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EXISTENCE OF COMPACTLY SUPPORTED SOLUTIONS FOR A
DEGENERATE NONLINEAR PARABOLIC EQUATION WITH

NONLIPSCHITZ SOURCE TERM∗

B. BOUFFANDEAU† , D. BRESCH‡ , B. DESJARDINS§ , AND E. GRENIER¶

Abstract. The aim of this paper is to prove existence of non negative compactly supported
solutions for a nonlinear degenerate parabolic equation with a non Lipschitz source term in one space
dimension. This equation mimics the properties of the classical k-ε model in the context of turbulent
mixing flows with respect to nonlinearities and support properties of solutions.

To the authors’ knowledge, originality of the method relies both in the fact with dealing with a
non Lipschitz source term and in the comparison of not only the speed but also the acceleration of
the support boundaries.
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1. Introduction. The aim of this note is to study nonlinear degenerate par-
abolic equations with NonLipschitz source term. We will investigate the properties of
non negative solutions of

∂tu− ν∂2
x

(
up

)
= uα + ψ(u),

u|t=0 = u0 ≥ 0, (1)

with x ∈ R where ψ ∈ C∞ is an increasing function, satisfying ψ(0) = 0 and ψ(x) ≤
Cx for some positive constant C and every x ≥ 0. We will assume that p > 1 so that
the diffusion is strongly degenerate, and that α > 0 also satisfies 2 − p ≤ α < 1, so
that the nonlinearity is not Lipschitz.

This equation is a crude simplification of the classical k− ε system of turbulence
for fluids and plasma:

∂tk + ∂x(ku) + ε = ∂x

(
Cµ

k2

ε
∂xk

)
+ P

k2

ε
,

∂tε+ ∂x(εu) + C1
ε2

k
= ∂x

(
Cµ

σε

k2

ε
∂xε

)
+ C2Pk, (2)

where k and ε denote the specific turbulent kinetic energy and its dissipation rate,
u the velocity field, and P is proportional to turbulence production terms, due for
instance to shear or buoyancy effects. C1, C2, σε, Cµ denote positive constants.

More precisely, two difficulties of (2) are studied in the present work: non Lipschitz
property of source terms and degeneracy of diffusion. The study is restricted to the
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scalar case, like for the so called one equation k − ℓ turbulence model, where the
turbulent length scale ℓ = k3/2/ε is taken as a constant:

∂tk + ∂x(ku) +
k3/2

ℓ
= ∂x

(
Cµk

1/2ℓ∂xk
)

+ Pℓk1/2. (3)

This non Lipschitz property of the source term also turns out to be a crucial difficulty
in numerical schemes, since spurious perturbations may be dramatically amplified by
the positive term in the right hand side ”k1/2” and destroy the support properties.

Similar nonlinear parabolic equations like (1) appear also in various applica-
tions, most frequently to describe phenomena of thermal propagation in an absorptive
medium where u denotes the temperature. Note that in these cases, the nonlinear
term uα is written in the left-hand side of (1). Such dissipative equations have been
studied in different exponent ranges namely for linear diffusion and locally Lipschitz
absorption but also for slow or fast diffusion and strong or small absorption. The
interested reader is referred to [5], [6], [7] and references cited therein for various
coefficients ranges.

The problem of (1) with non Lipschitz nonlinearities is the non-uniqueness of
solutions. It is straightforward to prove, for instance, that if t0 ≥ 0,

u(t, x) = (t− t0)
1/(1−α)
+

is a particular solution of (1) which vanishes before t0 and which lights up at t = t0
(for k − ε system, this corresponds to a non physical apparition of turbulence in a
laminar stable state). In particular, the support of x 7→ u(t, x) is not compact, even if
the initial data is compactly supported and if degenerated viscosities should preserve
compact support.

A first idea to avoid the singularity of uα is to define solutions of (1) with initial
data uε

0 = u0 + ε and let ε go 0. However limits of such solution (which exist since
they avoid the singularity of nonlinearity) are not compactly supported, which does
not fit our requirements.

The second idea which will be followed here is to regularize uα and to pass into
the limit with the regularized nonlinearity, using the maximum principle provided by
the scalar structure of (1). The main objective is to keep the support compact. This
strongly uses bounds of the velocity and of the acceleration of the support boundaries
in order to get a comparison principle. Using this property, the end of the proof that
is the compact support property will be based on the existence of self similar solution
of the auxiliary equation (10). Note that the method used in [7] is also based on
regularization and approximation process linked to the term uα. The difference with
our study is that, in [7], local analysis is done by means of intersection comparisons
with the family of traveling wave solutions of the equation. Remark that complete
classification of traveling wave solutions has been performed in [8] in the whole range
of exponents.

In our paper, we will prove the following result

Theorem 1.1. Assume that u0 is a smooth non negative function, with a support

of the form [α, β]. Let us assume moreover that the derivatives of up
0 at α and β do

no vanish. Then there exists a smooth, nonnegative, compactly supported solution u
to (1) defined for all positive times.

By smooth we mean smooth in the interior of its support. In this paper we will
neither investigate the uniqueness of the solution u nor study its regularity near the
boundary.
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The proof relies on a careful regularization of uα
+. We shall say that a sequence

of smooth functions φε(u) is an admissible regularization of uα
+ provided

H1) φε(0) = 0 and φε(u) > 0 for every u > 0.
H2) For u > 0, φε(u) increases as ε decreases to 0, and converges to uα

+.
H3) φε is derivable in 0 with a positive derivative. Moreover φ′ε(u) is increasing

as ε decreases and goes to infinity as ε goes to 0.
H4) φε is linear on [0, ε].
Classical arguments give the existence of global smooth solutions to

∂tu
ε − ν∂2

x(uε
+)p = φε(u

ε) + ψ(uε). (4)

We therefore have to focus on the convergence of uε as ε goes to 0. We will use
principle maximum combined with estimates on the speed and on the acceleration
of the support and with the construction of an explicit super solution (a self similar
solution). We think the originality of this work lies in the comparison of not only the
speed but also of the acceleration of the support boundaries. Calculation of speed
of the support has already been used in various papers dedicated to porous medium
equation with strong absorption (namely with p > 1 and 0 < α < 1) and we refer
the reader to [7] and [5]. Other results have been obtained in [6] related to the case
0 < p < α < 1.

2. Speed and acceleration of the support. Let us first study solutions of
the nonlinear diffusion equation with a linear source term

∂tu− ν∂2
xu

p = λu. (5)

Let us assume that the support of u(t, .) is of the form ] − ∞, X(t)]. The main
objective of this part is to calculate the speed but also the acceleration of the support
of solutions. These expressions will be used, after linearization around zero of the
nonlinearity, in last section to establish a comparison principle for solutions with
compact support.

For Equations (5) (see for instance [3]), a usual transformation is to define
F (t, x) = pup−1(t, x). Then F is smooth up to the boundary as long as its deriv-
ative at the boundary does not vanish. If this derivative does not vanish then F can
be factorized in

F (t, x) = pg̃(t,X(t) − x)(X(t) − x)+

where g̃ ∈ C∞(R+ ×R⋆
+). Coming back to u, it gives

u(t, x) = f(t, x)(X(t) − x)
1/(p− 1)
+ with f ∈ C∞ and f = g̃1/(p− 1).

Note that f does not vanish on the boundary if the derivative of F does not. We
remark that such transformation has been also used in [7].

Speed of the support. Let γ = 1/(p − 1). Note that γ = γp − 1. Plugging this
expression of u in (5) leads to

∂t [f(t, x)] (X(t) − x)γ
+ + γf(t, x)(X(t) − x)γ−1

+ ∂tX

−ν∂xx[f(t, x)p](X(t) − x)γp
+ + 2γνp∂x[f(t, x)p](X(t) − x)γp−1

+

−νγp(γp− 1)f(t, x)p(X(t) − x)γp−2
+ = λf(t, x)(X(t) − x)γ

+. (6)
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To cancel terms in (X(t) − x)γ−1
+ near the boundary, we must have

V (t) = ∂tX(t) = νp(γp− 1)fp−1(t,X(t)), (7)

which gives the velocity of the support.

Acceleration of the support. Let us now compute the acceleration of the support
∂tV (t). Dividing (6) by (X(t) − x)γ

+ we get

∂tf +
γ∂tXf − νγp(γp− 1)fp

(X(t) − x)+
− ν∂xx(fp)(X − x)+ + 2γνp∂x(fp) = λf. (8)

Note that the second term is not singular since −γ∂tXf + νγp(γp− 1)fp = 0 on the
boundary, and equals the derivative of this function at X(t). Now

∂tV (t) = νp(γp− 1)∂tf
p−1 + νp(γp− 1)V ∂xf

p−1

where the derivatives of f are evaluated on the boundary. Let us now express this
relation in a simpler way. At first, we write

νp(γp− 1)∂tf
p−1 = νp(p− 1)(γp− 1)fp−2∂tf.

But on the boundary X(t), Relation (8) reads

∂tf = λf − 2γνp2fp−1∂xf + γV ∂xf − νγp2(γp− 1)fp−1∂xf.

Hence

∂tV = νp(γp− 1)(p− 1)V fp−2∂xf + λ(p− 1)V

−2γνp2(p− 1)fp−2V ∂xf + γV (p− 1)V f−1∂xf − νγp2(γp− 1)V fp−2V (p− 1)∂xf.

Using that γ = p− 1, the terms in ∂xf are given by

(p− 1)V 2f−1 − 2p(p− 1)V 2f−1 + γ(1 − p)(p− 1)V 2f−1.

Thus

(p− 1) − 2p(p− 1) + γ(1 − p)(p− 1) = −2p(p− 1) < 0.

Hence the acceleration of the support is given by

∂tV (t) = λC1V − C2f
−1V 2∂xf. (9)

where C1 = p−1 and C2 = 2p(p−1) are positives constants. The first term describes
the acceleration by the source term and the second term the nonlinear amplification or
damping (depending on the sign of ∂xf/f) of the acceleration of front. In particular,
as long as f remains bounded in C2, V does not vanish provided initially it does not
vanish.
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3. Self-similar solution with compact support. Let us look for explicit self-
similar solutions to the following model equation with a production term

∂tu = ∂2
xu

p + u2−p + u with 1 < p < 2. (10)

These solutions will be chosen as supersolutions in the next section to prove that
solutions of (1) has compact support.

Here, we prove the following result

Theorem 3.1. There exists non zero smooth functions a(t) and λ(t), defined for

all t ≥ 0 such that

u(t, x) = a(t)

(
1 −

x2

λ2(t)

)(
1

p− 1
)

is a compactly supported, self similar, global particular solution of (10). Moreover,

a(t) and λ(t) go to +∞ as t goes to +∞.

Proof. Let us define

ξ =
x

λ(t)
.

After this change of variable, we get

λ(t)2∂tu− λ(t)λ(t)′ξ∂ξu = ∂ξξu
p + λ(t)2u(2−p) + λ(t)2u.

Let z(t) = λ(t)2. We have

z∂tu−
1

2
ξz′∂ξu = ∂ξξu

p + zu(2−p) + zu.

Using the usual change of variable u(t, ξ) = w1/(p−1)(t, ξ), the equation reads

z∂tw −
1

2
ξz′∂ξw = pw∂2

ξw +
p

p− 1
|∂ξw|

2 + (p− 1) (z + zw) .

Let us now looking for separated variable solutions, that means

w = A(t)s(ξ) where s(ξ) = 1 − ξ2.

With such a w, identifying powers of ξ2, we find the system




zA′ + 2pA2 − (p− 1)zA− (p− 1)z = 0

−Az′ +
4pA2

p− 1
+ (p− 1)z = 0.

(11)

Summing up the two previous equations, we get

Az′ − zA′ −

(
4p

p− 1
+ 2p

)
A2 + (p− 1)zA = 0,

and dividing by zA, it reads

z′

z
−
A′

A
−

(
4p

p− 1
+ 2p

)
A

z
+ (p− 1) = 0.
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Then we set f = z/A and get a differential equation in f

f ′ + (p− 1)f −

(
4p

p− 1
+ 2p

)
= 0.

The solution of the equation is

f(t) =
2p(p+ 1)

(p− 1)2
+ Cet(1−p), C ∈ R.

Then we replace z by Af in the second equation of System (11)

(Af)′ −
4pA

p− 1
− (p− 1)f = 0

A′ = −
Af ′

f
+

4pA

p− 1

1

f
+ (p− 1).

Note that f ′/f goes to 0 and f to a constant as t goes to +∞, therefore, by classical
arguments, A(t) exists for all positive times and goes to +∞ as t goes to +∞. More-
over, as f goes to a constant and A to +∞, z(t) and thus λ(t) go to +∞ as t goes to
+∞, which ends the proof of the Theorem.

4. Passing to limit (Proof of Theorem 1.1). Let uε a sequence of solutions
of the regularized equation

∂tu
ε − ν∂2

x(uε
+)p = φε(u

ε) + ψ(uε) (12)

with initial data

uε(0, x) = (u0(x) − ε)+.

Let us assume that u0 has a support of the form ] −∞, X0] (the case of supports of
the form [X0, Y0] is similar). Let us assume that u0 is smooth in the interior of the
domain, and that the first derivative of up

0 does not vanish at X0. Then it is classical
to get existence of solutions uε or (12) with supports of the form ]−∞, Xε(t)], smooth
in the interior of the domain.

We claim that:
i) uε is increasing in ε .
ii) uε in bounded.
iii) uε converges as ε tends to 0, to a compactly supported solution u of Equation

(1).

Proof. i) Let ε > η > 0. Note that uε(0, x) < uη(0, x) for any x in the support
of uη(0, .). Note also that Xε(0) < Xη(0). Let Sε be the support of uε and Sη the
support of uη. Out of Sε ∪ Sη, uε and uη are both equal 0.

Let t0 be the first time such that either:
(a) there exists x0 with uε(t0, x0) = uη(t0, x0) > 0 (point not at the border)
or
(b) there exists x0 with (t0, x0) ∈ ∂Sε ∩ ∂Sη.
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Let us investigate the first case (a). At (t0, x0) we have

∂t(u
ε − uη) − ν∂2

x((uε
+)p − (uη

+)p) = φε(u
ε(t0, x0)) − φη(uη(t0, x0)).

As φε < φη

φε(u
ε(t0, x0)) − φη(uη(t0, x0)) < φη(uε(t0, x0)) − φη(uη(t0, x0)) = 0.

Moreover for all t ≤ t0 and for all x

((uε
+)p − (uη

+)p)(t, x) ≤ 0,

and vanishes at (t0, x0). Hence

∂2
x((uε

+)p − (uη
+)p)(t0, x0) ≤ 0,

which leads to

∂t(u
ε − uη)(t0, x0) < 0,

which contradicts the definition of t0 and x0.

Let us now turn to the second case (b). Note that

Xε(t0) = Xη(t0) = x0.

Using Section 2 we write solutions uε(t, x) under the form

uε(t, x) = fε(t, x)(Xε(t) − x)γ
+ with fε ∈ C∞.

Using (7), we have

X ′
ε(t0) = νγpfp−1

ε (t0, Xε(t0))

and

X ′
η(t0) = νγpfp−1

η (t0, Xη(t0))

because φε is linear in u near 0.
Moreover, as fη ≥ fε since uη ≥ uε, we have X ′

ε(t0) ≥ X ′
η(t0). Strict inequality would

mean that Xε > Xη for t < t0 leads to a contradiction. We therefore have to focus
on the equality case. For this, we consider the acceleration formula (9). Linearizing
φε around 0, we found for Equation (12) the following speed

X ′′
ε (t0) =

1

γ
φ′ε(0)X ′

ε(t0) − C2X
′
ε(t0)

2f−1
ε ∂xfε(t0, Xε(t0)).

Similarly

X ′′
η (t0) =

1

γ
φ′η(0)X ′

ε(t0) − C2X
′
ε(t0)

2f−1
η ∂xfη(t0, Xε(t0)).

Moreover, as (fε − fη)(t0, x) ≤ 0 and reaches a maximum in x0 we have ∂x(fε −
fη)(t0, x0) ≥ 0. Then, at (t0, x0), we have ∂xf

ε ≥ ∂xf
η and since φ′ε(0) < φ′η(0) (H3),

it implies that

X ′′
ε (t0) < X ′′

η (t0).
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Therefore the acceleration of the support of uη is larger than the acceleration of the
support of uε. As their speeds are equal at t0, this means that the support of uη

is strictly larger than the support of uε on a small interval ]t0, t0 + η[, provided η is
small enough.

Moreover fε(t0, x0) = fη(t0, x0) and for x < x0, f
ε(t0, x) < fη(t0, x). Moreover

as X ′′
ε (t0) < X ′′

η (t0) we have ∂tf
ε(t0, x0) < ∂tf

η(t0, x0). Hence for t0 < t < t0 + η
with η small enough, for every x, fε(t0, x) < fη(t, x). This implies that (t0, x0) is an
isolated zero of fε = fη.

ii) Let M large enough, such that 0 ≤ u0(x) ≤ M . Let π(t) be the solution of
∂tπ = πα + Cπ, with π(0) = M . Note that π is globally defined. Moreover

∂tπ − ν∂2
x(π+)p − φε(π) = πα − φε(π) > 0

according to Hypothesis (H4). Using (i), uε(t, x) ≤ π(t) for every t and x, and uε is
bounded locally in t, uniformly in ε.

iii) Moreover uε(t, x) increases as ε tends to 0 and is bounded, consequently ∀t, x ∈
([0, t0]×R) ∃ u(t, x) such that uε(t, x) converges to u(t, x). So Theorem of dominated
convergence gives that uε tends to u in L1

loc(R
+
t × Rx) with |u(t, x)| ≤ π(t). In a

similar way (uε
+)p tends to up in L1

loc(R
+
t × Rx) with |up

+(t, x)| ≤ πp(t) and (uε)α

tends to uα in L1
loc(R

+
t × Rx) with |uα(t, x)| ≤ πα(t). We can then pass the limit in

(12) to get that u is solution to (1).
Let us to prove the solution u of equation (1) is compactly supported. Let us

assume that the support of u0(x) is strictly embedded in [−A,+A]. Let

v(t, x) = a(t)

(
1 −

x2

λ2(t)

) 1

p−1

+

with v0 ≥ u0 ≥ 0

be a compactly supported solution of equation (10) with λ(0) = A and a(0) > M .
Repeating the arguments of (i) we get uε(t, x) < v(t, x) for every t, x, ε since α+p ≥ 2.
Passing the limit we get u(t, x) ≤ v(t, x), which ends the proof.
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