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SECANT-LIKE METHOD FOR SOLVING GENERALIZED
EQUATIONS∗

IOANNIS K. ARGYROS† AND SAÏD HILOUT‡

Abstract. In [2], [3], Argyros introduced a new derivative–free quadratically convergent method
for solving a nonlinear equation in Banach space. In this paper, we extend this method to generalized
equations in order to approximate a locally unique solution. The method uses only divided differences
operators of order one. Under some Lipschitz–type conditions on the first and second order divided
differences operators and Lipschitz–like property of set–valued maps, an existence–convergence theo-
rem and a radius of convergence are obtained. Our method has the following advantages: we extend
the applicability of this method than all the previous ones [2]–[5], [7], and we do not need to eval-
uate any Fréchet derivative. We provide also an improvement on the radius of convergence for our
algorithm, under some center–condition and less computational cost. Numerical examples are also
provided.
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1. Introduction. A large number of problems in applied mathematics and en-
gineering are solved by finding the solutions of generalized equation introduced by
Robinson [13], [14]:

0 ∈ F (x) + G(x), (1.1)

where F is a continuous function from an open subset D of X into Y, G is a set–
valued map from X to the subsets of Y with closed graph, and X , Y are Banach spaces.

Generalized equation is an abstract model of a wide variety problems including:
(a) If G is the positive orthant in X := R

m, (1.1) is a system of inequalities.
(b) If X = Y is a Hilbert space with inner product (.; .), C is a convex subset of

X , and G : X ⇉ Y is a set–valued mapping defined by

G(x) =

{

{z : (z; y − x) ≤ 0 for all y ∈ X} if x ∈ C

∅ otherwise,
(1.2)

then, a variational inequality problem consisting to

find c⋆ in C such that (F (c⋆); c − c⋆) ≥ 0, for all c ∈ X , (1.3)

is equivalent to generalized equation (1.1) in the following form

find c⋆ in C such that 0 ∈ F (c⋆) + G(c⋆).

For example, the last equation typically describes some (mechanical, eco-
nomic) equilibrium.
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‡Poitiers University, Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie,
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(c) If G = {0}, (1.1) is a nonlinear equation in the form

F (x) = 0. (1.4)

For example, dynamic systems can be modelled by difference equations, and
their solutions usually represent the states of the systems, which are deter-
mined by solving equation (1.4).

This paper considers the problem of approximating a locally unique solution x⋆

of (1.1) using an iterative method as follows

0 ∈ F (xn) + [2 xn − xn−1, xn−1; F ] (xn+1 − xn) + G(xn+1), (x0, x1 ∈ D), (n ≥ 1)
(1.5)

where [x, y; F ] ∈ L(X ,Y) the space of bounded linear operators from X to Y is
called a divided difference of F of order one at the points x and y (to be defined later).

In the case of nonlinear equations (1.4), the method (1.5) is reduced to the fol-
lowing algorithm ([2], [3]):

xn+1 = xn − [2 xn − xn−1, xn−1; F ]−1 F (xn), (x0, x1 ∈ D), (n ≥ 1). (1.6)

Case G 6= {0}. Using Lipschitz and Hölder conditions on the first order
divided differences operators, some convergence results of an uniparametric
Secant–type method for solving (1.1) are developed in [5]. Using some ideas
introduced by us in [3] for nonlinear equations, a Newton–like method is used
in [4] for solving perturbed generalized equation under some condition on
the second order divided difference operator. A family of Steffensen–type
methods is presented in [5], [6], [10] for solving (1.1) under ω–conditioned
divided differences operator, where ω is a continuous nondecreasing function.

Case G = {0}. Using a cubic scalar majorizing polynomial instead of ma-
jorizing sequences, Argyros [2] provided a local as well as a semilocal conver-
gence analysis (quadratic convergence) for method (1.6) for solving (1.4). In
[2], the method (1.6) is also compared with Steffensen–type method consid-
ered by Amat, Busquier and Candela [1]. Some variants of method (1.6) and
applications can be found in [3].

Here, we study method (1.5) motivated by the work in [2] for nonlinear equations.
Under some condition on the first and the second order divided differences introduced
for nonlinear equation in [7], and Lipschitz–like property of set–valued map G−1

around (−F (x⋆), x⋆), we provide a convergence analysis of method (1.5). Our
approach has the following advantages: we extend the applicability of this method
than all the previous know ones [2]–[5], [7], and we do not need to evaluate any
Fréchet derivative.

The structure of this paper is the following. In section 2, we collect a number
of basic definitions and recall a fixed points theorem for set–valued maps. In section
3, we show an existence–convergence theorem of sequence given by (1.5). Finally,
we provide also an improvement of the ratio of our algorithm under some center–
conditions and less computational cost. Some remarks and numerical examples are
also presented.
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2. Background material. In order to make the paper as self–contained as
possible we reintroduce some definitions and some results on fixed point theorems
[2]–[16]. Let us begin with some notations that will used throughout this paper. We
let Z be a Banach space equiped with the norm ‖ . ‖. The distance from a point
x to a set A in Z is defined by dist (x, A) = inf

y∈A
‖ x − y ‖, with the convention

dist (x, ∅) = +∞ (according to the general convention inf ∅ = +∞). Given a subset
C of Z, we denote by e(C, A) the Hausdorff–Pompeiu excess of C into A, defined by:

e(C, A) = sup
x∈C

dist (x, A),

with the conventions e(∅, A) = 0 and e(C, ∅) = +∞ whenever C 6= ∅. For a set–
mapping Λ : X ⇉ Y, we denote by gph Λ the set {(x, y) ∈ X × Y, y ∈ Λ(x)} and
Λ−1(y) the set {x ∈ X , y ∈ Λ(x)}. The norms in both the Banach spaces X and Y
will be denoted by ‖ . ‖ and the closed ball centered at x with radius r by IBr(x).

Definition 2.1. An operator [., .; F ] belonging L(X ,Y) is called the first order
divided difference of F at the points x and y in X (x 6= y) if the following holds

[x, y; F ] (y − x) = F (y) − F (x).

If F is Fréchet differentiable at x, then [x, x; F ] = ∇F (x).

Definition 2.2. An operator [., ., .; F ] belonging L(X ,L(X ,Y)) is called the
second order divided difference of F at the points x, y, and z in X if the following
holds

[x, y, z; F ] = [x, y; F ] − [x, z; F ].

If F is two Fréchet differentiable at x, then [x, x, x; F ] =
1

2
∇2F (x).

We also need to define the pseudo–Lipschitzian concept of set–valued maps, in-
troduced by Aubin [8] and also known as Lipschitz–like property [12]:

Definition 2.3. A set–valued Λ is pseudo–Lipschitz around (x, y) ∈ gphΛ with
modulus M if there exist constants a and b such that

sup
z∈Λ(y′)∩IBa(y)

dist (z, Λ(y′′)) ≤ M ‖ y′ − y′′ ‖, for all y′ and y′′ in IBb(x). (2.1)

In the term of excess, we have an equivalent definition of pseudo–Lipschitzian
property replacing the inequality (2.1) by

e(Λ(y′) ∩ IBa(y), Λ(y′′)) ≤ M ‖ y′ − y′′ ‖, for all y′ and y′′ in IBb(x). (2.2)

Let us note that the Lipschitz–like of Λ is equivalent to the metric regularity
of Λ−1 which is a basic well–posedness property in optimization problems. The
Lipschitz–like property play a crucial role in many aspects of variational analysis
and applications [12], [16]. Other characterization of this property is given by
Mordukhovich [11], [12] via the concept of coderivative of set–valued maps. For some
characterizations and applications of the Lipschitz–like property the reader could be
referred to [8], [9], [11], [15], [16] and the references given there.

We need also the following fixed point theorem [9].

Lemma 2.4. Let φ be a set–valued map from X into the closed subsets of X . We
suppose that for η0 ∈ X , r ≥ 0 and 0 ≤ λ < 1 the following properties hold
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(i) dist (η0, φ(η0)) ≤ r(1 − λ);
(ii) e(φ(x) ∩ IBr(η0), φ(z)) ≤ λ ‖ x − z ‖, ∀x, z ∈ IBr(η0).
Then φ has a fixed point in IBr(η0). That is, there exists x ∈ IBr(η0) such that

x ∈ φ(x). If φ is single–valued, then x is the unique fixed point of φ in IBr(η0).

3. Local convergence of method (1.5). In this section we will be concerned
with the existence and the convergence of the sequence defined by (1.5) to the solution
x⋆ of (1.1). The main result of this study is as follows.

Theorem 3.1. Let F : D ⊆ X −→ Y be an operator such that for every distinct
points x, y and z in D0 ⊆ D, there exist a first and second order divided differences
of F [x, y; F ] and [x, y, z; F ] respectively at these points.

Assume:

(H0) There exists α > 0, such that for all (x, y, u, v) ∈ D4
0

‖ [x, y; F ] − [u, v; F ] ‖≤ α

(

‖ x − u ‖ + ‖ y − v ‖

)

;

(H1) There exists β > 0 such that:

for all (x, y) ∈ D2
0 =⇒ 2y − x ∈ D0,

and

‖ [y, x, y; F ] − [2 y − x, x, y; F ] ‖≤ β ‖ x − y ‖;

(H2) The set–valued map G−1 is pseudo–Lipschitz around (−F (x⋆), x⋆), with
constants M , a and b (These constants are given by Definition 2.3);

(H3) There exists κ > 0, such that for all x, y ∈ D0, we have

‖ [x, y; F ] ‖≤ κ and M κ < 1;

Then, for every constant C such that

C ≥ C0 =
M (2 β + 5 α)

1 − M κ
, (3.1)

exists δ > 0, satisfying

IBδ(x
⋆) ⊆ D0,

where,

δ < δ0 = min

{

a;
1

C
;

b

2 κ
;

√

b

2 (2 β + 5 α)

}

(3.2)

such that, for every distinct starting points x0 and x1 in IBδ(x
⋆) (with x0 6= x⋆ and

x1 6= x⋆), and a sequence (xk) defined by (1.5), which is convergent to x⋆, i.e.;

‖ xk+1 − x⋆ ‖≤ C ‖ xk − x⋆ ‖ max

{

‖ xk − x⋆ ‖, ‖ xk−1 − x⋆ ‖

}

. (3.3)
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To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. Define the set–valued maps Λ : X ⇉ Y, and Θk : X ⇉ X by

Λ(x) = F (x⋆) + G(x), Θk(x) = Λ−1(Ξk(x)), k ≥ 1, (3.4)

where Ξk is a mapping from X to Y defined by

Ξk(x) = F (x⋆) − F (xk) − [2 xk − xk−1, xk−1; F ] (x − xk), k ≥ 1. (3.5)

Assume that the assumptions of Theorem 3.1 hold. Then, for every distinct start-
ing points x0 and x1 in IBδ(x

⋆) (with x0 6= x⋆ and x1 6= x⋆), the set–valued map Θ1

has a fixed point x2 in IBδ(x
⋆), and the inequality (3.3) is satisfied for k = 1.

Proof of Lemma 3.2. Let us note that the point x2 is a fixed point of Θ1 if and
only if

0 ∈ F (x1) + [2 x2 − x1, x1; F ] (x2 − x1) + G(x2).

Step 1. We prove that the first assumption in Lemma 2.4 is satisfied.

By hypothesis (H2), we have

e(Λ−1(y′) ∩ IBa(x⋆), Λ−1(y′′)) ≤ M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ IBb(0). (3.6)

According to the definition of excess e:

dist (x⋆, Θ1(x
⋆)) ≤ e

(

Λ−1(0) ∩ IBδ(x
⋆), Θ1(x

⋆)

)

. (3.7)

By Definition 2.2, we obtain

[x1, x0, x1; F ] = [x1, x0; F ] − [x1, x1; F ] (3.8)

and

[2 x1 − x0, x0, x1; F ] = [2 x1 − x0, x0; F ] − [2 x1 − x0, x1; F ]. (3.9)

Using (3.8), (3.9), we have:

‖ Ξ1(x
⋆) ‖ = ‖ F (x⋆) − F (x1) − [2 x1 − x0, x0; F ] (x⋆ − x1) ‖

= ‖
(

[x⋆, x1; F ] − [2 x1 − x0, x0; F ]
)

(x⋆ − x1) ‖

= ‖
(

[x⋆, x1; F ] + [x1, x0; F ] − [x1, x1; F ]−

[x1, x0; F ] + [x1, x1; F ] − [2 x1 − x0, x0; F ]+

[2 x1 − x0, x1; F ] − [2 x1 − x0, x1; F ]
)

(x⋆ − x1) ‖

= ‖
(

[x⋆, x1; F ] + [x1, x0, x1; F ] − [2 x1 − x0, x0, x1; F ]−

[x1, x0; F ] + [x1, x1; F ] − [2 x1 − x0, x1; F ]
)

(x⋆ − x1) ‖

(3.10)
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By assumptions (H0), (H1), and (3.10), we obtain the following estimate:

‖ Ξ1(x
⋆) ‖ ≤

(

‖ [x1, x0, x1; F ] − [2 x1 − x0, x0, x1; F ] ‖ +

‖ [x⋆, x1; F ] − [x1, x0; F ] ‖ +

‖ [x1, x1; F ] − [2 x1 − x0, x1; F ] ‖
)

‖ x1 − x⋆ ‖

≤

(

β ‖ x1 − x0 ‖ +α (‖ x⋆ − x1 ‖ + ‖ x1 − x0 ‖)+

α ‖ x1 − (2 x1 − x0) ‖

)

‖ x1 − x⋆ ‖

=

(

(β + 2 α) ‖ x1 − x0 ‖ +α ‖ x⋆ − x1 ‖

)

‖ x1 − x⋆ ‖

≤

(

(β + 3 α) ‖ x1 − x⋆ ‖ +(β + 2 α) ‖ x⋆ − x0 ‖

)

‖ x1 − x⋆ ‖

≤ (2 β + 5 α) ‖ x1 − x⋆ ‖ max

{

‖ x1 − x⋆ ‖, ‖ x0 − x⋆ ‖

}

.

(3.11)

By (3.2), we have Ξ1(x
⋆) ∈ IBb(0).

Hence from (3.6), one gets

e

(

Λ−1(0) ∩ IBδ(x
⋆), Θ1(x

⋆)

)

= e

(

Λ−1(0) ∩ IBδ(x
⋆), Λ−1[Ξ1(x

⋆)]

)

≤ (2 β + 5 α) ‖ x1 − x⋆ ‖ max

{

‖ x1 − x⋆ ‖, ‖ x0 − x⋆ ‖

}

.

(3.12)

Using (3.7), the following inequality holds:

dist (x⋆, Θ1(x
⋆)) ≤ M (2 β + 5 α) ‖ x1 − x⋆ ‖ max

{

‖ x1 − x⋆ ‖, ‖ x0 − x⋆ ‖

}

.

(3.13)

Since C (1 − M κ) > M (2 β + 5 α), there exists λ ∈ [M κ, 1[ such that:

C (1 − λ) ≥ M (2 β + 5 α),

and

dist (x⋆, Θ1(x
⋆)) ≤ C (1 − λ) ‖ x1 − x⋆ ‖ max

{

‖ x1 − x⋆ ‖, ‖ x0 − x⋆ ‖

}

. (3.14)

Identifying η0, φ and r in Lemma 2.4 by

x⋆, Θ1 and r1 = C ‖ x1 − x⋆ ‖ max

{

‖ x1 − x⋆ ‖, ‖ x0 − x⋆ ‖

}

respectively, we can deduce from the inequality (3.14) that the first assumption in
Lemma 2.4 is satisfied.

Step 2. We prove now that the second assumption of Lemma 2.4 is verified.
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Using (3.2), we have r1 ≤ δ ≤ a, and moreover for x ∈ IBδ(x
⋆) we get in turn:

‖ Ξ1(x) ‖ = ‖ F (x⋆) − F (x1) − [2 x1 − x0, x0; F ] (x − x1) ‖
= ‖ [x⋆, x1; F ] (x⋆ − x + x − x1) − [2 x1 − x0, x0; F ] (x − x1) ‖

≤ ‖ [x⋆, x1; F ] ‖ ‖ x − x⋆ ‖ +
‖ [x⋆, x1; F ] − [2 x1 − x0, x0; F ] ‖ ‖ x − x1 ‖ .

(3.15)
Using (3.11), assumptions (H0), (H1), and (H3), we obtain:

‖ Ξ1(x) ‖ ≤ κ ‖ x − x⋆ ‖ +

(

(β + 2 α) ‖ x1 − x0 ‖ +α ‖ x⋆ − x1 ‖

)

‖ x − x1 ‖

≤ κ δ + (2 β + 5 α) δ2.

(3.16)
Then by (3.2), we deduce that for all x ∈ IBδ(x

⋆), we have Ξ1(x) ∈ IBb(0).

Finally, for all x′, x′′ ∈ IBr1
(x⋆), we have:

e(Θ1(x
′) ∩ IBr1

(x⋆), Θ1(x
′′)) ≤ e(Θ1(x

′) ∩ IBδ(x
⋆), Θ1(x

′′)),

which yields by (3.6)

e(Θ1(x
′) ∩ IBr1

(x⋆), Θ1(x
′′)) ≤ M ‖ Ξ1(x

′) − Ξ1(x
′′) ‖

= M ‖ [2 x1 − x0, x0; F ] (x′′ − x′) ‖
(3.17)

Using (H3), and the fact that λ ≥ M κ, we obtain:

e(Θ1(x
′) ∩ IBr1

(x⋆), Θ1(x
′′)) ≤ M κ ‖ x′′ − x′ ‖≤ λ ‖ x′′ − x′ ‖ . (3.18)

The second condition of Lemma 2.4 is satisfied.

By Lemma 2.4, we can deduce the existence of a fixed point x2 ∈ IBr1
(x⋆) for

the map Θ1. The proof of Lemma 3.2 is complete.

Proof of Theorem 3.1. The proof of theorem 3.1 is given by induction on k. For
starting point x0 and x1, and by Lemma 3.2, the set–valued map Θ1 has a fixed
point x2 in IBr1

(x⋆). We show that the function Θk has a fixed point xk+1 in X .
This process is useful to prove the existence of a sequence (xk) satisfying (1.5).

Keep

η0 = x⋆, r := rk = C ‖ x⋆ − xk ‖ max

{

‖ xk − x⋆ ‖, ‖ xk−1 − x⋆ ‖

}

.

Then, the application of Lemma 3.2 to the map Θk gives the desired result.

Remark 3.3. Delicate condition

(x, y) ∈ D2
0 =⇒ 2y − x ∈ D0, (3.19)

certainly holds if D0 = D = X , but not only in this case. In particular, this condition
can also be replaced by a stronger but more practical which we decided not to introduce
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originally in Theorem 3.1, so as to leave this theorem as uncluttered as possible.
Indeed, define ball IBδ1

(x⋆), where δ1 = 3 δ. Then

‖ 2y − x ‖≤‖ y − x⋆ ‖ + ‖ y − x ‖≤ 2 ‖ y − x⋆ ‖ + ‖ x − x⋆ ‖≤ 3 δ = δ1.

Then, we choose x0, x1 in IBδ(x
⋆), but we require IBδ1

(x⋆) ⊆ D0 instead of
IBδ(x

⋆) ⊆ D0 in Theorem 3.1, so that condition (3.19) can be dropped. Note also
that condition (3.19) suffices to hold only for the iterates of method (1.5).

Example 3.4. (see [2]) Let X = Y = R
2, G = {0}, x0 = (3.9, .9), x1 = (4, 1),

and define operator F on X by

F (x, y) = (y2 − 4, x2 − 2 y − 21).

Our method (1.5) generates the solution x⋆ = (5, 2) of (1.1) after 5 iterations.

Note that for θn = θ⋆ = 10−8 fixed and small in Steffensen–type method considered
in [1]:

yn = xn + θn F (xn), θn ∈ [0, 1)
xn+1 = yn − [xn, yn; F ]−1 F (yn).

(3.20)

We cannot compute the iterates of method (3.20). Then method (1.5) can serve
as an alternative.

Example 3.5. [2] Let X = Y = R, G = {0}, x0 = .6, x1 = .7, and define
operator F on X by

F (x) = x2 − 6 x + 5.

Our method (1.5) becomes:

xn+1 =
x2

n − 5

2 (xn − 3)
, (3.21)

and coincides with the usual Newton’s method (NM) for solving nonlinear equation
(1.4). Moreover, the Secant method (SM) is:

xn+1 =
xn−1 xn − 5

xn−1 + xn − 6
. (3.22)

Then, we have the results:
Comparison table

n (3.21)=(NM) (3.22)=(SM)
1 .980434783 .96875
2 .999905228 .997835498
3 .999999998 .99998323
4 1=x⋆ .99999991
5 1

Example 3.6. We consider X = Y = R, and the generalized equation 0 ∈
F (x) + G(x), with F (x) = x; G(x) = |x|+ x + (−∞, 0], and x⋆ = 0. For all x, y ∈ X ,
with x 6= y, we have [x, y; F ] ≡ 1, and assumption (H3) is satisfied. For y in R,
(F + G)−1(y) is the set of solutions of inequality 2 x + |x| ≥ y. The set–valued
mapping (F (x⋆)+G(.))−1 = G−1 is pseudo–Lipschitz around (0, x⋆), and assumption
(H2) is satisfied.
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4. An improved local convergence and remarks. In this section, we show
by using more precise estimates that under less computational cost, and weaker hy-
pothesis than (H3): the radius of convergence is enlarged. The idea is taken from the
works on nonlinear equations [2].

Remark 4.1. We can enlarge the radius of convergence in Theorem 3.1 even
further as follows: using inequalities (3.16), (3.11), and (2 β + 5 α) δ2 < κ δ + (2 β +
5 α) δ2, we can improve δ given in (3.2) by considering the constant δ′:

δ′ < δ′0 = min

{

a;
1

C
; δ1

}

,

where δ1 is the constant given by

δ1 = max{η > 0 : κ η + (2 β + 5 α) η2 − b < 0},

and the constants κ, α, β, b are as given in Theorem 3.1.

We can show the following result for the local convergence of method (1.5).

Proposition 4.2. Let F : D ⊆ X −→ Y be an operator such that for every
distinct points x, y and z in D0 ⊆ D, there exist a first and second order divided
differences of F [x, y; F ] and [x, y, z; F ] respectively at these points.

Assume:

(H0)–(H2) hold;

(H3)⋆ There exist κ > 0, and κ > 0 such that for all (x, y) ∈ D2
0, we have:

‖ [x, y; F ] ‖≤ κ, ‖ [x⋆, y; F ] ‖≤ κ and M κ < 1.

Then, for every constant C given by (3.1), there exists δ > 0 satisfying

δ < δ0 = min

{

a;
1

C
; δ2

}

, (4.1)

where,

δ2 = max{η > 0 : κ η + (2 β + 5 α) η2 − b < 0}

such that the conclusions of Theorem 3.1 hold in IBδ(x
⋆).

Remark 4.3. In general, κ given in (H3) is not easy to compute. This is our
motivation for introducing even weaker hypothesis (H3)⋆.

We clearly have:

κ ≤ κ, (4.2)

δ0 ≥ δ0, (4.3)

and
κ

κ
can be arbitrarily large [2]–[6].

It follows using (4.3) that the radius of convergence is larger, and the convergence
of method (1.5) is faster in Proposition 4.2 than the corresponding in Theorem 3.1.
Hence, the claims made at the beginning of this section have been justified.
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Conclusion. We provided a Secant–type method to approximate solutions for
variational inclusions. This method extends the one related to the resolution of non-
linear equations [2]. Using some ideas given in [3] for nonlinear equations, we provided
a local convergence analysis (see Theorem 3.1), with the following advantages:

1. Faster convergence to the solution than the corresponding ones in [10];
2. Our method does not need the evaluation of any Fréchet derivative;
3. Our method uses only divided differences operators of order one;
4. Our convergence result simplify the existing sufficient convergence conditions.

Using some observations (see Remarks 4.1 and 4.3), we provided under weaker
hypotheses than used in Theorem 3.1, and less computational cost a local convergence
analysis (see Proposition 4.2), with a larger radius of convergence, which allows a
larger choice of initial guesses x0 and x1.

These observations are very important in computational mathematics [2], [3].
Finally, examples validating the results (see Examples 3.4 and 3.5) are given.
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