bounding the harmonic mean in (3.7) by the arithmetic mean,
we see that sT ≤ sl − E[V ]. If also E[V ] = 0, this means that V has the effect of
slowing the front, consistent with results for the KPP equation [21].

On the other hand, if −V + sl changes sign, a generic case is that −V + sl

has discrete zeros where −V ′ changes sign alternately. These zeros are stable and
unstable equilibria of (3.5). It is easy to see that y(t) will converge to the nearest
stable equilibriam from the starting point x, or remain motionless if x happens to
be one of the equilibria. In any event, y(t) is uniformly bounded in t, implying that
the asymptotic front speed sT = 0. That is, front trapping occurs at drift with
large enough amplitude variations. Although this is similar to the case of bistable
fronts, this is different from the KPP case where fronts slow down at large drift [21]
but trapping does not happen, even though the front speed is slowed down arbitrarily
close to zero. The lack of diffusion in the G-equation is the likely cause. The similarity
between the G-equation front and bistable front trapping [32] suggests that the G-
equation captures bistable reaction quite well.

Next, in several dimensions, let p = (1, 0, · · · , 0), and let us choose a simple control
α = (sl, 0, · · · , 0) to maximize speed along the direction p. Due to lack of comparison
in vector ODEs, this choice only provides a lower bound of for the G-equation solution:

u(x, t) ≥ y1(t), (3.8)

where:

y′ = −V (y) + (sl, 0, · · · , 0)T , y(0) = x. (3.9)

If the underlying flow y(t) is ergodic with invariant measure µ, then as t → +∞:

y1(t)/t =

[

x1 −
∫ t

0

V1(y(t))dτ

]

/t + sl → −Eµ[V1(·)] + sl, (3.10)

almost surely in µ. So, the G-equation front speed has the lower bound:

sT ≥ −Eµ[V1(·)] + sl. (3.11)

Example 2 (shear flow). Consider a shear flow V = (v(y2), 0), (y1, y2) ∈ R
2,

where v(y2) is a mean zero stationary ergodic process. Choose a control as follows:

y
′

1 = −v(y2) + sl − sl ǫ (ξ − x2)e
−ǫ sl t,

y
′

2 = sl ǫ (ξ − x2)e
−ǫ sl t,

where ξ is a point so that −v(ξ) > 0. The parameter ǫ ≪ 1 is chosen so that the
control is admissible. Then:

y2(t) = x2 + (ξ − x2) (1 − e−ǫ sl t) → ξ,

as t → ∞, and

y1(t) = x1 −
∫ t

0

v(y2(τ)) dτ + sl t + O(1),

= −v(ξ)t + slt + O(1), (3.12)
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implying that y1/t → −v(ξ) + sl. In fact, ξ may be chosen to reach the running
maximum of −v on the interval [x2 − L, x2 + L], and so:

sT ≥ sup
L

maxy∈[−L,L] − v(y) + sl. (3.13)

For a Gaussian process, sT diverges, implying that homogenization of the G-equation
breaks down. This divergence of sT in unbounded shear flow is similar to the case of
KPP fronts [33], and the quadratic inviscid Hamilton-Jacobi fronts [6].

If v is a bounded process, however, then sT grows linearly like δ‖v‖∞ if v is scaled
to δ v, δ ≫ 1. This same linear scaling holds even if the shear is not aligned with p.
For example, let

V = −δ (m cos(−n y1 + m y2), n cos(−n y1 + m y2)) = (−Hy2
,Hy1

),

with Hamiltonian H = δ sin(−n y1 + m y2), (n, m) are integers, n/m is the rotation
number. Choose the controlled system as:

y′
1 = δ m cos(−n y1 + m y2) + sl(1 − cos t),

y′
2 = δ n cos(−n y1 + m y2), (3.14)

implying that:

(−n y1 + m y2)
′ = −n sl (1 − cos t),

−n y1 + m y2 = −n x1 + m x2 − n sl (t − sin t). (3.15)

So:

y1 = x1 + δ m

∫ t

0

cos(n sl (t
′ − sin t′) + n x1 − m x2)dt′ + sl(t − sin t). (3.16)

For simplicity, set x = (x1, x2) = 0, and sl = 1/n. The integral in (3.16) equals:

∫ t

0

[cos t′ cos(sin t′) + sin(t′) sin(sin t′)] dt′.

Because the integrand is 2π periodic, we let t = 2π. The first integrand is (sin sin t)′,
hence it suffices to consider the second integral:

∫ 2π

0

sin(t′) sin(sin t′) dt′. (3.17)

As the function G(η) = η sin η is even, and positive over η ∈ [0, 1] ⊂ [0, π/2], we
conclude that the integral (3.17) is positive and

sT ≥ lim
t→∞

y1/t = δ m (2π)−1

∫ 2π

0

sin(t′) sin(sin t′) dt′ + sl = O(δ) + sl.

By upper bound sT ≤ O(δ), it follows that sT is enhanced linearly in large δ.
Likewise, the KPP front speed obeys the linear growth law (with a precise constant

rate). Recall that KPP speed c∗ in a mean zero divergence-free periodic vector field
b(x) is [37]:

lim
δ→∞

c∗(δ, k)/δ = sup
w∈DI

∫

T N

(b · k)w2(x) dx,
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where

DI = {w ∈ H1(T N) : b · ∇w = 0, ‖∇w‖2
2 ≤ f ′(0), ‖w‖2 = 1}, (3.18)

where k is the direction of front propagation, T N the N-dimensional unit torus. The
limit in (3.18) is nonzero if

∫

T N (b · k)w0 dx 6= 0 for some first integral w0. Suppose
such a w0 exists, then w = (1 + ǫ w0)/‖1 + ǫw0‖2 ∈ DI for ǫ small enough, and the
limiting value is to leading order ǫ

∫

T N (b · k)w0 dx, which is positive if ǫ is chosen to
have the sign of the integral. In our example, k = (1, 0), and equation b · ∇w = 0
becomes:

(mwy1
+ nwy2

) cos(−n y1 + m y2) = 0,

which has solution of the form w0 = W (−n y1 +m y2), for any C1 function W . Then:
∫

T 2

(b · k)w0 dx =

∫

T 2

(−δ m) cos(−n y1 + m y2)W (−n y1 + m y2) dy,

which is not zero if W (·) = cos(·). Hence, the KPP front speed also grows linearly
with δ in this case.

Example 3 (cellular flow). Suppose that V is the two-dimensional cellular
flow

V (y1, y2) = δ (sin(πy1) cos(πy2),− sin(πy1) cos(πy2)) . (3.19)

corresponding to Hamiltonian H(y1, y2) = (δ/π) sin(πy1) sin(πy2). One can design a
control to show the speed scaling sT (δ) = O(δ/ log δ), for fixed sl and δ ≫ 1. The
control is designed to maximize

y(t) · (1, 0) (3.20)

where y(t) = (y1(t), y2(t)) solves

y′(t) = −V (y(t)) + α(t). (3.21)

The integer lattice points are saddle points of V , the half integer points are centers,
see Fig. 1. The controlled path y(t) eventually traverses the heteroclinic orbits from
one saddle point to the next, see arrowed horizontal and vertical trajectory in Fig. 1.

Suppose the initial particle position is on a separatrix. It suffices to consider the
flow from saddle point (−1, 1) to saddle point (0, 1). Other motion from saddle to
saddle is the same. Near the saddle points, the cell flow is very slow. Away from the
saddle points, the cell flow is fast. Along this heteroclinic orbit, −V1 = −δ sin(πy1) >
0. We set α = (sl, 0) until the particle reaches (0, 1). The time required to reach (0, 1)
is given explicitly by

Tδ = 2

∫ 1/2

0

1

sl + δ sin(πs)
ds. (3.22)

It is easy to see that Tδ = O(δ−1 log(δ)):

δTδ = 2

∫ 1/2

0

1

slδ−1 + sin(πs)
ds (3.23)

= 2

∫ 1/2

0

1

slδ−1 + πs
ds + 2

∫ 1/2

0

πs − sin(πs)

(slδ−1 + sin(πs))(slδ−1 + πs)
ds.
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cellular flow
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Fig. 1. Sketch of cellular flow and trajectories to maximize motion in the x direction under

control for initial position on or not on a separatrix.

The first term is equal to 2
π log(1+ δπ

sl

), while the second term is bounded by a constant
independent of δ. Therefore,

lim
δ→∞

δTδ

log(δ)
=

2

π
. (3.24)

Now, we use the same strategy to travel to other saddle points as shown in Fig. 1.
The time it takes to travel from one saddle point to the next is equal to Tδ. At time
t, the y1-coordinate of y(t) will be bounded from below by y1(t) ≥ t

2Tδ

− 1, implying
that

sT ≥ 1

2Tδ
= O(δ/ log(δ)). (3.25)

If the initial position x1 is away from the separatrices, it takes finite amount of
time for the control vector to move the particle to a nearby separatrix, then follow the
above heteroclinic motion. For example, suppose the particle is turning around inside
the initial cell with corner points (-1,0), (-1,1), (0,0), (0,1) in Fig. 1. If V (y1, y2) =
∇⊥H(y1, y2) with H = 0 defining the separatrices, then we choose the control

α(s) = −sl
∇H(y(s))

|∇H(y(s))| · sign(H(y(s)))

until the particle reaches a separatrix. In this way, H(y(s)) is either monotone in-
creasing or decreasing in s until y(s) reaches the separatrix, which occurs in finite time
independent of δ. At that point, we may change the strategy to the one described
above.

An upper bound on the speed follows in a similar manner. If y1 ∈ [0, 1], we
have |y′

1(t)| ≤ |V1(y(t))| + sl ≤ δ sin(π y1(t)) + sl, for any choice of the control.
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Consequently, the time required to traverse the strip y1 ∈ [0, 1], is bounded below by
Tδ. By periodicity, an amount of time at least Tδ is required to traverse each strip of
the form y1 ∈ [k, k + 1], with k ∈ Z. Therefore, for any t > 0, y1(t) ≤ t

Tδ

+ 1 must

hold, which implies that sT ≤ 1
Tδ

. Combining this with (3.25), we conclude that

π

4
≤ lim inf

δ→∞

log(δ)sT (δ)

δ
≤ lim sup

δ→∞

log(δ)sT (δ)

δ
≤ π

2
. (3.26)

A similar analysis when the initial starting position x falls on a heteroclinic orbit
is given in [29]. See also formal arguments based on a reduced front equation in [1].

4. The viscous G-equation. Example 3 of the last section shows that the
asymptotic front speed for the inviscid G-equation scales as O(δ/ log δ) in large am-
plitude O(δ) cell flows, very different from the O(δ1/4) scaling of KPP front speeds
[2, 22]. This motivates us to study the viscous G-equation:

ut + δV (x) · ∇u = sl|∇u| + κ∆u, (4.1)

where (sl, κ) ≪ δ, with Lipschitz continuous initial data. Recall that the KPP front
speeds come from an analogous quadratic Hamilton-Jacobi equation, or (4.1) with
|∇u|2 replacing |∇u|. Here V (x) is a mean zero, divergence-free, periodic cellular
flow.

The traveling front solution of (4.1) is:

u = p · x + H(p) t + w(x), (4.2)

where p is a vector in R
d, and w(x) is periodic. Substituting (4.2) in (4.1), we find

the equation for (H, w(x)):

H + δV (x) · (p + ∇xw) = sl|p + ∇xw| + κ∆xw, x ∈ T, (4.3)

where T is the periodic cell, equal to [0, 2]× [0, 2] for two dimensional cell flows. This
is the cell-problem of homogenization of (4.1).

This is a nonlinear eigenvalue problem for which the unknown constant H(p) is
given by

H(p) = sl 〈|p + ∇w|〉, (4.4)

where the bracket is the periodic average over T. By Jensen’s inequality, we have from
(4.4) the lower bound H(p) ≥ sl|p|. Therefore, the speed of the propagating front is
bounded below by

c∗ = H(p)/|p| ≥ sl, (4.5)

so the flow can only enhance the front speed.
Now let us address the speed scaling question: if the dimension is d = 2, V is cell

flow, how does c∗ scale with δ ≫ 1 ? Is it related to O(δ1/4), as in the KPP case?
Our main result is the following:

Theorem 4.1. Let V be a cellular flow in R
2. Let p = (λ, 0) and λ 6= 0,

in equation (4.3). If the ratio sl/κ is sufficiently small, then there is a constant
C = C(λ, p) such that the front speed c∗ satisfies

sl ≤ c∗ ≤ slC(1 +
√

log(δ/κ)),
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for all δ > κ.

Proof. It will be convenient to write the cell problem (4.3) as

H∗ + AV (x) · (p + ∇xw) = R|p + ∇xw| + ∆xw, x ∈ T, (4.6)

where A = δ/κ and R = sl/κ and H∗ = H/κ. Observe that the front speed is
c∗ = H∗κ/|p|.

As in [22], we decompose (p = (λ, 0)):

p · x + w = λx1 + w = T + S ≡ ζ, (4.7)

where T has zero average over [−1, 1]2 and solves the linear inhomogeneous problem:

∆T − AV (x) · ∇T = 0,

T (x1 + 2, x2) = T (x1, x2) + 2λ, T (x1, x2 + 2) = T (x1, x2), (4.8)

and S, a mean zero periodic function, solves the nonlinear problem:

∆S − AV (x) · ∇S = H∗ − R|∇(T + S)|. (4.9)

The linear problem (4.8) is well-studied and the L2 gradient estimate is [10, 12,
22, 23]:

C1A
1/2λ2 ≤

∫

T

|∇T |2 dx ≤ C2A
1/2λ2, (4.10)

for positive constants C1, C2 independent of A.

Lemma 4.1. There is a positive constant C independent of A such that

‖∇T ‖L1(T) ≤ C (1 +
√

log A) (4.11)

holds for all A ≥ 1.

Proof of Lemma. Let Ω(a, h) = {x ∈ T | a < |H(x)| < a + h}, for any positive a
and h. Here H is the Hamiltonian with ∇⊥H = V (e.g. H(y1, y2) = sin(πy1) sin(πy2)).
Letting ǫ = 1/A, we have:

|Ω(a,
√

ǫ)| ≤ O(
√

ǫ(1 + | log(ǫ)|)).

By Theorem 4.2 of [23], for N ≥ 1:

‖∇T ‖2
L2({x∈T:|H|≥N

√
ǫ}) ≤

C√
ǫN4

.

It follows that

‖∇T ‖L1(T) = ‖∇T ‖L1({x∈T:|H|≤
√
ǫ}) +

∞
∑

N=1

‖∇T ‖L1(Ω(N
√
ǫ,
√
ǫ))

≤ ‖∇T ‖L2(T)

√

|{x ∈ T : |H | ≤ ǫ}|

+

∞
∑

N=1

‖∇T ‖L2(Ω(N
√
ǫ,
√
ǫ))

√

|Ω(N
√

ǫ,
√

ǫ)|

≤ C

√√
ǫ(1 + | log(ǫ)|) (1 +

∞
∑

N=1

N−2) ǫ−1/4

≤ C
√

1 + | log(ǫ)| ≤ C(1 +
√

log A). (4.12)
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Remark 4.1. The L1 gradient estimate in Lemma 4.1 can also be proved based
on Theorem 3.2 of [23] with the upper bound there (C/H)(ǫ/H2)3/8 corrected to
(C/H)(ǫ/H2)3/2. The exponent 3/8 results from a miscount of exponent in the last
three lines of the proof of Theorem 3.2 of [23].

The function ζ = w + p · x increases by λ across the cell in x1. It follows from
(4.4) that:

H∗(p) = R

∫

T

|∇ζ| dx/|T| ≥ R

∫

T

|ζx| dx/|T|

≥ R

∫

T

ζx1
dx/|T| = R λ. (4.13)

Since ζ satisfies ∆ζ−AV ·∇ζ + |∇ζ| = H∗ > 0, Proposition 4 of [22] may be extended
to show that ζ satisfies the upper bound:

ζ ≤ C[λ + ‖∇ζ‖1] (4.14)

in the cell T. This follows in a straightforward manner, from the maximum principle
and Poincaré inequality (for L1 norm rather than L2), as in [22]. This bound implies
that

ζ ≤ C[λ + H∗/R] ≤ CH∗/R, (4.15)

for a positive universal constant C. The type of inequality (4.14) also applies to T
and gives:

T ≤ C[λ + ‖∇T ‖1] ≤ C(λ + 1 +
√

log A), (4.16)

for all A > 1. Inequality (4.16) improves Lemma 1 of [22] where the upper bound is
O(λA1/4). Let us mention that a special L∞ estimate is:

‖T ‖∞ ≤ λ, (4.17)

if H is odd in x1 [10].

It follows from (4.16) and (4.15) that

S ≤ C(1 +
√

log A + H∗/R). (4.18)

By (4.4)-(4.7):

|T|H∗ = R‖∇(T + S)‖1,

and so:

||T|H∗ − R‖∇T ‖1| ≤ R‖∇S‖1 ≤ 2 R ‖∇S‖2. (4.19)

Multiplying S to (4.9), integrating over T and applying (4.18) gives:

‖∇S‖2
2 = R

∫

T

S |∇(T + S)| dx

≤ RC(1 +
√

log A + H∗/R)

∫

T

|∇ζ| dx

= C(1 +
√

log A + H∗/R)H∗. (4.20)
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It follows from (4.19) that:

|T|H∗ ≤ 2R ‖∇S‖2 + R‖∇T ‖1

≤ 2R

√

C(1 +
√

log A + H∗/R)H∗ + R C(1 +
√

log A). (4.21)

Suppose H∗ > R(1 +
√

log A). Then (4.21) implies

|T|H∗ ≤ R
√

2CH∗H∗/R + R C(1 +
√

log A). (4.22)

So, if
√

R =
√

sl/κ is sufficiently small (independently of A), H∗ ≤ RC(1 +
√

log A).
Therefore, there is a constant C independent of A such that

H∗ ≤ RC(1 +
√

log A), (4.23)

holds for all A > 1. Consequently,

c∗ = H/|p| = H∗κ/|p| ≤ slC(1 +
√

log(δ/κ)) (4.24)

holds for δ > κ.

Consider the quadratically nonlinear HJ where |p + ∇xw|2 replaces |p + ∇xw| in
(4.6). Then the lower bound of H∗ is (two lines under (3.43) in [22]):

(H∗)1/2 + O(H∗) + O((H∗)3/4) ≥ O(λ A1/4),

implying:

H∗ ≥ O(λ A1/4),

or:

c∗ ≥ C(λ, κ) δ1/4

at fixed κ and λ. In other words, the front speed for the quadratically nonlinear
HJ equation grows at least as O(δ1/4) at large δ. The order of the nonlinearity
makes a significant difference in the asymptotic behavior of the front. In contrast,
nonlinearities in reaction-diffusion equations do not change the scaling behavior of
speed growth in cellular flows so drastically. For ignition nonlinearity and so by
comparison for all nonnegative reactive nonlinearities, the front speed in cellular flows
scales as O(δ1/4) at large δ, [38].

For the inviscid G-equation, an O(δ/ log δ) lower bound on the front speed followed
from a choice of control which steers the trajectory y(t) along the separatrices, taking
advantage of the strong flow away from the stagnation points. We may also consider
the control representation for the viscous G-equation (4.1):

u(t, x) = sup
α

E[p · Xt], (4.25)

where

dXt = (αt − δV (Xt)) dt +
√

2κdWt, (4.26)

and αt is a control, adapted to the Brownian filtration and satisfying |αt| ≤ sl. The
supremum is over all such controls. The reduction of enhancement due to viscosity
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κ > 0 in the above theorem can be explained as follows. The presence of strong enough
Brownian perturbation kicks the particle from moving near the separatrices (Fig. 1)
towards the center of the cell where temporary trapping occurs. If the particle is close
to a separatrix, then the flow is O(δ) in that region, so it has time of order O(δ−1) in
which to hop to the adjecent cell before being transported around to the other side
of the cell. In this short time interval, the Brownian path makes typical excursions of
the size O(δ−1/2), much larger than O(δ−1) which is the amount the control is able
to influence the trajectory over the same interval. In order to steer the particle across
a separatrix, the particle must first be within a distance O(δ−1) of the separatrix.
In this range, the random perturbations may easily move the particle away from the
separatrix (with probability close to 1/2). In the worst case, the particle is transported
quickly around the cell to the opposite separatrix, where stochastic pertubations may
then kick the particle across the separatrix, in the opposite direction (in the direction
−p). Hence the transition from one cell to the next is dominated by stochastic effects
which suggests large-scale diffusive behavior of the trajectories, rather than ballistic
behavior in the direction of p. Random perturbations in the regime of sl ≪ κ ≪ δ
weaken the effect of control velocity αt which is the mechanism of the much faster
speed scaling O(δ/ log δ) in the inviscid G-equation. It is interesting to find out what
happens in the opposite regime 0 < κ ≪ sl ≪ δ.

5. Conclusions. Front speeds for the inviscid G-equation in gradient flows and
shear flows behave qualitatively similar to KPP speeds. However, front speeds for the
G-equation in cellular flows are very different. The inviscid G-front speed grows at a
nearly linear rate at large cellular flow amplitude, while the viscous G-equation front
speed has much slower growth. It remains to study the interesting regime of slightly
viscous G-equation where the viscosity coefficient is much smaller than the laminar
speed. It also would be interesting to determine whether there is an O(

√

log(δ/κ))
lower bound on the front speed for viscous G-equation in cellular flows. The central
issue is whether the L1 gradient estimate of Lemma 4.1 is optimal.
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