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ENTIRE SCALAR CURVATURE FLOW AND HYPERSURFACES OF
CONSTANT SCALAR CURVATURE IN MINKOWSKI SPACE*

PIERRE BAYARD'

Abstract. We prove existence in the Minkowski space of entire spacelike hypersurfaces with
constant negative scalar curvature and given set of lightlike directions at infinity; we also construct
the entire scalar curvature flow with prescribed set of lightlike directions at infinity, and prove that
the flow converges to a spacelike hypersurface with constant scalar curvature. The proofs rely on
barriers construction and a priori estimates.
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1. Introduction. The Minkowski space R™! is the space R” x R endowed with
the metric daf + - - - + da? — da? ;. We say that a hypersurface of R™ is spacelike if
the metric induced on it by the Minkowski metric is Riemannian, and that a function
u : R” — R of class C! is spacelike if its graph is a spacelike hypersurface, which
equivalently means that |Du| < 1 on R™. The principal curvatures of a spacelike
hypersurface are the eigenvalues of its curvature endomorphism dN, where N is the
future oriented unit normal field. In the natural chart (x1,...,x,), the curvature
endomorphism (h;)ij of the graph of a spacelike function u is given by

. 1 - Ui
Ri= —— Si + ——— ) s
j 1—|Du|2;< k+1_|Du|2>UkJ

Let us denote by Hj[u] the k" elementary symmetric function of the principal cur-
vatures of the graph of u.

We are interested in the scalar curvature S[u] of the graph of w, which is linked
to Halu] by

Slu] = —2Hs[u].

We say that u : R™ — R of class C? is admissible, if u is spacelike and if H;[u] > 0
and Hz[u] > 0 on R™. It is well known that the operator Hy is elliptic on admissible
functions, and that the Mac-Laurin inequality holds: on R,

n—1
2n

Hyu]? < Hilu). (1.1)
Let F be a closed subset of the unit sphere S”~! C R™. We suppose that F' is a union
of arcs of circles on S™~ 1. We first construct barriers whose set of lightlike directions
at infinity is the set F. For definitions and examples, we refer to Sections 2 and 3.

ProOPOSITION 1.1. Let F be as above, and consider Vp : R® — R defined by
Vi (z) := supyep(z, \), where (.,.) stands for the canonical scalar product on R™. Let
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h and k be two positive constants such that

2
h<,/nf1 and k > 1. (1.2)

There exist two entire functions u,u : R™ — R, such that

VeE<u<u<Vpgp+conR" (1.3)

for some constant ¢, where uw is smooth, spacelike, with constant mean curvature Hy =
h, and u is the supremum of spacelike functions with constant scalar curvature Ho = k.
Moreover, for all € € F,

lim w(r) —r= lim @(r) —r=0, (1.4)

r——4oo r——4o00
and, from (1.8), for all £ € S"~\F,

lim @(r§) —r = —oc. (1.5)

r—-4oo

Solving a sequence of Dirichlet problems between the barriers u and =, and ex-
tracting a convergent subsequence thanks to local estimates [3, 4, 19], we will first
construct an entire spacelike hypersurface of constant negative scalar curvature, and
whose set of lightlike directions at infinity is F":

THEOREM 1.2. Let F be a closed subset of S ' as above. Then there exists
u: R™ — R, admissible, solution of

Hsu] =1 in R™ (1.6)
such that, for all € € F,
Tli)r_‘{loo u(rf) —r=20 (1.7)
and
sﬂgnp lu — Vr| < 4o0. (1.8)

In particular, the set of lightlike directions at infinity of u is the set F.

REMARK 1.3. Uniqueness of a solution of (1.6) satisfying (1.7) and (1.8) is still
an open question.

We then study the entire scalar curvature flow. Starting with a smooth spacelike
entire and strictly convex function between the barriers which has bounded scalar
curvature, we prove that the entire scalar curvature flow is defined for all time and
converges to a solution of the prescribed constant scalar curvature equation:

THEOREM 1.4. Let F be as above. We suppose that F' is not included in any
affine hyperplane of R™. Let h,k be two positive constants such that (1.2) holds, and
let w,w be the barriers given by Proposition 1.1. Let ug : R™ — R be a smooth spacelike
and strictly convex function such that

u<ug<T (1.9)
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and

The parabolic problem

{ —\/ﬁ +H2[u]% = 14n R™ x (0,4+00) (1.10)
u(z,0) = wup(x) on R™ x {0},
has a smooth spacelike solution
u € C°(R™ x (0, +00)) N CHEOHR™ x [0, +00)).
Moreover
u<u<uy (1.11)

for all time, and u converges to a solution of (1.6) as the time t tends to infinity.

REMARK 1.5. Note that (1.10) describes hypersurfaces moving with normal
velocity given by the square root of the scalar curvature,

%X - (HQ[X]% - 1) N,

where X is the embedding vector of the hypersurfaces.

REMARK 1.6. If Fis included in some affine hyperplane, condition (1.9) with ug
strictly convex is not possible: suppose that & € R” belongs to F*; then Vp(¢) = 0,
and, by (1.3) and (1.9), 0 < ug(A¢) < ¢ for all A € R, which is impossible if £ # 0
and if ug is a strictly convex function. Note that the strict convexity of ug is a crucial

hypothesis for the resolution of the parabolic Dirichlet problem, Section 6 . See also
[3, 19].

REMARK 1.7. If up : R® — R is a spacelike and strictly convex function such
that 1 < Halug] < k and lim|;)— 4o uo(z) — |2| = 0, we get the following: taking
for the lower barrier u (resp. for the upper barrier ) the hyperboloid asymptotic to

the cone x,4+1 = |z| and of scalar curvature Hy = kK’ > k (resp. of mean curvature
H =h< ,/%), by the maximum principle we have u < uyp < @, and Theorem 1.4

shows that problem (1.10) has a (unique) solution u such that u < v < 7 during the
evolution. Moreover u converges to the hyperboloid of scalar curvature Hy = 1, as ¢
tends to infinity.

REMARK 1.8. By scaling u in Theorem 1.2, we obtain an admissible solution of
Hs[u] = A? in R™ such that (1.7) and (1.8) hold. Moreover, by scaling the barriers
u,w in Proposition 1.1, we obtain a result similar to Theorem 1.4 for the parabolic
problem

. 1
{ —\/ﬁ + Haul2 = XinR™ x (0,400) (1.12)
u(z,0) = wo(x) on R™ x {0},
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if u < up <U and N\? < Halug] < A2k hold.

Let us quote some related papers: in Minkowski space, entire spacelike hyper-
surfaces of constant mean curvature are classified in [17] and entire hypersurfaces of
constant Gauss curvature are studied in [12, 5]. In [3], we construct entire hyper-
surfaces with prescribed scalar curvature and given values at infinity which stay at a
bounded distance of a lightcone.

The entire mean curvature flow in Minkowski space is studied in [8], and the
entire Gauss curvature flow in [5]. The scalar curvature flow in globally hyperbolic
Lorentzian manifolds having a compact Cauchy hypersurface is studied in [10, 11] and
[9].

Finally, the parabolic Dirichlet problem for the scalar curvature operator in the
euclidian space is solved in [14, 15].

The outline of the paper is as follows. We recall the definition of the set of lightlike
directions at infinity of a spacelike and convex function in Section 2. In Section 3 we
construct the barriers with given set of lightlike directions at infinity, and construct
the auxiliary functions needed for the local estimates. The entire solutions of the
prescribed constant scalar curvature equation are constructed Section 4. We introduce
further notation and recall the evolution equations of various geometric quantities
Section 5, and we study the parabolic Dirichlet problem Section 6. In Section 7 we
construct the entire scalar curvature flow, once local C' and C? estimates are known,
and we prove that the flow converges. We carry out the local estimates in Sections 8
and 9. A short appendix ends the paper.

2. The set of lightlike directions at infinity of an entire spacelike hy-
persurface of constant scalar curvature. Let v : R® — R be a spacelike and
convex function. Following Treibergs [17], its blow down V,, : R™ — R is defined by

Vou(z) = lim u(re)

r—+00 T

As in [17], we denote by @ the set of the convex homogeneous of degree one functions
whose gradient has norm one whenever defined. The following holds:

LEMMA 2.1. For every convex and spacelike solution u of the prescribed scalar
curvature equation (1.6), the blow down Vi, belongs to Q.

Proof. This result is proved in [17], Theorem 1 for the prescribed mean curvature
equation, using a barrier construction. The same barrier can be used for the prescribed
constant scalar curvature equation as well. 0

The set Q is in one-to-one correspondence with the set of closed subsets of S™~1;
see [6], Lemma 4.3.

LEMMA 2.2. [6, 17]. If F is a closed non-empty subset of S"~1,

Vr(x) = igg(w, A)

belongs to Q; the map F — Vg is one-to-one, and its inverse is the map

weQr—F={zecS" ' CR": wx)=1}.
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In particular, the blow down of a convex solution u of (1.6) is determined by the
set of its lightlike directions at infinity

Ly, :={xeS" ' V,(z) =1}

Note that here, and in contrast with [17, 5], it is not known if a spacelike entire
function of constant negative scalar curvature is necessarily convex. Nevertheless, the
solutions u constructed in this article are such that Vp < u < Vg + ¢, where F' is a
closed subset belonging to S~ ! and c is a constant. In that case, the blow down V,,
and the set of lightlike directions L,, are well-defined, and satisfy

Vu.=Vrand L, = F.

We finally recall a useful formula. Denoting by dg the canonical distance on the
sphere S"~1, we proved the following formula in [5], Lemma 4.6: for every z € S~ 1,

Vi (z) = cos(ds(z, F)). (2.1)
3. The construction of the barriers.

3.1. The semitrough. We first recall the properties of the standard semitrough
of constant Gauss curvature in the Minkowski space R?!, constructed in [13]: this is
the unique spacelike function % : R? — R whose graph has constant Gauss curvature
one, and which is such that

Di(R?) = {(z1,22) € By : x1 > 0},
and

‘ ‘lim a(z) — Vg+(x) = 0. (3.1)
x|—+o0

Here B is the unit ball in R? centered at 0, and S7 is the arc of the circle S' = 0B;
defined by ST := {(x1,72) € S : x1 > 0}. Let S be a closed arc of circle on the
sphere S™~1. This is a subset of the form f(S* x {0}), where

ST x {0} = {(x1,22,0,...,0) € S" 1 : z; >0} (3.2)
and f is a conformal transformation of S"~!. From the existence of the standard
semitrough, we deduce the following

LEMMA 3.1. Let S be a closed arc of circle on S, and let k > 0. There exists

a spacelike entire function u such that

Hylu] =k and sﬂgp lu — Vg| < +o0.

Proof. Recall that a Lorentz transformation preserves Ho, and acts as a conformal
transformation of S”~! on the sets of lightlike directions at infinity (S™~! is identified
with the projective lightcone). Thus, applying a Lorentz transformation, we may
suppose that S is given by (3.2). The function u defined by

w(T1, T2, T3, ..., Tp) = %&(\/E(:vl,xg)),

where 4 is the standard semitrough defined above, satisfies the required properties. O
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3.2. The barriers. Let h be a positive constant and F' be a closed subset of
S™~L. From [17] p233, we know that there exists a smooth spacelike function @ : R"* —
R whose graph has constant mean curvature H; = h and which is such that

Ve <u<Vp+ % on R™. (3.3)

The function @ satisfies the further properties:

limsup @(z) — |z| <0, (3.4)
o] =00
and, for all £ € F,
lirﬁl u(r§) —r=0. (3.5)

For these last properties, see the upper barrier z3 used in [17] p233.

LEMMA 3.2. Let h and k be two positive constants such that h < 2vk. We assume
that F is a union of closed arcs of circles on S™~1,

Denoting by u; the entire spacelike function of constant scalar curvature k associated
to S; by Lemma 3.1 (and its proof), the function u = supu; satisfies
iel

VrF <u<uonR".

REMARK 3.3. The closure of an open subset U of S"~! with C! boundary is
of the form (3.6). More generally, if U satisfies an interior cone condition at each
boundary-point (i.e. all £ € U is a vertex of a (geodesic) cone C U), U is of the form
(3.6). Of course, the set F in (3.6) might be much more complicated (e.g. without
interior point).

Proof. We first prove that V@ < u on R". Since u; > Vg, for all ¢ € I, it is
sufficient to prove that, for all z € R", Vp(z) = Vg, (z) for some index ¢ € I. Since
these functions are homogeneous of degree one, we may suppose that z € S"~1 C R".
By (2.1), this amounts to prove that dg(z, F') = dg(z, S;) for some index i € I, where
ds is the natural distance on S"~!. Let z9 € F be such that ds(z, F) = ds(z, o),
and i € I be such that z belongs to S;. Since S; C F, we have dg(z, F) < dg(z,S;),
and since zg € S; we have dg(x,zg) > dg(z,S;) and thus dg(z, F) > d(x, S;). Thus
ds(z, F) = dg(z,S;), and the result follows.

We now prove that u < u. We fix ¢ € I and we prove that u; < @ : applying a
Lorentz transformation, we may assume that

S; = {(:Cl,xg,O,...,O) S Ssn-t T > 0}
Let 2'g € R" 2, and set
Ui (w1, 22) = u;i(21, T2, 2'0) and U(z1, x2) = U(w1, T2, 70).

Recalling the proof of Lemma 3.1, we observe that u; is the (scaled) semitrough
defined Section 3.1. From Lemma A.1 we get H;[u] < h. Since 4; is the semitrough
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with Gauss curvature equal to k, from the geometric-arithmetic means inequality we

get Hilu,;] > 2vk. Thus H,; [@] < Hi[i;]. We suppose by contradiction that there

exists zg = (29, 29) such that @;(zg) > u(xo), and we consider € > 0 such that

ﬁi(xo) > ﬁ(ibo) +e.

Since S; belongs to F, we have Vg(.,25) > Vs, (., 25) = Vs+, and we conclude from
(3.1) and (3.3) that

‘li‘minf (U+e) —; > e.
x|—+o0

Thus the non-empty open set
U= {($1,$2) S R2 : ’ﬁi(l'l,l'g) > a(l'l,sz) + E}

is bounded. Since @; = U+ on QU and H,[i;] > H;[tu+e] in U, we get a contradiction
with the maximum principle. The claim is proved.
1
We finally prove the strict inequality u < @ : we set Ty (z) := Xﬂ()\x), with A > 1

such that M < 2vk. Since H; [wx] = Ak and wy > Vg, the arguments given in the
paragraph above (with @) instead of @) show that u < @). Since Ty < u, we obtain
the result. O

The useful properties of the barriers are gathered in Proposition 1.1.

REMARK 3.4. By construction, it is clear that if the set F is contained in some
affine subspace, in

{(@,2") e R" =RF x R"7F . 2 =0}
say, we may assume that the barriers u, 7 satisfy: for all (z/,2") € RF x R*~*,

u(z',2") = u(2',0) and u(z’, 2") = u(2’,0).

3.3. Construction of two auxiliary functions. This section is devoted to the
construction of auxiliary functions which are crucial for the local C'* and C? estimates.
The functions u, @ are the barriers constructed above. The following lemma is needed
for the local C! estimate.

LEMMA 3.5. Let K be a compact subset of R™. There exists a smooth spacelike
function ¢ : R™ — R such that

Y <wu on K and ¢ > W near infinity.
For the proof, we will need the following lemma:
LEMMA 3.6. Let F be a closed subset of S*~1. Let ¢ > 0 and set
F.:={¢eS" ! ds(¢, F) <e}.
The function Vi, — Vi has the following properties:

sup Ve (§) = Vr(§)] <e, (3.7)
gesn—1



94 P. BAYARD

and

cesithy g Ve (&) = Vr(§) = me, (3.8)

for some positive constant m..

Proof. By (2.1), for all £ € S"71,
VE.(§) — V() = cos(ds(&, Fe)) — cos (ds(&, F)) - (3.9)
We first prove (3.7): we observe that, for all £ € S"~ 1,
|ds(§ Fe) —ds(&, F)| <e.

Since |cos(a) — cos(B)] < | — G for all o, 8 € R, we obtain (3.7).
We now prove (3.8): we suppose that £ ¢ F.; since F' C F;, we have

ds(§, F) = ds(§ Fe) +e. (3.10)
This implies in particular that
ds(&, F.) € [0, —g].
Denoting o = dg(&, F-), we obtain from (3.9) and (3.10) that

Ve, (§) — Vp(€) = cosa — cos(a + €) > m,

a+te
where m, = [inf ]/ sin(t)dt is positive, and we obtain (3.8). O
agl0,m—¢] Jo

Proof of Lemma 3.5. Let K be a compact subset of R", and R > 1 be such that
K C Bp (here and below Bp stands for the open ball of radius R in R", centered at
the origin). We fix dp > 0 such that

inf(u— Vi) = o. (3.11)

Let e > 0 and F; := {€ € S"7!| d(§, F) < e}. From (3.7) we get

]
sup [Vi, — V| < — (3.12)
K 8
.f 50 . 50
if e < gp. Thus, if € < g§,
do
sup |(Ve. +¢) — Vp| < —. (3.13)
K 4
Let ¢ be a spacelike function such that ¥ > Vg + ¢ and
do
sup|yp — (Vi + )| < —. (3.14)
K 4

We may construct ¢ as follows: we first consider a spacelike function v whose graph
has constant mean curvature one and which is such that

Vi, <v < Vg +¢,
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given by [17] Theorem 2; here c is a positive constant. We then define

P(z) = %v(/\a?) +e,

where )\ is a positive parameter. We have

sup [(z) - (Ve +¢€)(@)| = sup |~v(\z) — Vi ()

IER" weR'ﬂ
1 )
= Xms;lﬂgb [v(Az) — Vi (Ax)] < % < ZO

if X is chosen sufficiently large. From (3.13) and (3.14) we get

)
sup [) — V| < =, (3.15)
K 2
and, from (3.11), on K,
. do
u—1 >inf(u—Vp) —sup |y — Vp| > —-.
K K 2
We now prove that there exists r. > 0 such that
G (Ve +e =) % (3.16)

Since ¢ > Vg +¢, this will prove the last claim of the Lemma. We consider x = r{ €
R™\ {0}, with r > 0 and £ € S"~!. We first suppose that £ € F.. By (3.4) there exists
71, independent of £, such that u(r¢) <r + 5 for all » > r;. Thus, if r > ry,

(Ve +6—a)(r) > (r+¢) — (r+§) > g

If we now suppose that £ ¢ F., we have
(Ve +e=u)(r§) = (Vp. — V) (r§
> (Vr. = VF) (1€

where the constant ¢ is given by (1.3). By (3.8), (Vg — Vr) (r{) > rm. where the
constant m, is positive. Thus, there exists r2 such that if r > ro and £ ¢ F., we have

+ (Ve — 1) (r€)

—c,

)
)

(Ve, +—)(ré) > .

Taking r. = max(ry,r2) we obtain (3.16). O
The following lemma is needed for the local C? estimate.

LEMMA 3.7. We suppose that F is not included in any affine hyperplane of R™,
and we consider K a compact subset of R™. There exist a ball Br which contains K
and a smooth and strictly convex function ® : B — R such that

®>u on K and ® <u on 0Bg.

Proof. We first note that the upper barrier @ is strictly convex: this follows from
the Splitting Theorem [6], Theorem 3.1, together with the assumption that F is not
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included in any affine hyperplane of R™. Applying a affine Lorentz transformation if
necessary, we may suppose that u(0) = 0 and duy = 0. Since @ is strictly convex, we
have

lim @(x) = +oo. (3.17)

|| —+o0

We fix R’ sufficiently large such that K C Br/. We set ®¢ := sup B, U+ 1. Recalling
(1.3), u > w— c on R™. We thus get from (3.17) the existence of R > R’ such that

inf  w(z) > P+ 1. 3.18
{a: IIIZR}_( ) 0 ( )
We set, for all x € R",
L 9

The function & is strictly convex, ® > 7+ 1 on B and ® < u on dBg. O

4. The construction of an entire solution of the elliptic problem. We
assume that F, uw and u are as in Proposition 1.1. The barriers u,w are constructed
in the previous section.

We first suppose that F' is not included in any affine hyperplane of R™. For any
positive R, we set ug for the admissible solution of

HQ[UR] = 1lin BR
UR u on OBR.

This Dirichlet problem is solvable since @ is strictly convex (by the Splitting Principle
[6], Theorem 3.1); see [3, 19]. From the Mac-Laurin inequality (1.1) we get Hq[ug] >

v/ % Thus, the comparison principle for the operator H; implies that @ > ug. Since

u is defined as a supremum of admissible functions with scalar curvature Hy = 1, we
also have up > u. Thus ug lies between the barriers, for every R. The following local
uniform estimates hold: for any Ry > 0, there exist Ry = R;(Rp) sufficiently large,
¥ € (0,1), and C > 0 such that: for every R > Ry,

sup |[Dupg| < 1 — 9 and sup |ug| + sup |D*ug| < C.

BRO BRO BRO

For the C* local estimate, we refer to [4], Proposition 4.1. The auxiliary function 1)
needed for the estimate is given here by Lemma 3.5. For the local C? estimate, we
refer to [4], Proposition 5.1.; here is needed the auxiliary function ® given by Lemma
3.7. The proofs remain unchanged.

Evans-Krylov interior second derivative Holder estimate, and Schauder interior
regularity theory imply locally uniform estimates of higher derivatives. A diagonal
process then yields a subsequence ug, , R, — +00, that locally converges to a smooth
solution of (1.6). The properties (1.7) and (1.8) follow from the behavior at infinity
of the barriers given by (1.3) and (1.4).

If F'is included in some affine hyperplane of R™, applying a Lorentz transformation
we may suppose that F' belongs to

SF L {0} = {(w1,. .., 2n) €S Ty = =z, = 0}
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and that F is not included in any affine hyperplane of R* x {0}, where k belongs to
{1,...,n — 1}. By Remark 3.4, the restrictions wgs, U+ are barriers for the scalar
curvature operator Hy on R¥, with g strictly convex, and are such that (1.3)-(1.4)
hold on R*. Thus, there exists @ : R¥ — R such that H[a] = 1 and Yrr < U < Uk
The function u defined on R™ by

w(xy, ..., xy) = a(x1,...,28)
is an entire solution of (1.6) such that (1.7) and (1.8) hold.

5. Notation and evolution equations.

5.1. Notation. Let X be a spacelike hypersurface of R™!, and let X : 3¢ x
[0, +00) — R™! be a family of spacelike embeddings of Xg in R™?! : for every t > 0,
i = X (o x {t}) is a spacelike hypersurface. We set N for the future oriented unit
normal field of ¥;. We denote by (g;;) and (h;;) the metric and the second fundamental
form induced by the Minkowski metric on the embedded hypersurface X;. We will use
the Einstein summation convention, and raise or lower indices with respect to the
metric (gi;). The components of the curvature endomorphism are thus denoted by hé,
and we will often write problem (1.10) in the equivalent form

X(,O) = X() on 20,
where X is the canonical embedding of ¥y, F(A) is the square root of the sum

of the principal minors of order 2 of the matrix A, and f is a positive function on
R™! x [0, +00) (constant equal to one in (1.10)). Let

F) = L ((h})i5) -
J

If (h%); ; is diagonal, so is (FY); j, and F} = ;=01 for all i, where

J [
01,4 = E /\k

k, ki

Here and below we denote by Ay > --- > A, the principal curvatures of ;. (Ff)”
defines a (1, 1) tensor on ;. Raising the index ¢ we also will use the symmetric tensor
(F); ;. Analogously we define

. o O%F )
Fzg,kl — g kk s . IXATAN

ah; 8hf (( J)Z,])

We say that X solution of (5.1) is admissible if, for every t > 0, ¥; is an admissible
hypersurface, which means that Hy(X;) > 0 and H»(3;) > 0. Admissibility of a
solution of (1.10) is defined similarly. We denote by D the usual covariant derivative
on R™! (or on R"™), V the covariant derivative induced on ¥, and use a semi-colon to
denote the components of covariant derivatives on ¥;. Finally, the Minkowski metric
on R™! is denoted by (.,.), the Minkowski norm of spacelike vectors of R™! by |.|,
and the usual euclidian norm by |.|cycl-
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5.2. Evolution equations. For a hypersurface moving according to
X = (F(hj) = [(X,))N,
we have

d .

Egij = 2(F - f)hij, (52)

g fy = FUF — )y = —Fhahb(F = )~ N*fu(F — )~ fu (5.3)

dt
gihi — F¥hij = F(hglhaj) — hijF* (hihat) (5.4)
+F*Pa i hye s — i + (F = f)RFhag,
and, defining u := — (e, 41, X) and v := —{ep41, N),
a—Fijuij = —fu, (5.5)
and
U= Fiy; = —vF9hE b, + fitd, (5.6)

where the t7’s are the coordinates of the component tangential to ¥, of en+1. For the
proofs we refer to [10] and [5], where similar evolution equations are obtained.

6. The parabolic Dirichlet problem. The aim of this section is to prove the
following

THEOREM 6.1. Let 2 be a uniformly convex bounded domain in R™ with smooth
boundary, let ug : @ — R be a smooth, spacelike and strictly convex function, and let
f:iOxRx[0,+00) = (0,+00), (x,u,t) — f(z,u,t) be a smooth positive function
such that ft < 0. We suppose that, for all x € €,

[N

Ha[ug)* () — f(z,uo(x),0) > 0.

Then the parabolic Dirichlet problem

{ —\/ﬁ + Houlz = f(z,u,t) in Q x (0,400) (6.1)
u(z,t) = wo(x) on 90 x [0,+00) U x {0},

has an admissible solution u € C*(Q x [0,+00)) if, on the corner of the parabolic
domain, the compatibility conditions of any order are satisfied.

At the boundary, compatibility conditions of any order are fulfilled, so we get a
smooth admissible solution for a short time interval.

We consider T maximal such that the parabolic Dirichlet problem (6.1) has an
admissible solution on € x [0,7), and suppose by contradiction that T < +oco. We
need the following a priori estimates:

sup |Du|<1—49, sup |Ho[u]? — f| < Cy, sup |D%u| < Cs, (6.2)
ax[0,7) Qx[0,T) Qx[0,T)
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and

ap < inf  Ha[u]?. (6.3)

Qx[0,T)
with ¢ € (0,1], C1,C2 > 0, and oy > 0. With these estimates at hand (and the
obvious C? estimate), the estimates of Krylov and Safonov and the Schauder theory
imply estimates of higher derivatives of u. We may thus extend u to a solution on
[0,T]. Admissibility at the time T is guaranteed by (6.3) and Mac-Laurin inequality
(1.1). The short time existence theory then yields a solution on [0,7 +¢), € > 0, and

thus a contradiction with the definition of 7.
In the rest of the section we carry out estimates (6.2) and (6.3). Instead of (6.1)

we will also consider the equivalent problem

{ X = (F—f)NinXx(0,T)

X = Xgon 820 X [O,T) U X X {0}, (64)

where ¥y = graphug and X : ¥ x [0,7) — R™! denotes the embedding vector in
R™!,

We will denote by Dy the domain of dependence in R™! of the boundary data
Yo = graphug (a point p belongs to Dy if every non-spacelike ray through p intersects
o). Dy is a compact subset of R™! and, since X = Xg on 9% x [0,7) and X is
spacelike, X (z,t) belongs to Dy during the evolution.

6.1. The C' estimate.

6.1.1. The maximum principle for the first derivatives.

PROPOSITION 6.2. Let X : ¥ x [0,T) — R™! be a smooth solution of (6.4).
Then

sup v <C,
o x[0,T)

where C' depends on the C° estimate, on  sup |Dlog f|eucl and on an upper bound

Dox[0,7]
of v on the parabolic boundary 0% x [0,T) U X x {0}.

Proof. Let K be a positive constant to be chosen later. At an interior maximum
of ¥ = X"y, we have

d
g (los ) — F¥ (logs)s; > 0.

Thus, using (5.5),

%(log v) — F(logv)y; — K fv > 0. (6.5)

Moreover, we have
d i 1. i [y
E(logu) — FY(logv); = - (v = Fu5) + ﬁF vivj,
with

v — Fijl/ij = fjtj — VF”hfhkz

IN

V|V —VZF”/\?,

i=1
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and v; = wu;\;. Here the tensors are written in an orthonormal basis of principal
directions, and we used that g;;t'¢/ < v2. Thus, (6.5) implies

S ii S ii Uf R A
<ZF N-YF Af;) + Kfv <|Vfl.

i=1 i=1
Discarding the first term which is positive, and using |V f| < v|Df|eues, we obtain
K f <|Dfleuct, which is impossible for K sufficiently large such that

K> sup |DIlog fleue- (6.6)
Dox[0.7]

Thus, if K satisfies (6.6), the function 1) = e®“v reaches its maximum on the parabolic
boundary of ¥y x [0,T"), and the result follows. O

6.1.2. The C! estimate at the boundary.

PROPOSITION 6.3. Let u : Q x [0,T) — R be an admissible solution of (6.1).
Then there exists O € (0,1] such that

sup |Du| <1-14.
o0 x[0,T)

The number 9 depends on inf p (0,7 7 SUP Dy x[0,7] f, and supg | Dug|.

Proof. We fix xg € 012, and we denote by n the inner normal of 02 at zy. We

define, for ¢(n) = /%1,

U U
m +C(H)H1[u], PZ[U’] m
The construction of the upper barrier. Let uy be a spacelike function such that uy > ug
in Q, uy = ug on 99, and e(n)Hylup] < inf pyxjo,7) f We may take for u; the solution
of Hy[u1] = ¢ in Q, u; = up on 99, where c is a small constant; this Dirichlet problem
is solved in [2], Theorem 4.1. Defining u1 (z,t) := u;i(x), we have P [ui] < Pj[u] (since
Pi[u] = f + ¢(n)Hy[u] — Ha[u]? and using (1.1)), u1 > u on the parabolic boundary,
and thus, by the maximum principle, u; > u on Q x [0, T). Since u1 (g, t) = u(xo,t) =
ug(xg) for all ¢t € [0,T), we obtain

Onu(zo,t) < Opuq(xzo), Vt €[0,T).

Plu] = — + Hy[u®. (6.7)

The construction of the lower barrier. Let up be an admissible function such that
us < ug in Q, us = ug on 09, and Hg[U2]2 > SUP Dy x [0,7] f We may take for usy the

strictly convex and spacelike solution of Klus] = ¢ in Q, us = ug on 99, where ¢
is a large constant; K[ug] stands for the Gauss curvature of graphus; this Dirichlet
problem is solved in [7]. Defining wuz(x,t) := wuz(x), we have Palug] > Palu] on

Q x (0,T), us < u on the parabolic boundary, and thus, by the maximum principle,
ug < wuon Q x [0,7). Since ug(zo,t) = u(wo,t) = up(xg) for all t € [0,T"), we obtain

Onu(zo, t) > Opua(xo), Vt € [0,T).

Finally, since the tangential derivatives at the boundary of w,u; and wus coincide, we
get

sup |Du| < max(sup |Duy|,sup |Dusl|),
89x[0,T) o9 o9

and the result follows. O
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6.2. The velocity estimate.

PROPOSITION 6.4. Let X be an admissible solution of the parabolic Dirichlet
problem (6.4). We recall that fi < 0 and we suppose that C and K are two positive
constants such that

il € and |Nfo| < K (6.8)

during the evolution. If F' — f >0 att =0 then, for allt € [0,T),
C

0<F—f<efsup(F — f)+ — (5" —1). (6.9)
t=0 K
In particular, there exist two constants g, By > 0 such that

on Yo x [0,T). The constants ag,By depend on C,K,T, sup,_o(F — f), and
infDoX[O,T] f‘

REMARK 6.5. The constants C' and K in (6.8) are controlled by supp, (.1} | £
SUP py x[0,7] |Df|cuer, and by the C estimate obtained Section 6.1.

Proof. We first consider ¥y := (F — f)e_Kt. The evolution equation of ¥y is

dt
= [~ (F = f) = N*fu(F = f) = fi = K(F = f)| e %!

Uy — F90,,; = [i(F —f)=F9(F - f);; — K(F — f)] e K

> [—Fijhikhf _Nf, — K} Uy,

since f; < 0. Let T} € (0,T). The function ¥, on Q x [0, T}] reaches its minimum at
some point (xg,tg). Assume that (zo,t0) € @ x (0,73] and that ¥y(xg,t9) < 0. At
(wo,to), we have Wy — /Wy, <0, which gives

—Fhghk — N fo — K >0 (6.11)

and a contradiction with (6.8). Since ¥; > 0 on the parabolic boundary, we conclude
that U1 >0 on Q x [0,7), and thus that £ — f >0 on Q x [0,T).

, C
We now consider ¥y := <F —f+ §> e Kt whose evolution equation is

Uy — Fily,; = [—Fijhikh;?(F — )= Nfo(F =)= fi —K(F - f) - C} e K.

Let T, € (0,T). The function ¥y on Q x [0, T,] reaches its maximum at some point
(20, to). Assume that (2, o) € Q2 x (0, T3] and that ¥y (2, to) > . The latter implies
that F' — f > 0 at (z9,t0). At (20, 10), Uy — Fijkllgij > 0, which gives

—Fhahy (F = f) = N*fa(F = f) = o= K(F = f)=C >0 (612)
and a contradiction with (6.8). Since ¥y < % on 9N x[0,T) and ¥y > % on Q x {0},
we conclude that, for all (z,t) € Q x [0,T),

\IJQ(xv t) < sup \IIQ(Ia 0)7
xeQ

which proves the proposition. 0
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6.3. The C? estimate.

6.3.1. The maximum principle for the second derivatives.
PROPOSITION 6.6. Let X : ¥g x [0,T) — R™! be a solution of (6.4). Then

sup hi &0 < C
EETE,, [€]=1
during the evolution, for some constant C which depends on a bound of the second
fundamental form on the parabolic boundary 0¥ x [0,T)U%g x {0} and on estimates
obtained before.

Proof. The estimate relies on J.Urbas C? estimate [19] for the elliptic Dirichlet
problem. We fix T} € (0,T). For t € [0,T1], x € ¥, and & € Tx(,,»X with [£] = 1,
we consider

W(z,&,t) =" (X(2,t)hi; ¢,

where ) is a positive function on R™! and 3 is a positive constant, which will be defined
later. We suppose that W reaches its maximum at (zg, &g, to) where tg € (0,T1], zo is
an interior point of Xo, and & € T'x (z,,40)Sty, With [o| = 1. We choose €,°,...,¢e,° a

local frame on ¥y which induces on ¥, an orthonormal frame €y, ..., €, such that
6A1 (X(,’Eo, to)) = fo and Véi €Aj (X(,’Eo, to)) =0.

Observe that €3 is a principal direction of X, at X (zg, o), associated to the largest
principal curvature. We still denote by €1, ..., ¢, the frame induced by e,?,...,e,°
on X, for every t. The function

W (z,t) := nﬁll(él, él)/|é1|2,

where Il stands for the second fundamental form of X;, reaches its maximum at
(z0,t0); We get

%IOgW - Fij(IOg W)ij = p (10§n FU 10g77 ]) + hLl (hll - Fijhll;ij)
—z—F Thi1.iha1j — & >0
From the evolution equation (5.4), we get:
by — Fihy; = Fhi —hi F*(hiha)

APy hypga — i1 + (F - e
and thus:

5 (togn — FU (logn)s; ) + Fhyy = F* (i ha)

+%Fkl7pqhkl§1hpq71 —ju (F f)hll (613)
+z F]hu ahitg — gﬁ > 0.

Recalling (6.10), | F — f| is under control, and we have the following estimates (where
the largest principal curvature is denoted by A1, and Cy, Cs, Cs are constants under
control):

Fhiy 4 (F = fYhin < C1(1+ A1),
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|fu] < Ca(1+ A1), (6.14)
and, from (5.2),

911
g11

For estimate (6.14), we refer to [19] p312-313. Thus

< C3\.

0 = = (logn — Fllogn)y ) + F¥/(hithu) = Cal1+ 2)

(6.15)
_%Fkl’pqhkl;lhpq;l - h_?lF Jhll;’ihll;jv

for some constant Cy. We choose logn = @, with

D(x1, .y Ty 1) = @(X1,y ey Ty )y
where ¢ is some strictly convex function on R™. Note that
logn = (F = [)d® x(z0,10)(N) (6.16)
is under control. Moreover, following J.Urbas [19], page 313,
Fi(logn)i; > Cor — C
where 7 =" F?_ and Cp, C are constants under control. Finally,

0 > B(Cor —C")+ F¥(hih al) Cy(1+N)
—%Fkl’pqhklylhpq’ )\%F']hll;zhll;]7

where C’ is under control, which is analogous to inequality (2.8) obtained by J.Urbas
in [19] page 312. We then obtain the estimate of A; following the arguments used
in [19] p. 314-315, without any modification. This gives the C? estimate if the C?
estimate at the parabolic boundary is known. O

6.3.2. The C? estimate at the boundary.

PROPOSITION 6.7. Let u: Q x [0,T) — R be a smooth solution of the parabolic
Dirichlet problem (6.1). Then

sup |D?u(x,t)| < C,
(2,t)€02% (0,T)

for some constant C' under control (which depends on the estimates obtained Sections

6.1 and 6.2).

We fix (z9,t0) € 92 x (0,T). Following [15], we write the evolution equation (6.1)
on the form

—i+ F(Du, D*u) = f(x,u,t) X y(Du),

where v(Du) = /1 — [Dul?, and F(Du, D?u) is the square root of the second elemen-
tary symmetric function of the principal values of the n x n matrix whose coeflicient
(i,7) is given by

° Uik
i . 6.17
Zl<k+1—|D |2)ukﬂ ( )
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Let us consider the linear operator

LW = —W + FijWij,

where Fii = ;TE_(DU,D2U). We suppose that (e1,...,e,) is a basis such that
ij
(e1,...,en—1) is an orthonormal basis made of principal vectors of 9Q at zy and

e, is the unit inner normal of 2 at xg. Let
( t) = ( ) —— E t — ug(wo, t ))
W(x x, Du(z, (uk(z, ug(x
) g B) : k k(Zo,%0))",

where g : Q x B(0,1) — R is a given smooth function and K is a constant.

The following key inequality is a lorentzian analog of (2.4) in [15]:
LEMMA 6.8. If K is sufficiently large under control, W satisfies
LW < Ci(1+ [DW]+ > FIW,W; +ZF“ (6.18)
ij
where Cy depends on the C' estimate and on the constants o, By in (6.10).

Sketch of the proof. Following the lines of [15] Section 3, we obtain the following
expression for LW, which is analogous to (3.13) in [15]:

=—KZol alllg (Z >+j1+j2+j3, (6.19)
a=1

k=

with

n
jl =-2 § &1,auo¢uaaWa7
a=1

j2l < C <Z 01,altaal + an a> and |j3| < C'(1+ |[DW]),

=1 a=1

where C' is a constant under control. Here we use the letter o for derivatives in a
basis (7,) of R™ which induces by the map = — (z,u(z,t)) an orthonormal basis of
principal vectors of graphu at (x,u(x,t)); moreover &1, denotes a sum of principal
values of (6.17), and the numbers 7} are such that e, = Y np7a, for k =1,...,n
Expression (6.19) is also analogous to (26) in [3]. We then follow the arguments in
[3], from page 19 to page 23, without modification, and obtain (6.18).0]

Setting
W (2, t) := exp (~Cig(o, Du(zo, to))) — exp(~Cr W) — blar — o[?,
the following holds (see [15], inequality (2.5)) :
LEMMA 6.9. If b is sufficiently large,

LW < Cy(1+ |[DW)),
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where Cy is some constant under control.

We first estimate the mixed second derivatives. Let es be a unit vector tangent
to 09 at xo, and let £ be the local vector field tangent to the boundary, and spanned
by the vector ey : for all z € QN B, (),

£(z) i=es + ps(xl)en,

where e, is the inner normal vector of 2 at zy, and where, in the splitting R" =
TpeON B Reey, x — 29 = (2/, ) and 9N is locally the graph of p.
As in [3], we take g(x,p) = (p,£(z)), and we define the barrier function

v = —aolz — xo|* — h(d) + ¥(2'),
with h(d) = co(1 — e~b09) and
b(a') = exp(~Crutog(w0)) — exp(—Cruog(a”)) exp (CLK Y4} (or(a') — wor(w0))?
+201 K (Jug, (/)2 + 1)| Dp(a")|?) .

Here d denotes the distance function to the boundary-point xo, ug¢(z) denotes
(Dug(z),&(x)), and, for a function f defined on R™, an expression like f(z’) stands
for f(a!, p(a").

We first verify that v < W on the parabolic boundary of QN B, (z0) x [0,T):
-on AQNB,) x[0,T):v<W on dNNB, x [0,T) by the very definition of 1, and
on QN AB, x [0,T) if ag = ag(r,sup |1h|,sup [W|) is chosen sufficiently large.

- on (ﬁﬂB_T) x {0} : we suppose that 2o = 0, we fix x € Q N B,., and we consider

w(s) = W(sx,0) —v(sz), s € [0,1] (2 is convex). We have w(0) > 0. Setting

C= sup |[DW|+ sup |Dyl,
QnB, x{0} QnB, x{0}

we see by a direct computation that, for all s € [0, 1],
W(5) > [al{bocoe" — C}.
We thus obtain the property if ¢y = ¢o(bg) is chosen large such that
bocoe ™" > C. (6.20)
From the proof of Lemma 4.6. in [3], we see that
Lv > C3(1+ |Dv|)

on QN B,(xg) x (0,T), if b’ = bycoe™b0?, _Z_/// = by are large, which is compatible

with (6.20). The comparison principle implies that v < W on the parabolic domain,
and, since v(zg) = W(zo,t0) = 0, we get
Un(xo) S Wn($07t0)7

which gives the estimate

usn(x()a tO) Z C37
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where C3 is a controlled constant. As in [3], to estimate wusp(2o,to) from above we
do the same with g(z,p) = —(p,&(z)) = —ps — ps(z')en.

We now estimate the double normal derivatives. A lower bound follows from
Hi[u] > 0 and from the estimates of tangential and mixed second derivatives. To
obtain an upper bound, we use a technique of N.S.Trudinger [18, 16]. We used this
method in [3] for the elliptic Dirichlet problem. We define, for p’ € B(0,1) ¢ R*~!
and ¢’ a (n — 1) X (n — 1) symmetric matrix

~ n—1 p/-p/»
R.q)="> (5ij + %) a;-
5 1= ']

We denote by v the outward unit normal to 92 in R", and by O the tangential
differential operator on 9Q. We fix 71 € (0,T'), and (y,¢1) € 9Q x [0,71] such that
F1 (Qug, 8®up + u,0y) reaches its minimum at (y,t;). As in [3] page 27, an upper
bound of wu,, on 9 x [0,T}] follows from an upper bound of uy,,(y, t1). We keep the
notation introduced above, but here adapted to the boundary-point y. We set

g(x,p) = Fl (BUO(‘TI)7 a2u0(x/) + <p,’7(1’/)>a’7($/)),

and

W (a,t) = exp[-Cigly. Duly, 1))] {1 = exp [~Ca(g(a, Dula 1)) — g(y, Duly, 1))}
xcexp (15 T4 3 (unle,) — ey, 10))?) | = bl — o2,

We consider the barrier function
v = —aolz —y|* = h(d) + ¢(a)
with h(d) = co(1 — e~b09) and

Y(a') = exp(—Cig(y, Du(y, t1))) {1 — exp (CIK Sony (uo (@) — uo(y))?
+2C1 K (Jug,, () [* + 1)|Dp(2")[?) } .

For suitable constants ao, b, ¢o under control, we have v < W on the parabolic bound-
ary of QN B, x[0,T1), and Lv > Ca(1+|Dvl) in QN B, x [0, T7) (see above the estimate

of the mixed derivatives). By the comparison principle and since v(y) = W (y,t;) = 0,
we obtain that v, (y) < W, (y,t1), which gives

unn(y7 tl) S C47

where C} is a constant under control. We finally observe that the bound is independent
of Tl.

7. Existence of the entire flow reduced to obtaining local C' and C?
estimates, and convergence. We suppose here that F, u, w and ug satisfy the
hypotheses of Theorem 1.4: u,w : R™ — R are the barriers constructed Section 3 (@ is
a smooth spacelike and strictly convex function with constant mean curvature h and
w is the supremum of spacelike functions with constant scalar curvature Hy = k) and
ug : R™ — R is some smooth spacelike and strictly convex function such that

u<wuy<wand 1< Hslug] < k. (7.1)
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To construct the entire flow, we solve a family of parabolic Dirichlet problems with
parabolic boundary data ug on a growing sequence of balls. We modify slightly the
equations near the boundary of the balls such that the problems are compatible on the
corner of the parabolic domains. This is done in such a way that the normal velocities
are uniformly bounded in terms of Ha[ug]. Moreover the functions u, @ are still barriers
for the modified evolution equations. This theorem is analogous to Theorem B.4 in
[5] for the logarithmic Gauss curvature flow.

THEOREM 7.1. Let R > 1 and the ball of R", Bg := {z € R" : |z| < R}.
We choose a smooth function n: B x R — [0,1] such that n = 0 on (Br—1 X R) U
graphu U graphu, and n = 1 near graphuojgp,. We also choose a smooth function
¢ :[0,400) — [0,1] such that {(t) =1 near t =0, ((t) =0 fort > 1, and ' <0. We
set

f(ac,u,t) = n(z,u) (é) [Hg[uo]% — 1] + 1. (7.2)

If € > 0 is chosen sufficiently small, the parabolic Dirichlet problem

—\/ﬁ + Ho[u]z = f(z,u,t) in Br x (0,+00) (73)
u(xz,t) = wo(x) on OB x [0,+00) U Br x {0},

has anadmissible solution u : Br x [0,+00) — R such that the normal velocity
\/ﬁ is uniformly bounded in terms of Halug]. Moreover

u<u<uy (7.4)

for all time.

Observe that u solution of (7.3) is also solution of (1.10) on Br_1 X [0, +00). We also
write problem (7.3) in the equivalent form:

{X = (F-f)N (7.5)
X = XoondSEx[0,+00)USE x {0}, '

where f is given by (7.2), ©& = graphg uo and X : S x [0,+00) — R™! is the
embedding function. '
Proof. The existence of a solution follows from Theorem 6.1: ft < 0 holds,

the compatibility conditions are fulfilled on the corner of the parabolic domain, and,
observing that

(S

flt=0 = nHa[ug) + (1 — )1 < Halug)?, (7.6)
we get (HQ% - f)|t:0 > 0.

We now prove (7.4). We consider the operators P;, P, defined in (6.7). We recall
that u is of the form u = sup,c; u;, where for all ¢ € I the function u; is spacelike with
Hs[u;] = k. Defining u;(z,t) := u;(z), we have Pa[u;] = Ha[u;]2 = k2. Moreover, from
(7.2)-(7.1), we have Py[u] = f < k2. Thus, since u > u; on the parabolic boundary,
we get by the maximum principle that v > u; during the evolution, and finally that
u > u. Now, setting u(z,t) :=u(zx), we get

Py[a@) = ¢(n)h. (7.7)
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Moreover, since f > 1 and recalling (1.1), we have
Piu] = f + c(n)Hy[u] — Hyu]? > 1. (7.8)

Since ¢(n)h < 1 (see Proposition 1.1), (7.7) and (7.8) imply that P;[u] > P;[u], and
thus that v < @ since this inequality also holds on the parabolic boundary.

We now estimate the normal velocity. We consider X : X x [0, +00) — R™!?
solution of (7.5). We first suppose that ¢ € [0,e]. We note that |f;| < % where Cp is
a constant controlled in terms of Hs[ug]; recalling inequality (6.9) in Proposition 6.4,
we get

¢ Kt 3 Co
0<F-—f<esup(F—f)+—

Kt
-1
t=0 eK (e )

where K is a bound of [N® f,|. Observe that K may grow with R but is independent of
e (see Propositions 6.2 and 6.3). Taking ¢ = %, we get the estimate: for all ¢ € [0, ],

0<F-f<C (sup(F - f),C(J) ) (7.9)
t=0

where the right-hand side term is a constant bounded in terms of Ha[ug]. For t > ¢
the normal velocity fulfills
d

E(F—f)—Fij(F—f)ij = —(F — f)F" hyh"j,

and the maximum principle implies that

0<F— f<sup(F — f). (7.10)
t=¢

Estimates (7.9) and (7.10) imply the estimate of the normal velocity during the evo-
lution in terms of the curvature Hs|ug) only. O

We set ug for a solution of the parabolic Dirichlet problem (7.3) on Bg x [0, +-00),
R > 1. By construction, the normal velocity of the solution ug is bounded by a
constant which is independent of R. Suppose that the following estimates hold: for
any Ro > 0, there exists Ry = R1(Rp) larger than Ry, ¥ € (0,1) and C' > 0 such that,
for every R > Ry,

sup  |Dug| <1-19, sup  |ug|+ |D%*ugr| < C. (7.11)
Bryx[0,+00) BRrq x[0,+00)

Then, higher order derivative estimates (due to Krylov, Safonov, and Schauder for
positive times) imply that a subsequence converges in

C>®(R" x (0,400)) N CH*0% (R™ x [0, +00))

for every 0 < a < 1 to a solution u € C*®°(R" x (0,+00)) N CHEOL(R™ x [0, +00)) of
(1.10).

We now prove the convergence of the entire flow u, following [10, 9]. We first note
that Ho [u]% > 1 during the evolution, since this property holds for the solutions of the
Dirichlet problems (7.3). We deduce that @ > 0. Thus, for every z € R", ¢t — u(z,t)
is an increasing function, bounded above by @(z), and

Uso (T) 1= tE+mOO u(z,t)
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is well defined. The a priori estimates, locally uniform in space and uniform in time,
show that us is a smooth and spacelike function, and that u(.,t) smoothly converges
t0 Uoo as t tends to +oo. We now fix x € R™. Since & > 0 and sup,¢(y ;o0 [Du(z,1)] <
1, we get from (1.10) that

0 < Ho[u]? (z,t) — 1 < c(z)i(, t),

where ¢(z) € R does not depend on ¢. Thus
+oo )
| talut? ) - e < o
0

and there exists a sequence (t,) such that ¢, — +o0o and Hs[u](z,t,) — 1 as n tends
to infinity. Thus us is a solution of (1.6).
In the rest of the article, we prove the local estimates (7.11).

8. The local C' estimate. We obtain here the local C' estimate in the spirit
of R.Bartnik’s estimate concerning hypersurfaces of prescribed mean curvature. See
e.g. [1].

8.1. The estimate with a general time function. We suppose that X :
o x [0,4+00) — R is a solution of (5.1) with f = 1. Let 7 : R™! — R be a smooth
function whose lorentzian gradient D7 is a timelike and past oriented field (7 is a
time function on R™'). We set =2 = —(D7, D7) and T = —aDr. Using the timelike
vector field T, we define a Riemannian metric on R™! by

Y[7 = (YY) +2(Y,T)%

If S is a tensor field on R™!, we denote by |S|r its norm with respect to the metric
|.|7. For instance, if Y is a vector field on R™1,

n+1
DY |r = | Y (DY, u;)?
i,j=1
where (u1,...,Un,Un11) is an orthonormal basis of R™! such that u,,1 = T. We fix

70 > 0, and we suppose that, for every ¢t > 0,
Ytror = {X(z,t): z €Ty, 7(X(x,t)) > 70} (8.1)

is a compact (spacelike) hypersurface such that 7 = 7y on its boundary, and that the
set 3¢ r>25, is non-empty. We moreover suppose that 7, a, a1, |Da|r, |DT|r and
|D?T|7 are bounded on the region

DT() = U 21&,7’270 (82)
t>0

of R™! and we fix 7 such that 7 > 7 on Dy, . Finally, we assume that F' has positive
lower and upper bounds on D, . Setting here v := —(T, N), we prove the following
estimate:

THEOREM 8.1. There exists a constant C' such that, for every t > 0,

sup v <C. (8.3)

2t r>270
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The constant C' depends on 1o, 1, upper bounds of a,a™1,|Dal|r, |DT|r and |D*T|r
on the set Dr,, on lower and upper bounds of F' on D, and on Sups, ., V-

This estimate relies on the maximum principle applied to the function ¢ = nv,
where n = (1 — 70)% with K a large constant. We fix Ty € (0, +o0), and we consider
@ on the compact set

J={(z,t) € o x [0,T1] : 7(X(z,t)) > 710}

The function ¢ reaches its maximum at a point (xq, ) € J. Our purpose is to estimate
©(x0,1t0) by a constant under control which does not depend on Tj; such an estimate
clearly implies (8.3). If ¢ = 0, we readily get that p(xg,t9) < C’ where C' =
C'(K,70,71,%0,r>7,) is a constant, and the result follows. We thus suppose that
to > 0, and we prove the following proposition, which implies the estimate of p(zo, to),
and the theorem:

PROPOSITION 8.2. Let vy > 1. If K is sufficiently large,
I/(l‘o,to) S .

The constant K depends on vy, To, 71, and on bounds on o,a™ ', |DT|r, |D*T|r and
F on the region D,,.

In the following, we suppose that v(xg,tg) > vy, and we will obtain a contradiction
if K is large under control. Let us denote by Tl the orthogonal projection of T on
the tangent space of ¥;,. By definition of T, we have T!l = —aVr, and

V2 —1=Tl1? = o?| V7|2 (8.4)

Let Z be the tangent vector field of ¥, such that (Z,h) = (N, D, T), for all tangent
vector h. By a direct computation,

Vv =-8(T) - Z = aS(Vr) - Z. (8.5)

Here S stands for the curvature endomorphism of 3;,. We first estimate |Z|:

LEMMA 8.3. We have
2] < Cov?, (8.6)

where Cy only depends on an upper bound of |DT|r.

Proof. Let uy,...,up,u,+1 be an orthonormal basis such that u,+; = T. Writing
N =30 ajuy + T, we have -, af = v* — 1. Let h := S hiui be a vector
tangent to X,. Since (T, D,T) = 0,

n+l n
(N, DT <Y > |hiaj(ug, Do, T)| < vlh|7| DT 7. (8.7)

i=1 j=1
Observe that inequality

\hlr < V2v|h| (8.8)
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holds for all tangent vector h. To prove this, suppose that h # 0, and define
2

h
= =t 5- By a straightforward computation,

Sy hi
o _ (1+0) 0
= (155 ) P (9)

Since h is a tangent vector, (h, N) = > | hjo; — hyy1v = 0, and the Schwarz

|
)

inequality readily gives that 0 < “—=; inequality (8.8) then follows from (8.9). Finally,
inequalities (8.7) and (8.8) imply that |(Z, h)| < v/2v2|h||DT|r, and the lemma. O

We need the evolution equation of v :

LEMMA 8.4. During the evolution,

v — Fy;; = (DNT, N) + Fij(pghejT, N)+2F%(D.,T,D.,N)
—VF R hyi. (8.10)

Here (e;) is a basis of TS; at X (x,t).

Proof. By Lemma 3.3 in [10], the normal evolves according to N = VF (recall
that f =1 here) and thus

(T,N) = g"Fat; = g7 F¥hyit;.
Thus
v =—(T,N)— (T,N)
= —(F — /)(DNT,N) — g F*¥'hy.it;. (8.11)

We fix (x,t) € 3 x [0, +00). Let (e;) be alocal frame of ¥; such that V., e;(X (z,t)) =
0. Thus D, e;(X(z,t)) = h;; N, and we have

Dej (DelT) = D?i,@jT + hijDNT
and
De;(De;N) = De, (hier) = hi ey, + hihi; N.
Thus

Fiv; = —F7(D?, , T,N) — F(DNT,N) = 2F"(D,,T, D, N)
—F9R (T, ex) + F7hf hyv. (8.12)
Equations (8.11) and (8.12), together with the symmetry of h;;.; in the three indices
(the Codazzi equations), imply (8.10). O

Thus, the maximum condition £ (log ) — F(logp);; > 0 reads

Fiihhy, — 5 Fvu;) — (% logn — F'7 (log n)ij)

( § ) (8.13)
< L ((DNT,N) + F9(D2 T, N) + 2F9(D,, T, D,,N) ) .
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Moreover, since v; = —h¥t, — Z; (see (8.5)), we get:
ijpk L i ijpk Loijyky, g
F hjhki_ﬁF viv; = F hjhki—;F hitkhjtl
L oij 2 ik
——FI2:2; - SFIN 0.2, (8.14)

We now estimate the terms in the expressions above:

LEMMA 8.5. There exist constants Cy,Cy,Cs such that

(DNT,N)| < C1v?, (8.15)
. 1 ..
‘F”(Dg_ T N)Y+ ~FY7,7;| < Cyo11°, (8.16)
1,€3 v
2 ijpk ij 2
and | =FUN{tyZ; + 2F7(D.,T, De,N)| < Csv > ol (8.17)

The constants Cy,Ca,C3 only depend on bounds on |DT|r, |D*T|r and F.

Proof. Let (u;)1<i<n+1 be an orthonormal basis of R™! such that Up41 =T. We
suppose that ei,...,e, is an orthonormal basis of principal directions of ¥, at xo,
and we define (ci;)1<i j<n+t1 such that

n+1 n+1
€; = E QU5 and N = E Qp41,5Uj.
j=1 j=1

n+1
The following estimates hold: for all i = 1,...,n + 1, Z a?j < 207 (see (8.8) for
j=1
i<n+1,and use (N,N) =—1fori=n+1).
We first prove (8.15): using the Schwarz inequality,

n+1
(N, DNT) < > lomgrillansajl[(ui, Dy, T)| < 20°| DT,
ij=1

and we get (8.15).
We estimate the first term in (8.16):

- 1
> FY(N,D? . T)| < Yo > o1 Y loms gl [(ug, D2, T)]

ij ki

1
< 3/2 _ 3112 '
< op(n = D2 e DT

3 1
For the second term in (8.16), we readily get: F¥Z,Z; < n2—FUl |Z|?, and we obtain
the estimate from (8.6).
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We finally prove (8.17):
2 PRk Z, + 2F (D, T, Do, NY| < N (L1112 D.,T ;
~FYhiteZj + 28 (De, T, De; N) —FZU“' il | SltillZil + (De, T ei)] ) 5

using |Tl] < v, |Z] < Corv? (Lemma 8.3) and |(D,,T,e;)| < 202 DT|r we obtain
(8.17). O

We now prove that the smallest principal curvature of ¥, at x¢ is negative, with
absolute value arbitrarily large, if the constant K is chosen sufficiently large:

LEMMA 8.6. If

2
K > 2Coa(n — 7o) —2—, (8.18)
v —1
the smallest principal curvature A\, s negative and is estimated by
la 'K
A < —= : 8.19
- 27T —19 v ( )

Note that since ¢ vanishes if 7 = 7y and is positive if 7 > 79, we have 7 > 7y at

(.I(), tO)
Proof. By (8.5),

S(Vr)=—=(Vv+ Z);

1
o

moreover, the extremum condition Vy(xg, tg) = 0 reads

—VUZ— K V.
1% T—1T0
Thus
\%a \a K a~t
S}, 2oV et 7V, 8.20
(s () o) = =o' ) 520

By Lemma 8.3 and expression (8.4), we estimate

a~t |Z] v
L2,V < a 'tk < Cp—p—
oo VTl < o g < Cogr—y
IJ2
Q

2
Since v > vy > 1, we have ¥— < and thus

2 _ 2_ 19
v2—1 vg—1

K 3 K 2
—va~! + Cy Y 1 <v (—al + Cy 2V0 )
V2 _

T—1To 2 T—1To v —1
1 ., K
< —cal——
- 2 T —1To
if %a‘l Tf(m > Coyél—él, which follows from the hypothesis (8.18). Thus expression
0

1
(8.20) is bounded by —§a_1 v, and the result follows. O

T—1T0
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As in Lemma 4.6. of [4], we obtain the key inequality:
LEmMmA 8.7. If A\, <0,

L 1 ..
F9h%hyi — ﬁF”hftkhétl > o1 A2,

where € is a positive constant which only depends on an upper bound of F.

Proof. Just follow the lines of the proof of Lemma 4.6. in [4], with A, instead of
i, and t; instead of u;, using here identity (8.4). O

Inequality (8.13) and Lemmas 8.5 and 8.7 thus imply that

d .
£01 n A2 — (a logn — F¥ (logn)ij> < Cyv + Cyo1v” + CgVZUl)ip\il. (8.21)

The next lemma permits to balance the last term in (8.21):

LEMMA 8.8. If A\, <0, then, for all 1,
o1l < o2+ ﬁal,n/\iv
v

where B is a constant arbitrarily small, if K = K(a, 8,70,71) is chosen sufficiently
large.

Proof. We first suppose that A; < 0 : we thus have |\;| < |\,|, and, since
Ol = 01,

01,i| M| < 010] A0

By estimate (8.19) in Lemma 8.6, 4 < |\,|, if K = K(719,71,, 1, 3) is sufficiently
large. This implies

B
o1,ilAi| < ;Ul,n)\?zu

and the estimate. We now suppose that \; > 0 : the proof relies on the following
inequality:

Xio1i < 02+ Vo1 0| Al (8.22)

where 7, is a positive constant which only depends on n. With this inequality at hand,
taking as above K sufficiently large such that % < |An|, we obtain the lemma. To
finish the proof we thus focus on the proof of (8.22): first,

/\iULi =02 —02in — U1,m‘/\m

where —og;y, is a sum of terms of the form —X;j\;, with j # k, and j,k ¢ {i,n}.
We observe that —o1niAn = 01nilAn] < 01n|Anl, since A; > 0. It thus remains
to bound the positive terms appearing in —o2, : let 5,k ¢ {i,n} be such that
—AjAr > 0. We suppose that A\p < 0, and thus that A; > 0. We have \; < o1,
since 01, = Aj + 01,; — A, with o1 ; and —\,, positive. Moreover |Agx| < |A,| since
An < Ak <0. Thus —AjA; < 01,,|An|, which concludes the proof of (8.22). O
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From (8.21) and Lemma 8.8 we obtain the inequality

d .
80'1)71)\721— (E ].Og’l] — Y (logn)w> < ClV+CgUly2+TLC3I/ (0'2 + 50'17")\721) . (823)

Choosing 8 small such that ¢ —nC33 > 5, we obtain

d 3
golm)\i — (E logn — F% (logn)ij) < Cyv + Cyo1V? + nCsvos. (8.24)

We now estimate the contribution of the cut-off function:

LEMMA 8.9. There exists a constant Cy such that

d .. o1 1
—_ — FY o< 2 .
p (logn) — F* (logn);; < CaKv P (1 + T_T0>

The constant Cy depends on bounds on o=, |Dalr, |DT|r and F.

Proof. By a direct computation,

d ~ K
—(1 =(F - Dt1(N).
o) = (F ~ )=~ Dr(w
Since |D7(N)| = va™!, we get
4 ogn) < € " (8.25)
at e =N '

where C' depends on bounds on a~! and F — f . Moreover

Tii 7'12
201,1‘(10@7)@ =K (;Ul,iT_TO _;017im> . (8.26)

Using (8.4), the last term is directly estimated by

3 T (1ot (8.27)
o1,i———= < (n—1a v'———=—. .
A TP

To estimate the first term in (8.26), we extend ey, ..., e, to vector fields of Xy, such

that V., ei(zo) = 0. Since 7; = —(a™ T, ¢;) and D.,e; = \;N, we get
Tii = —(De, (71T, e;) + atw),.
Since (D, (a™1T),e;) = (a7 1)i(T,e;) + a={D,, T, e;), and since
(T,e)| < v, |(De,T,e:)| < 20°|DT|r, and |(a )i < V2v|[Da ™ |r
(see the proof of Lemma 8.5), we obtain

Tid
01,i
T —1T0

%

0471

1
< <2(n —1)ov? {F|Da1|T + |DT|T} + 21/02) .

T — 170
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Observing moreover that o7 is bounded below by a positive constant (Mac-Laurin
inequality), this last estimate together with (8.26) and (8.27) imply that

y 1
—F% (logn),; < CKv?- T <1 + > (8.28)

T — 170 T —1T0

where C only depends on bounds on a~!,|Da|r,|DT|r, and F. Finally, estimates
(8.25) and (8.28) give the result. O
5 e a?K?
. 2 2 .
Using the lower bound —oy , A, > —01———5V° given by Lemma 8.6, we fi-
2 2 " 4(r —19)?
nally obtain

1
%O’l ZK2 2KV lo((t—m)+1) < (Oll/ + Cooy? + n031/02) o (r — 1),

which is impossible if K is sufficiently large under control.

8.2. The construction of the adapted time function. We suppose that u
and  are the barriers constructed Section 3. Let Ry > 0, and consider ¥ : R" — R
such that ¥ < u on Bpg,, and ¥ > % near infinity, given by Lemma 3.5. We define

T(T1, oy T, Tng1) = Tpp1 — V(21,0 , ZTp)-

The function 7 is a time function since 1 is spacelike. We fix 79 > 0 such that
U + 279 < won Bg,. We also fix Ry such that ¢(x) > %(x) if || > Ry, and, for
R > R; + 1, we consider X% : F x [0, +00) — R™! solution of (7.5). We set K
for the compact set {1(z1,...,2n) < Zni1 < U(x1,...,2n)}. Note that f = 1 on
K, and that the normal velocity F' is bounded from above and from below during
the evolution, uniformly in R. For all ¢ € [0,400), the set ZET>TO defined by (8.1)
is compact, and is such that 7 = 7y on its boundary. Moreover, since the set D,
defined by (8.2) belongs to the compact set K, the time function 7 satisfies all the
requirements of the previous section. Thus Theorem 8.1 applies and gives the gradient
estimate on the set

{(z,t) € B x [0, +00) : T(XB(x,t)) > 270}
We deduce the required local gradient estimate (7.11) since

graphg, up C {X eR™: 7(X) > 270}

9. The local C? estimate. We suppose that u, 7 are the barriers constructed
Section 3.

THEOREM 9.1. Let Ry > 0, and let Ry’ > Ry and  : ERO’ — R be such that
® > on Br,, ® <u on dBg,,

giwen by Lemma 3.7 . We fiz 69 > 0 such that ® > T+ do on Br,, and we set, for all
X = ($1,...,$n+1) S BRO’ XRCRn’l,

N(X):=®(x1,...,2n) — Tpi1.

Then, there exists Ry > Ry’ such that, for all R > Ry, the solution X of (7.5)
satisfies the following local C? estimate:

sup |II(I;¢)| <C.
{(@,1): n(XF(x,t))>00}
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Here |II(}§E t)| stands for the norm of the second fundamental form of ©F at X (x,t),
and C is a constant controlled by the local C' estimate on the set where n > 0.

Proof. We fix Ry > Ry’ such that for all R > Ry the local C' estimate holds on
the set where u < x,,4+1 < ®. For T1 > 0 we define

Ury = {(,t) € 3¢ x [0,T1] : n(X T (,1)) > 0}.
Following J.Urbas [19], we suppose that the function
W (x,t,€) = 1’ (X (1) hi€'€, (9-1)

defined for all (z,t) € 'y, and all unit £ € T'x Ry 1)2t, reaches its maximum at a point
(z0,t0,&0), with ¢y > 0. Arguing as in Paragraph 6.3.1, we also get here inequality
(6.15) at (xo,to). Moreover, using the evolution equation (5.5) of u = x,11, we obtain

L ogn — Fii (logn).. = 2 —(fI)—F”(I)Z--) i 5 9.2
7 1087 (logm),; , +77 i)+ = (9.2)

The following estimates hold: Fij@ij > ¢ ZZ Fii —c, ) < ¢, and l/f < ¢ where ¢y
and ¢ are controlled constants; for the first estimate we refer to [19] p.313, and for
the second estimate to (6.16). Thus

-3 (Elogn—l” (logn)ij) > (COZE —C’> —51”%' (93)

Inequalities (6.15) and (9.3) give inequality (2.8) obtained by J.Urbas in [19] p. 312
(where the first term in (2.8) is moreover estimated by (2.12) [19] p. 313). We then
follow the arguments in [19], and obtain an upper bound of W(:vo, to, &o), if B is chosen
sufficiently large (under control). The bound is independent of T} and R. This gives
an upper bound of the second fundamental form during the evolution, on the set
where n > dp. O

This estimate implies the local C? estimate (7.11) since
graphg, up C {X eR™: n(X) >},

and thus completes the proof of Theorem 1.4.
Appendix A.

LEMMA A.1. Let u be a spacelike and convex function defined on R™, and let
2’y € R"2. Setting

a(xy, x2) = u(w1, 2, 2'o),
we have, for all (x1,12) € R?,

H1 [’ﬁ](,@l,wg) S H1 [u]($1,$2,$/0).

Proof. The second fundamental form of the graph of @ in the chart (x1,z2) is
~ 1
D?a.

~ /1 |Dap
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Since |Du| > |Di| and D*a = D? we obtain

u‘]@x{o}’

%DQ’EL S ;DZLL‘ 2 .

JI= D’ T Dur o
The right-hand side term is the second fundamental form I1 of the graph of u, in the
chart (z1,...,x,), restricted to the plane z3 = --- = x,, = 0. Let us fix (e1, e2,...,€,)
a basis in the chart (x1,...,2,) which induces an orthonormal basis (é1,...,¢é,) of
the tangent space of graphu at (z1,x2,z’). We suppose moreover that eq, es belong
to the plane z3 = --- = x,, = 0. Thus é4, é5 are tangent to graphu, and we get:

Hi[a)(x1, x0) = I1(é1) + I1(é3) < I1(&1) 4 I1(éy)

<Y II(é) < Hyfu(zy,72,7'0),

i=1

where the second inequality follows from the convexity of w. O
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