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ENTIRE SCALAR CURVATURE FLOW AND HYPERSURFACES OF

CONSTANT SCALAR CURVATURE IN MINKOWSKI SPACE∗

PIERRE BAYARD†

Abstract. We prove existence in the Minkowski space of entire spacelike hypersurfaces with
constant negative scalar curvature and given set of lightlike directions at infinity; we also construct
the entire scalar curvature flow with prescribed set of lightlike directions at infinity, and prove that
the flow converges to a spacelike hypersurface with constant scalar curvature. The proofs rely on
barriers construction and a priori estimates.
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1. Introduction. The Minkowski space R
n,1 is the space R

n ×R endowed with
the metric dx2

1 + · · ·+ dx2
n − dx2

n+1. We say that a hypersurface of R
n,1 is spacelike if

the metric induced on it by the Minkowski metric is Riemannian, and that a function
u : R

n → R of class C1 is spacelike if its graph is a spacelike hypersurface, which
equivalently means that |Du| < 1 on R

n. The principal curvatures of a spacelike
hypersurface are the eigenvalues of its curvature endomorphism dN, where N is the
future oriented unit normal field. In the natural chart (x1, . . . , xn), the curvature
endomorphism

(

hi
j

)

ij
of the graph of a spacelike function u is given by

hi
j =

1
√

1 − |Du|2
n
∑

k=1

(

δik +
uiuk

1 − |Du|2
)

ukj .

Let us denote by Hk[u] the kth elementary symmetric function of the principal cur-
vatures of the graph of u.

We are interested in the scalar curvature S[u] of the graph of u, which is linked
to H2[u] by

S[u] = −2H2[u].

We say that u : R
n → R of class C2 is admissible, if u is spacelike and if H1[u] > 0

and H2[u] > 0 on R
n. It is well known that the operator H2 is elliptic on admissible

functions, and that the Mac-Laurin inequality holds: on R
n,

H2[u]
1
2 ≤

√

n− 1

2n
H1[u]. (1.1)

Let F be a closed subset of the unit sphere Sn−1 ⊂ R
n. We suppose that F is a union

of arcs of circles on Sn−1. We first construct barriers whose set of lightlike directions
at infinity is the set F. For definitions and examples, we refer to Sections 2 and 3.

Proposition 1.1. Let F be as above, and consider VF : R
n → R defined by

VF (x) := supλ∈F 〈x, λ〉, where 〈., .〉 stands for the canonical scalar product on R
n. Let
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h and k be two positive constants such that

h <

√

2n

n− 1
and k ≥ 1. (1.2)

There exist two entire functions u, u : R
n → R, such that

VF < u < u < VF + c on R
n (1.3)

for some constant c, where u is smooth, spacelike, with constant mean curvature H1 =
h, and u is the supremum of spacelike functions with constant scalar curvature H2 = k.
Moreover, for all ξ ∈ F,

lim
r→+∞

u(rξ) − r = lim
r→+∞

u(rξ) − r = 0, (1.4)

and, from (1.3), for all ξ ∈ Sn−1\F,

lim
r→+∞

u(rξ) − r = −∞. (1.5)

Solving a sequence of Dirichlet problems between the barriers u and u, and ex-
tracting a convergent subsequence thanks to local estimates [3, 4, 19], we will first
construct an entire spacelike hypersurface of constant negative scalar curvature, and
whose set of lightlike directions at infinity is F :

Theorem 1.2. Let F be a closed subset of Sn−1 as above. Then there exists
u : R

n → R, admissible, solution of

H2[u] = 1 in R
n (1.6)

such that, for all ξ ∈ F,

lim
r→+∞

u(rξ) − r = 0 (1.7)

and

sup
Rn

|u− VF | < +∞. (1.8)

In particular, the set of lightlike directions at infinity of u is the set F.

Remark 1.3. Uniqueness of a solution of (1.6) satisfying (1.7) and (1.8) is still
an open question.

We then study the entire scalar curvature flow. Starting with a smooth spacelike
entire and strictly convex function between the barriers which has bounded scalar
curvature, we prove that the entire scalar curvature flow is defined for all time and
converges to a solution of the prescribed constant scalar curvature equation:

Theorem 1.4. Let F be as above. We suppose that F is not included in any
affine hyperplane of R

n. Let h, k be two positive constants such that (1.2) holds, and
let u, u be the barriers given by Proposition 1.1. Let u0 : R

n → R be a smooth spacelike
and strictly convex function such that

u < u0 < u (1.9)
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and

1 ≤ H2[u0] ≤ k.

The parabolic problem

{

− u̇√
1−|Du|2

+H2[u]
1
2 = 1 in R

n × (0,+∞)

u(x, 0) = u0(x) on R
n × {0},

(1.10)

has a smooth spacelike solution

u ∈ C∞(Rn × (0,+∞)) ∩ C1,1;0,1(Rn × [0,+∞)).

Moreover

u ≤ u ≤ u (1.11)

for all time, and u converges to a solution of (1.6) as the time t tends to infinity.

Remark 1.5. Note that (1.10) describes hypersurfaces moving with normal
velocity given by the square root of the scalar curvature,

d

dt
X =

(

H2[X ]
1
2 − 1

)

N,

where X is the embedding vector of the hypersurfaces.

Remark 1.6. If F is included in some affine hyperplane, condition (1.9) with u0

strictly convex is not possible: suppose that ξ ∈ R
n belongs to F⊥; then VF (ξ) = 0,

and, by (1.3) and (1.9), 0 < u0(λξ) < c for all λ ∈ R, which is impossible if ξ 6= 0
and if u0 is a strictly convex function. Note that the strict convexity of u0 is a crucial
hypothesis for the resolution of the parabolic Dirichlet problem, Section 6 . See also
[3, 19].

Remark 1.7. If u0 : R
n → R is a spacelike and strictly convex function such

that 1 ≤ H2[u0] ≤ k and lim|x|→+∞ u0(x) − |x| = 0, we get the following: taking
for the lower barrier u (resp. for the upper barrier u) the hyperboloid asymptotic to
the cone xn+1 = |x| and of scalar curvature H2 = k′ > k (resp. of mean curvature

H1 = h <
√

2n
n−1 ), by the maximum principle we have u < u0 < u, and Theorem 1.4

shows that problem (1.10) has a (unique) solution u such that u ≤ u ≤ u during the
evolution. Moreover u converges to the hyperboloid of scalar curvature H2 = 1, as t
tends to infinity.

Remark 1.8. By scaling u in Theorem 1.2, we obtain an admissible solution of
H2[u] = λ2 in R

n such that (1.7) and (1.8) hold. Moreover, by scaling the barriers
u, u in Proposition 1.1, we obtain a result similar to Theorem 1.4 for the parabolic
problem

{

− u̇√
1−|Du|2

+H2[u]
1
2 = λ in R

n × (0,+∞)

u(x, 0) = u0(x) on R
n × {0},

(1.12)



90 P. BAYARD

if u < u0 < u and λ2 ≤ H2[u0] ≤ λ2k hold.

Let us quote some related papers: in Minkowski space, entire spacelike hyper-
surfaces of constant mean curvature are classified in [17] and entire hypersurfaces of
constant Gauss curvature are studied in [12, 5]. In [3], we construct entire hyper-
surfaces with prescribed scalar curvature and given values at infinity which stay at a
bounded distance of a lightcone.

The entire mean curvature flow in Minkowski space is studied in [8], and the
entire Gauss curvature flow in [5]. The scalar curvature flow in globally hyperbolic
Lorentzian manifolds having a compact Cauchy hypersurface is studied in [10, 11] and
[9].

Finally, the parabolic Dirichlet problem for the scalar curvature operator in the
euclidian space is solved in [14, 15].

The outline of the paper is as follows. We recall the definition of the set of lightlike
directions at infinity of a spacelike and convex function in Section 2. In Section 3 we
construct the barriers with given set of lightlike directions at infinity, and construct
the auxiliary functions needed for the local estimates. The entire solutions of the
prescribed constant scalar curvature equation are constructed Section 4. We introduce
further notation and recall the evolution equations of various geometric quantities
Section 5, and we study the parabolic Dirichlet problem Section 6. In Section 7 we
construct the entire scalar curvature flow, once local C1 and C2 estimates are known,
and we prove that the flow converges. We carry out the local estimates in Sections 8
and 9. A short appendix ends the paper.

2. The set of lightlike directions at infinity of an entire spacelike hy-

persurface of constant scalar curvature. Let u : R
n → R be a spacelike and

convex function. Following Treibergs [17], its blow down Vu : R
n → R is defined by

Vu(x) = lim
r→+∞

u(rx)

r
.

As in [17], we denote by Q the set of the convex homogeneous of degree one functions
whose gradient has norm one whenever defined. The following holds:

Lemma 2.1. For every convex and spacelike solution u of the prescribed scalar
curvature equation (1.6), the blow down Vu belongs to Q.

Proof. This result is proved in [17], Theorem 1 for the prescribed mean curvature
equation, using a barrier construction. The same barrier can be used for the prescribed
constant scalar curvature equation as well.

The set Q is in one-to-one correspondence with the set of closed subsets of Sn−1;
see [6], Lemma 4.3.

Lemma 2.2. [6, 17]. If F is a closed non-empty subset of Sn−1,

VF (x) := sup
λ∈F

〈x, λ〉

belongs to Q; the map F 7→ VF is one-to-one, and its inverse is the map

w ∈ Q 7→ F = {x ∈ Sn−1 ⊂ R
n : w(x) = 1}.
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In particular, the blow down of a convex solution u of (1.6) is determined by the
set of its lightlike directions at infinity

Lu := {x ∈ Sn−1 : Vu(x) = 1}.

Note that here, and in contrast with [17, 5], it is not known if a spacelike entire
function of constant negative scalar curvature is necessarily convex. Nevertheless, the
solutions u constructed in this article are such that VF ≤ u ≤ VF + c, where F is a
closed subset belonging to Sn−1 and c is a constant. In that case, the blow down Vu

and the set of lightlike directions Lu are well-defined, and satisfy

Vu = VF and Lu = F.

We finally recall a useful formula. Denoting by dS the canonical distance on the
sphere Sn−1, we proved the following formula in [5], Lemma 4.6: for every x ∈ Sn−1,

VF (x) = cos(dS(x, F )). (2.1)

3. The construction of the barriers.

3.1. The semitrough. We first recall the properties of the standard semitrough
of constant Gauss curvature in the Minkowski space R

2,1, constructed in [13]: this is
the unique spacelike function ũ : R

2 → R whose graph has constant Gauss curvature
one, and which is such that

Dũ(R2) = {(x1, x2) ∈ B1 : x1 > 0},

and

lim
|x|→+∞

ũ(x) − VS+(x) = 0. (3.1)

Here B1 is the unit ball in R
2 centered at 0, and S+ is the arc of the circle S1 = ∂B1

defined by S+ := {(x1, x2) ∈ S1 : x1 ≥ 0}. Let S be a closed arc of circle on the
sphere Sn−1. This is a subset of the form f(S+ × {0}), where

S+ × {0} = {(x1, x2, 0, . . . , 0) ∈ Sn−1 : x1 ≥ 0} (3.2)

and f is a conformal transformation of Sn−1. From the existence of the standard
semitrough, we deduce the following

Lemma 3.1. Let S be a closed arc of circle on Sn−1, and let k > 0. There exists
a spacelike entire function u such that

H2[u] = k and sup
Rn

|u− VS | < +∞.

Proof. Recall that a Lorentz transformation preservesH2, and acts as a conformal
transformation of Sn−1 on the sets of lightlike directions at infinity (Sn−1 is identified
with the projective lightcone). Thus, applying a Lorentz transformation, we may
suppose that S is given by (3.2). The function u defined by

u(x1, x2, x3, . . . , xn) =
1√
k
ũ(
√
k(x1, x2)),

where ũ is the standard semitrough defined above, satisfies the required properties.
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3.2. The barriers. Let h be a positive constant and F be a closed subset of
Sn−1. From [17] p233, we know that there exists a smooth spacelike function u : R

n →
R whose graph has constant mean curvature H1 = h and which is such that

VF ≤ u ≤ VF +
n

h
on R

n. (3.3)

The function u satisfies the further properties:

lim sup
|x|→+∞

u(x) − |x| ≤ 0, (3.4)

and, for all ξ ∈ F,

lim
r→+∞

u(rξ) − r = 0. (3.5)

For these last properties, see the upper barrier z2 used in [17] p233.

Lemma 3.2. Let h and k be two positive constants such that h < 2
√
k. We assume

that F is a union of closed arcs of circles on Sn−1,

F = ∪i∈ISi. (3.6)

Denoting by ui the entire spacelike function of constant scalar curvature k associated
to Si by Lemma 3.1 (and its proof), the function u = sup

i∈I
ui satisfies

VF < u < u on R
n.

Remark 3.3. The closure of an open subset U of Sn−1 with C1 boundary is
of the form (3.6). More generally, if U satisfies an interior cone condition at each
boundary-point (i.e. all ξ ∈ ∂U is a vertex of a (geodesic) cone ⊂ U), U is of the form
(3.6). Of course, the set F in (3.6) might be much more complicated (e.g. without
interior point).

Proof. We first prove that VF < u on R
n. Since ui > VSi

for all i ∈ I, it is
sufficient to prove that, for all x ∈ R

n, VF (x) = VSi
(x) for some index i ∈ I. Since

these functions are homogeneous of degree one, we may suppose that x ∈ Sn−1 ⊂ R
n.

By (2.1), this amounts to prove that dS(x, F ) = dS(x, Si) for some index i ∈ I, where
dS is the natural distance on Sn−1. Let x0 ∈ F be such that dS(x, F ) = dS(x, x0),
and i ∈ I be such that x0 belongs to Si. Since Si ⊂ F, we have dS(x, F ) ≤ dS(x, Si),
and since x0 ∈ Si we have dS(x, x0) ≥ dS(x, Si) and thus dS(x, F ) ≥ d(x, Si). Thus
dS(x, F ) = dS(x, Si), and the result follows.

We now prove that u ≤ u. We fix i ∈ I and we prove that ui ≤ u : applying a
Lorentz transformation, we may assume that

Si = {(x1, x2, 0, . . . , 0) ∈ Sn−1 : x1 ≥ 0}.

Let x′0 ∈ R
n−2, and set

ũi(x1, x2) := ui(x1, x2, x
′
0) and ũ(x1, x2) := u(x1, x2, x

′
0).

Recalling the proof of Lemma 3.1, we observe that ũi is the (scaled) semitrough
defined Section 3.1. From Lemma A.1 we get H1[ũ] ≤ h. Since ũi is the semitrough
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with Gauss curvature equal to k, from the geometric-arithmetic means inequality we
get H1[ũi] ≥ 2

√
k. Thus H1[ũ] ≤ H1[ũi]. We suppose by contradiction that there

exists x0 = (x0
1, x

0
2) such that ũi(x0) > ũ(x0), and we consider ε > 0 such that

ũi(x0) > ũ(x0) + ε.

Since Si belongs to F, we have VF (., x′0) ≥ VSi
(., x′0) = VS+ , and we conclude from

(3.1) and (3.3) that

lim inf
|x|→+∞

(ũ+ ε) − ũi ≥ ε.

Thus the non-empty open set

U = {(x1, x2) ∈ R
2 : ũi(x1, x2) > ũ(x1, x2) + ε}

is bounded. Since ũi = ũ+ε on ∂U andH1[ũi] ≥ H1[ũ+ε] in U, we get a contradiction
with the maximum principle. The claim is proved.

We finally prove the strict inequality u < u : we set uλ(x) :=
1

λ
u(λx), with λ > 1

such that λh < 2
√
k. Since H1[uλ] = λh and uλ > VF , the arguments given in the

paragraph above (with uλ instead of u) show that u ≤ uλ. Since uλ < u, we obtain
the result.

The useful properties of the barriers are gathered in Proposition 1.1.

Remark 3.4. By construction, it is clear that if the set F is contained in some
affine subspace, in

{(x′, x′′) ∈ R
n = R

k × R
n−k : x′′ = 0}

say, we may assume that the barriers u, u satisfy: for all (x′, x′′) ∈ R
k × R

n−k,

u(x′, x′′) = u(x′, 0) and u(x′, x′′) = u(x′, 0).

3.3. Construction of two auxiliary functions. This section is devoted to the
construction of auxiliary functions which are crucial for the local C1 and C2 estimates.
The functions u, u are the barriers constructed above. The following lemma is needed
for the local C1 estimate.

Lemma 3.5. Let K be a compact subset of R
n. There exists a smooth spacelike

function ψ : R
n → R such that

ψ < u on K and ψ ≥ u near infinity.

For the proof, we will need the following lemma:

Lemma 3.6. Let F be a closed subset of Sn−1. Let ε > 0 and set

Fε := {ξ ∈ Sn−1 : dS(ξ, F ) ≤ ε}.

The function VFε
− VF has the following properties:

sup
ξ∈Sn−1

|VFε
(ξ) − VF (ξ)| ≤ ε, (3.7)
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and

inf
ξ∈Sn−1\Fε

VFε
(ξ) − VF (ξ) ≥ mε, (3.8)

for some positive constant mε.

Proof. By (2.1), for all ξ ∈ Sn−1,

VFε
(ξ) − VF (ξ) = cos (dS(ξ, Fε)) − cos (dS(ξ, F )) . (3.9)

We first prove (3.7): we observe that, for all ξ ∈ Sn−1,

|dS(ξ, Fε) − dS(ξ, F )| ≤ ε.

Since |cos(α) − cos(β)| ≤ |α− β| for all α, β ∈ R, we obtain (3.7).
We now prove (3.8): we suppose that ξ /∈ Fε; since F ⊂ Fε, we have

dS(ξ, F ) = dS(ξ, Fε) + ε. (3.10)

This implies in particular that

dS(ξ, Fε) ∈ [0, π − ε].

Denoting α = dS(ξ, Fε), we obtain from (3.9) and (3.10) that

VFε
(ξ) − VF (ξ) = cosα− cos(α+ ε) ≥ mε,

where mε = inf
α∈[0,π−ε]

∫ α+ε

α

sin(t)dt is positive, and we obtain (3.8).

Proof of Lemma 3.5. Let K be a compact subset of R
n, and R ≥ 1 be such that

K ⊂ BR (here and below BR stands for the open ball of radius R in R
n, centered at

the origin). We fix δ0 > 0 such that

inf
BR

(u − VF ) ≥ δ0. (3.11)

Let ε > 0 and Fε := {ξ ∈ Sn−1| d(ξ, F ) ≤ ε}. From (3.7) we get

sup
K

|VFε
− VF | <

δ0
8

(3.12)

if ε < δ0

8R . Thus, if ε < δ0

8R ,

sup
K

|(VFε
+ ε) − VF | <

δ0
4
. (3.13)

Let ψ be a spacelike function such that ψ > VFε
+ ε and

sup
K

|ψ − (VFε
+ ε)| < δ0

4
. (3.14)

We may construct ψ as follows: we first consider a spacelike function v whose graph
has constant mean curvature one and which is such that

VFε
< v < VFε

+ c,
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given by [17] Theorem 2; here c is a positive constant. We then define

ψ(x) :=
1

λ
v(λx) + ε,

where λ is a positive parameter. We have

sup
x∈Rn

|ψ(x) − (VFε
+ ε)(x)| = sup

x∈Rn

∣

∣

∣

∣

1

λ
v(λx) − VFε

(x)

∣

∣

∣

∣

=
1

λ
sup

x∈Rn

|v(λx) − VFε
(λx)| ≤ c

λ
<
δ0
4

if λ is chosen sufficiently large. From (3.13) and (3.14) we get

sup
K

|ψ − VF | <
δ0
2
, (3.15)

and, from (3.11), on K,

u− ψ ≥ inf
K

(u− VF ) − sup
K

|ψ − VF | ≥
δ0
2
.

We now prove that there exists rε > 0 such that

inf
Rn\Brε

(VFε
+ ε− u) ≥ ε

2
. (3.16)

Since ψ > VFε
+ ε, this will prove the last claim of the Lemma. We consider x = rξ ∈

R
n\{0}, with r > 0 and ξ ∈ Sn−1. We first suppose that ξ ∈ Fε. By (3.4) there exists

r1, independent of ξ, such that u(rξ) ≤ r + ε
2 for all r ≥ r1. Thus, if r ≥ r1,

(VFε
+ ε− u)(rξ) ≥ (r + ε) −

(

r +
ε

2

)

≥ ε

2
.

If we now suppose that ξ /∈ Fε, we have

(VFε
+ ε− u)(rξ) ≥ (VFε

− VF ) (rξ) + (VF − u) (rξ)

≥ (VFε
− VF ) (rξ) − c,

where the constant c is given by (1.3). By (3.8), (VFε
− VF ) (rξ) ≥ rmε where the

constant mε is positive. Thus, there exists r2 such that if r ≥ r2 and ξ /∈ Fε, we have

(VFε
+ ε− u)(rξ) ≥ ε

2
.

Taking rε = max(r1, r2) we obtain (3.16).

The following lemma is needed for the local C2 estimate.

Lemma 3.7. We suppose that F is not included in any affine hyperplane of R
n,

and we consider K a compact subset of R
n. There exist a ball BR which contains K

and a smooth and strictly convex function Φ : BR → R such that

Φ > u on K and Φ ≤ u on ∂BR.

Proof. We first note that the upper barrier u is strictly convex: this follows from
the Splitting Theorem [6], Theorem 3.1, together with the assumption that F is not
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included in any affine hyperplane of R
n. Applying a affine Lorentz transformation if

necessary, we may suppose that u(0) = 0 and du0 = 0. Since u is strictly convex, we
have

lim
|x|→+∞

u(x) = +∞. (3.17)

We fix R′ sufficiently large such that K ⊂ BR′ . We set Φ0 := supBR′
u+ 1. Recalling

(1.3), u ≥ u− c on R
n. We thus get from (3.17) the existence of R > R′ such that

inf
{x: |x|≥R}

u(x) ≥ Φ0 + 1. (3.18)

We set, for all x ∈ R
n,

Φ(x) := Φ0 +
1

R2
|x|2. (3.19)

The function Φ is strictly convex, Φ ≥ u+ 1 on BR′ and Φ ≤ u on ∂BR.

4. The construction of an entire solution of the elliptic problem. We
assume that F, u and u are as in Proposition 1.1. The barriers u, u are constructed
in the previous section.

We first suppose that F is not included in any affine hyperplane of R
n. For any

positive R, we set uR for the admissible solution of

{

H2[uR] = 1 in BR

uR = u on ∂BR.

This Dirichlet problem is solvable since u is strictly convex (by the Splitting Principle
[6], Theorem 3.1); see [3, 19]. From the Mac-Laurin inequality (1.1) we get H1[uR] ≥
√

2n
n−1 . Thus, the comparison principle for the operatorH1 implies that u ≥ uR. Since

u is defined as a supremum of admissible functions with scalar curvature H2 = 1, we
also have uR ≥ u. Thus uR lies between the barriers, for every R. The following local
uniform estimates hold: for any R0 ≥ 0, there exist R1 = R1(R0) sufficiently large,
ϑ ∈ (0, 1), and C ≥ 0 such that: for every R ≥ R1,

sup
BR0

|DuR| ≤ 1 − ϑ and sup
BR0

|uR| + sup
BR0

|D2uR| ≤ C.

For the C1 local estimate, we refer to [4], Proposition 4.1. The auxiliary function ψ
needed for the estimate is given here by Lemma 3.5. For the local C2 estimate, we
refer to [4], Proposition 5.1.; here is needed the auxiliary function Φ given by Lemma
3.7. The proofs remain unchanged.

Evans-Krylov interior second derivative Hölder estimate, and Schauder interior
regularity theory imply locally uniform estimates of higher derivatives. A diagonal
process then yields a subsequence uRk

, Rk → +∞, that locally converges to a smooth
solution of (1.6). The properties (1.7) and (1.8) follow from the behavior at infinity
of the barriers given by (1.3) and (1.4).

If F is included in some affine hyperplane of R
n, applying a Lorentz transformation

we may suppose that F belongs to

Sk−1 × {0} = {(x1, . . . , xn) ∈ Sn−1 : xk+1 = · · · = xn = 0}
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and that F is not included in any affine hyperplane of R
k × {0}, where k belongs to

{1, . . . , n − 1}. By Remark 3.4, the restrictions u|Rk , u|Rk are barriers for the scalar

curvature operator H2 on R
k, with u|Rk strictly convex, and are such that (1.3)-(1.4)

hold on R
k. Thus, there exists ũ : R

k → R such that H2[ũ] = 1 and u|Rk ≤ ũ ≤ u|Rk .
The function u defined on R

n by

u(x1, . . . , xn) := ũ(x1, . . . , xk)

is an entire solution of (1.6) such that (1.7) and (1.8) hold.

5. Notation and evolution equations.

5.1. Notation. Let Σ0 be a spacelike hypersurface of R
n,1, and let X : Σ0 ×

[0,+∞) → R
n,1 be a family of spacelike embeddings of Σ0 in R

n,1 : for every t ≥ 0,
Σt := X(Σ0 × {t}) is a spacelike hypersurface. We set N for the future oriented unit
normal field of Σt.We denote by (gij) and (hij) the metric and the second fundamental
form induced by the Minkowski metric on the embedded hypersurface Σt. We will use
the Einstein summation convention, and raise or lower indices with respect to the
metric (gij). The components of the curvature endomorphism are thus denoted by hi

j ,
and we will often write problem (1.10) in the equivalent form

{

Ẋ = (F ((hi
j)i,j) − f̂(X, t))N in Σ0 × (0,+∞)

X(., 0) = X0 on Σ0,
(5.1)

where X0 is the canonical embedding of Σ0, F (A) is the square root of the sum

of the principal minors of order 2 of the matrix A, and f̂ is a positive function on
R

n,1 × [0,+∞) (constant equal to one in (1.10)). Let

F j
i :=

∂F

∂hi
j

(

(hi
j)i,j

)

.

If (hi
j)i,j is diagonal, so is (F j

i )i,j , and F i
i = 1

2F σ1,i for all i, where

σ1,i =
∑

k,k 6=i

λk.

Here and below we denote by λ1 ≥ · · · ≥ λn the principal curvatures of Σt. (F j
i )i,j

defines a (1, 1) tensor on Σt. Raising the index i we also will use the symmetric tensor
(F ij)i,j . Analogously we define

F ij,kl := gii′gkk′ ∂2F

∂hi′
j ∂h

k′

l

(

(hi
j)i,j

)

.

We say that X solution of (5.1) is admissible if, for every t ≥ 0, Σt is an admissible
hypersurface, which means that H1(Σt) > 0 and H2(Σt) > 0. Admissibility of a
solution of (1.10) is defined similarly. We denote by D the usual covariant derivative
on R

n,1 (or on R
n), ∇ the covariant derivative induced on Σt, and use a semi-colon to

denote the components of covariant derivatives on Σt. Finally, the Minkowski metric
on R

n,1 is denoted by 〈., .〉, the Minkowski norm of spacelike vectors of R
n,1 by |.|,

and the usual euclidian norm by |.|eucl.
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5.2. Evolution equations. For a hypersurface moving according to

Ẋ = (F (hi
j) − f̂(X, t))N,

we have

d

dt
gij = 2(F − f̂)hij , (5.2)

d

dt
(F − f̂) − F ij(F − f̂)ij = −F ijhikh

k
j (F − f̂) −Nαf̂α(F − f̂) − f̂t, (5.3)

d
dthij − F klhij;kl = F (ha

i haj) − hijF
kl(ha

khal)

+F kl,pqhkl;ihpq;j − f̂ij + (F − f̂)hk
i hkj ,

(5.4)

and, defining u := −〈en+1, X〉 and ν := −〈en+1, N〉,

u̇− F ijuij = −f̂ν, (5.5)

and

ν̇ − F ijνij = −νF ijhk
jhki + f̂jt

j , (5.6)

where the tj ’s are the coordinates of the component tangential to Σt of en+1. For the
proofs we refer to [10] and [5], where similar evolution equations are obtained.

6. The parabolic Dirichlet problem. The aim of this section is to prove the
following

Theorem 6.1. Let Ω be a uniformly convex bounded domain in R
n with smooth

boundary, let u0 : Ω → R be a smooth, spacelike and strictly convex function, and let
f̂ : Ω × R × [0,+∞) → (0,+∞), (x, u, t) 7→ f̂(x, u, t) be a smooth positive function

such that f̂t ≤ 0. We suppose that, for all x ∈ Ω,

H2[u0]
1
2 (x) − f̂(x, u0(x), 0) ≥ 0.

Then the parabolic Dirichlet problem

{

− u̇√
1−|Du|2

+H2[u]
1
2 = f̂(x, u, t) in Ω × (0,+∞)

u(x, t) = u0(x) on ∂Ω × [0,+∞) ∪ Ω × {0},
(6.1)

has an admissible solution u ∈ C∞(Ω × [0,+∞)) if, on the corner of the parabolic
domain, the compatibility conditions of any order are satisfied.

At the boundary, compatibility conditions of any order are fulfilled, so we get a
smooth admissible solution for a short time interval.

We consider T maximal such that the parabolic Dirichlet problem (6.1) has an
admissible solution on Ω × [0, T ), and suppose by contradiction that T < +∞. We
need the following a priori estimates:

sup
Ω×[0,T )

|Du| ≤ 1 − ϑ, sup
Ω×[0,T )

|H2[u]
1
2 − f̂ | ≤ C1, sup

Ω×[0,T )

|D2u| ≤ C2, (6.2)
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and

α0 ≤ inf
Ω×[0,T )

H2[u]
1
2 . (6.3)

with ϑ ∈ (0, 1], C1, C2 ≥ 0, and α0 > 0. With these estimates at hand (and the
obvious C0 estimate), the estimates of Krylov and Safonov and the Schauder theory
imply estimates of higher derivatives of u. We may thus extend u to a solution on
[0, T ]. Admissibility at the time T is guaranteed by (6.3) and Mac-Laurin inequality
(1.1). The short time existence theory then yields a solution on [0, T + ε), ε > 0, and
thus a contradiction with the definition of T.

In the rest of the section we carry out estimates (6.2) and (6.3). Instead of (6.1)
we will also consider the equivalent problem

{

Ẋ = (F − f̂)N in Σ0 × (0, T )
X = X0 on ∂Σ0 × [0, T ) ∪ Σ0 × {0}, (6.4)

where Σ0 = graphu0 and X : Σ0 × [0, T ) → R
n,1 denotes the embedding vector in

R
n,1.

We will denote by D0 the domain of dependence in R
n,1 of the boundary data

Σ0 = graphu0 (a point p belongs to D0 if every non-spacelike ray through p intersects
Σ0). D0 is a compact subset of R

n,1, and, since X = X0 on ∂Σ0 × [0, T ) and X is
spacelike, X(x, t) belongs to D0 during the evolution.

6.1. The C1 estimate.

6.1.1. The maximum principle for the first derivatives.

Proposition 6.2. Let X : Σ0 × [0, T ) → R
n,1 be a smooth solution of (6.4).

Then

sup
Σ0×[0,T )

ν ≤ C,

where C depends on the C0 estimate, on sup
D0×[0,T ]

|D log f̂ |eucl and on an upper bound

of ν on the parabolic boundary ∂Σ0 × [0, T ) ∪ Σ0 × {0}.
Proof. Let K be a positive constant to be chosen later. At an interior maximum

of ψ = eKuν, we have

d

dt
(logψ) − F ij(logψ)ij ≥ 0.

Thus, using (5.5),

d

dt
(log ν) − F ij(log ν)ij −Kf̂ν ≥ 0. (6.5)

Moreover, we have

d

dt
(log ν) − F ij(log ν)ij =

1

ν

(

ν̇ − F ijνij

)

+
1

ν2
F ijνiνj ,

with

ν̇ − F ijνij = f̂jt
j − νF ijhk

jhki

≤ ν|∇f̂ | − ν

n
∑

i=1

F iiλ2
i ,
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and νi = uiλi. Here the tensors are written in an orthonormal basis of principal
directions, and we used that gijt

itj ≤ ν2. Thus, (6.5) implies
(

n
∑

i=1

F iiλ2
i −

n
∑

i=1

F iiλ2
i

u2
i

ν2

)

+Kf̂ν ≤ |∇f̂ |.

Discarding the first term which is positive, and using |∇f̂ | ≤ ν|Df̂ |eucl, we obtain

Kf̂ ≤ |Df̂ |eucl, which is impossible for K sufficiently large such that

K > sup
D0×[0.T ]

|D log f̂ |eucl. (6.6)

Thus, ifK satisfies (6.6), the function ψ = eKuν reaches its maximum on the parabolic
boundary of Σ0 × [0, T ), and the result follows.

6.1.2. The C1 estimate at the boundary.

Proposition 6.3. Let u : Ω × [0, T ) → R be an admissible solution of (6.1).
Then there exists ϑ ∈ (0, 1] such that

sup
∂Ω×[0,T )

|Du| ≤ 1 − ϑ.

The number ϑ depends on infD0×[0,T ] f̂ , supD0×[0,T ] f̂ , and supΩ |Du0|.
Proof. We fix x0 ∈ ∂Ω, and we denote by n the inner normal of ∂Ω at x0. We

define, for c(n) =
√

n−1
2n ,

P1[u] = − u̇
√

1 − |Du|2
+ c(n)H1[u], P2[u] = − u̇

√

1 − |Du|2
+H2[u]

1
2 . (6.7)

The construction of the upper barrier. Let u1 be a spacelike function such that u1 ≥ u0

in Ω, u1 = u0 on ∂Ω, and c(n)H1[u1] ≤ infD0×[0,T ] f̂ . We may take for u1 the solution
of H1[u1] = c in Ω, u1 = u0 on ∂Ω, where c is a small constant; this Dirichlet problem
is solved in [2], Theorem 4.1. Defining u1(x, t) := u1(x), we have P1[u1] ≤ P1[u] (since

P1[u] = f̂ + c(n)H1[u] −H2[u]
1
2 and using (1.1)), u1 ≥ u on the parabolic boundary,

and thus, by the maximum principle, u1 ≥ u on Ω× [0, T ). Since u1(x0, t) = u(x0, t) =
u0(x0) for all t ∈ [0, T ), we obtain

∂nu(x0, t) ≤ ∂nu1(x0), ∀t ∈ [0, T ).

The construction of the lower barrier. Let u2 be an admissible function such that
u2 ≤ u0 in Ω, u2 = u0 on ∂Ω, and H2[u2]

1
2 ≥ supD0×[0,T ] f̂ . We may take for u2 the

strictly convex and spacelike solution of K[u2] = c in Ω, u2 = u0 on ∂Ω, where c
is a large constant; K[u2] stands for the Gauss curvature of graphu2; this Dirichlet
problem is solved in [7]. Defining u2(x, t) := u2(x), we have P2[u2] ≥ P2[u] on
Ω × (0, T ), u2 ≤ u on the parabolic boundary, and thus, by the maximum principle,
u2 ≤ u on Ω × [0, T ). Since u2(x0, t) = u(x0, t) = u0(x0) for all t ∈ [0, T ), we obtain

∂nu(x0, t) ≥ ∂nu2(x0), ∀t ∈ [0, T ).

Finally, since the tangential derivatives at the boundary of u, u1 and u2 coincide, we
get

sup
∂Ω×[0,T )

|Du| ≤ max(sup
∂Ω

|Du1|, sup
∂Ω

|Du2|),

and the result follows.
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6.2. The velocity estimate.

Proposition 6.4. Let X be an admissible solution of the parabolic Dirichlet
problem (6.4). We recall that f̂t ≤ 0 and we suppose that C and K are two positive
constants such that

|f̂t| ≤ C and
∣

∣

∣Nαf̂α

∣

∣

∣ ≤ K (6.8)

during the evolution. If F − f̂ ≥ 0 at t = 0 then, for all t ∈ [0, T ),

0 ≤ F − f̂ ≤ eKt sup
t=0

(F − f̂) +
C

K
(eKt − 1). (6.9)

In particular, there exist two constants α0, β0 > 0 such that

α0 ≤ F ≤ β0 (6.10)

on Σ0 × [0, T ). The constants α0, β0 depend on C,K, T, supt=0(F − f̂), and

infD0×[0,T ] f̂ .

Remark 6.5. The constants C and K in (6.8) are controlled by supD0×[0,T ] |f̂t|,
supD0×[0,T ] |Df̂ |eucl, and by the C1 estimate obtained Section 6.1.

Proof. We first consider Ψ1 := (F − f̂)e−Kt. The evolution equation of Ψ1 is

Ψ̇1 − F ijΨ1ij =

[

d

dt
(F − f̂) − F ij(F − f̂)ij −K(F − f̂)

]

e−Kt

=
[

−F ijhikh
k
j (F − f̂) −Nαf̂α(F − f̂) − f̂t −K(F − f̂)

]

e−Kt

≥
[

−F ijhikh
k
j −Nαf̂α −K

]

Ψ1,

since f̂t ≤ 0. Let T1 ∈ (0, T ). The function Ψ1 on Ω × [0, T1] reaches its minimum at
some point (x0, t0). Assume that (x0, t0) ∈ Ω × (0, T1] and that Ψ1(x0, t0) < 0. At
(x0, t0), we have Ψ̇1 − F ijΨ1ij ≤ 0, which gives

−F ijhikh
k
j −Nαf̂α −K ≥ 0 (6.11)

and a contradiction with (6.8). Since Ψ1 ≥ 0 on the parabolic boundary, we conclude

that Ψ1 ≥ 0 on Ω × [0, T ), and thus that F − f̂ ≥ 0 on Ω × [0, T ).

We now consider Ψ2 :=

(

F − f̂ +
C

K

)

e−Kt, whose evolution equation is

Ψ̇2 − F ijΨ2ij =
[

−F ijhikh
k
j (F − f̂) −Nαf̂α(F − f̂) − f̂t −K(F − f̂) − C

]

e−Kt.

Let T2 ∈ (0, T ). The function Ψ2 on Ω × [0, T2] reaches its maximum at some point
(x0, t0). Assume that (x0, t0) ∈ Ω×(0, T2] and that Ψ2(x0, t0) >

C
K . The latter implies

that F − f̂ > 0 at (x0, t0). At (x0, t0), Ψ̇2 − F ijΨ2ij ≥ 0, which gives

−F ijhikh
k
j (F − f̂) −Nαf̂α(F − f̂) − f̂t −K(F − f̂) − C ≥ 0 (6.12)

and a contradiction with (6.8). Since Ψ2 ≤ C
K on ∂Ω× [0, T ) and Ψ2 ≥ C

K on Ω×{0},
we conclude that, for all (x, t) ∈ Ω × [0, T ),

Ψ2(x, t) ≤ sup
x∈Ω

Ψ2(x, 0),

which proves the proposition.



102 P. BAYARD

6.3. The C2 estimate.

6.3.1. The maximum principle for the second derivatives.

Proposition 6.6. Let X : Σ0 × [0, T ) → R
n,1 be a solution of (6.4). Then

sup
ξ∈TΣt, |ξ|=1

hijξ
iξj ≤ C

during the evolution, for some constant C which depends on a bound of the second
fundamental form on the parabolic boundary ∂Σ0× [0, T )∪Σ0 ×{0} and on estimates
obtained before.

Proof. The estimate relies on J.Urbas C2 estimate [19] for the elliptic Dirichlet
problem. We fix T1 ∈ (0, T ). For t ∈ [0, T1], x ∈ Σ0, and ξ ∈ TX(x,t)Σt with |ξ| = 1,
we consider

W̃ (x, ξ, t) := ηβ(X(x, t))hijξ
iξj ,

where η is a positive function on R
n,1 and β is a positive constant, which will be defined

later. We suppose that W̃ reaches its maximum at (x0, ξ0, t0) where t0 ∈ (0, T1], x0 is
an interior point of Σ0, and ξ0 ∈ TX(x0,t0)Σt0 , with |ξ0| = 1. We choose e1

0, . . . , en
0 a

local frame on Σ0 which induces on Σt0 an orthonormal frame ê1, . . . , ên such that

ê1(X(x0, t0)) = ξ0 and ∇êi
êj(X(x0, t0)) = 0.

Observe that ê1 is a principal direction of Σt0 at X(x0, t0), associated to the largest
principal curvature. We still denote by ê1, . . . , ên the frame induced by e1

0, . . . , en
0

on Σt, for every t. The function

W (x, t) := ηβII(ê1, ê1)/|ê1|2,

where II stands for the second fundamental form of Σt, reaches its maximum at
(x0, t0); we get

d
dt logW − F ij(logW )ij = β

(

˙log η − F ij(log η)ij

)

+ 1
h11

(

ḣ11 − F ijh11;ij

)

+ 1
h2
11

F ijh11;ih11;j − ġ11

g11
≥ 0.

From the evolution equation (5.4), we get:

ḣ11 − F ijh11;ij = Fh2
11 − h11F

kl(ha
khal)

+F kl,pqhkl;1hpq;1 − f̂11 + (F − f̂)h2
11,

and thus:

β
(

˙log η − F ij(log η)ij

)

+ Fh11 − F kl(ha
khal)

+ 1
h11

F kl,pqhkl;1hpq;1 − f̂11

h11
+ (F − f̂)h11

+ 1
h2
11

F ijh11;ih11;j − ġ11

g11
≥ 0.

(6.13)

Recalling (6.10), |F − f̂ | is under control, and we have the following estimates (where
the largest principal curvature is denoted by λ1, and C1, C2, C3 are constants under
control):

Fh11 + (F − f̂)h11 ≤ C1(1 + λ1),
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|f̂11| ≤ C2(1 + λ1), (6.14)

and, from (5.2),
∣

∣

∣

∣

ġ11
g11

∣

∣

∣

∣

≤ C3λ1.

For estimate (6.14), we refer to [19] p312-313. Thus

0 ≥ −β
(

˙log η − F ij(log η)ij

)

+ F kl(ha
khal) − C4(1 + λ1)

− 1
h11

F kl,pqhkl;1hpq;1 − 1
h2
11

F ijh11;ih11;j ,
(6.15)

for some constant C4. We choose log η = Φ, with

Φ(x1, . . . , xn, xn+1) := ϕ(x1, . . . , xn),

where ϕ is some strictly convex function on R
n. Note that

˙log η = (F − f̂)dΦX(x0,t0)(N) (6.16)

is under control. Moreover, following J.Urbas [19], page 313,

F ij(log η)ij ≥ C0τ − C

where τ =
∑

i F
ii, and C0, C are constants under control. Finally,

0 ≥ β(C0τ − C′) + F kl(ha
khal) − C4(1 + λ1)

− 1
λ1
F kl,pqhkl;1hpq;1 − 1

λ2
1

F ijh11;ih11;j,

where C′ is under control, which is analogous to inequality (2.8) obtained by J.Urbas
in [19] page 312. We then obtain the estimate of λ1 following the arguments used
in [19] p. 314-315, without any modification. This gives the C2 estimate if the C2

estimate at the parabolic boundary is known.

6.3.2. The C2 estimate at the boundary.

Proposition 6.7. Let u : Ω × [0, T ) → R be a smooth solution of the parabolic
Dirichlet problem (6.1). Then

sup
(x,t)∈∂Ω×(0,T )

|D2u(x, t)| ≤ C,

for some constant C under control (which depends on the estimates obtained Sections
6.1 and 6.2).

We fix (x0, t0) ∈ ∂Ω× (0, T ). Following [15], we write the evolution equation (6.1)
on the form

−u̇+ F̃ (Du,D2u) = f̂(x, u, t) × γ(Du),

where γ(Du) =
√

1 − |Du|2, and F̃ (Du,D2u) is the square root of the second elemen-
tary symmetric function of the principal values of the n× n matrix whose coefficient
(i, j) is given by

n
∑

k=1

(

δik +
uiuk

1 − |Du|2
)

ukj . (6.17)
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Let us consider the linear operator

LW := −Ẇ + F̃ ijWij ,

where F̃ ij = ∂F̃
∂qij

(Du,D2u). We suppose that (e1, . . . , en) is a basis such that

(e1, . . . , en−1) is an orthonormal basis made of principal vectors of ∂Ω at x0 and
en is the unit inner normal of Ω at x0. Let

W (x, t) := g(x,Du(x, t)) − K

2

n−1
∑

k=1

(uk(x, t) − uk(x0, t0))
2,

where g : Ω ×B(0, 1) → R is a given smooth function and K is a constant.

The following key inequality is a lorentzian analog of (2.4) in [15]:

Lemma 6.8. If K is sufficiently large under control, W satisfies

LW ≤ C1(1 + |DW | +
∑

ij

F̃ ijWiWj +
∑

i

F̃ ii), (6.18)

where C1 depends on the C1 estimate and on the constants α0, β0 in (6.10).

Sketch of the proof. Following the lines of [15] Section 3, we obtain the following
expression for LW, which is analogous to (3.13) in [15]:

LW = −K
n
∑

α=1

σ̃1,αu
2
αα

(

n−1
∑

k=1

ηα
k

2

)

+ j1 + j2 + j3, (6.19)

with

j1 = −2

n
∑

α=1

σ̃1,αuαuααWα,

|j2| ≤ C

(

n
∑

α=1

σ̃1,α|uαα| +
n
∑

α=1

σ̃1,α

)

and |j3| ≤ C (1 + |DW |) ,

where C is a constant under control. Here we use the letter α for derivatives in a
basis (τα) of R

n which induces by the map x 7→ (x, u(x, t)) an orthonormal basis of
principal vectors of graphu at (x, u(x, t)); moreover σ̃1,α denotes a sum of principal
values of (6.17), and the numbers ηα

k are such that ek =
∑

α η
α
k τα, for k = 1, . . . , n.

Expression (6.19) is also analogous to (26) in [3]. We then follow the arguments in
[3], from page 19 to page 23, without modification, and obtain (6.18).�

Setting

W̃ (x, t) := exp (−C1g(x0, Du(x0, t0))) − exp(−C1W ) − b|x− x0|2,

the following holds (see [15], inequality (2.5)) :

Lemma 6.9. If b is sufficiently large,

LW̃ ≤ C2(1 + |DW̃ |),
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where C2 is some constant under control.

We first estimate the mixed second derivatives. Let es be a unit vector tangent
to ∂Ω at x0, and let ξ be the local vector field tangent to the boundary, and spanned
by the vector es : for all x ∈ Ω ∩Br(x0),

ξ(x) := es + ρs(x
′)en,

where en is the inner normal vector of Ω at x0, and where, in the splitting R
n =

Tx0
∂Ω ⊕ R.en, x− x0 = (x′, xn) and ∂Ω is locally the graph of ρ.
As in [3], we take g(x, p) = 〈p, ξ(x)〉, and we define the barrier function

v = −a0|x− x0|2 − h(d) + ψ(x′),

with h(d) = c0(1 − e−b0d) and

ψ(x′) = exp(−C1u0ξ(x0)) − exp(−C1u0ξ(x
′)) exp

(

C1K
∑n−1

k=1 (u0k(x′) − u0k(x0))
2

+2C1K(|u0n(x′)|2 + 1)|Dρ(x′)|2
)

.

Here d denotes the distance function to the boundary-point x0, u0ξ(x) denotes
〈Du0(x), ξ(x)〉, and, for a function f defined on R

n, an expression like f(x′) stands
for f(x′, ρ(x′)).

We first verify that v ≤ W̃ on the parabolic boundary of Ω ∩Br(x0) × [0, T ):
- on ∂(Ω ∩Br) × [0, T ) : v ≤ W̃ on ∂Ω ∩Br × [0, T ) by the very definition of ψ, and
on Ω ∩ ∂Br × [0, T ) if a0 = a0(r, sup |ψ|, sup |W̃ |) is chosen sufficiently large.
- on

(

Ω ∩Br

)

× {0} : we suppose that x0 = 0, we fix x ∈ Ω ∩ Br, and we consider

ω(s) = W̃ (sx, 0) − v(sx), s ∈ [0, 1] (Ω is convex). We have ω(0) ≥ 0. Setting

C = sup
Ω∩Br×{0}

|DW̃ | + sup
Ω∩Br×{0}

|Dψ|,

we see by a direct computation that, for all s ∈ [0, 1],

ω′(s) ≥ |x|{b0c0e−b0r − C}.

We thus obtain the property if c0 = c0(b0) is chosen large such that

b0c0e
−b0r ≥ C. (6.20)

From the proof of Lemma 4.6. in [3], we see that

Lv > C2(1 + |Dv|)

on Ω ∩ Br(x0) × (0, T ), if h′ = b0c0e
−b0d,−h′′

h′ = b0 are large, which is compatible

with (6.20). The comparison principle implies that v ≤ W̃ on the parabolic domain,
and, since v(x0) = W̃ (x0, t0) = 0, we get

vn(x0) ≤ W̃n(x0, t0),

which gives the estimate

usn(x0, t0) ≥ C3,
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where C3 is a controlled constant. As in [3], to estimate usn(x0, t0) from above we
do the same with g(x, p) = −〈p, ξ(x)〉 = −ps − ρs(x

′)en.

We now estimate the double normal derivatives. A lower bound follows from
H1[u] > 0 and from the estimates of tangential and mixed second derivatives. To
obtain an upper bound, we use a technique of N.S.Trudinger [18, 16]. We used this
method in [3] for the elliptic Dirichlet problem. We define, for p′ ∈ B(0, 1) ⊂ R

n−1

and q′ a (n− 1) × (n− 1) symmetric matrix

F̃1(p
′, q′) =

n−1
∑

i,j=1

(

δij +
p′ip

′
j

1 − |p′|2
)

q′ij .

We denote by γ the outward unit normal to ∂Ω in R
n, and by ∂ the tangential

differential operator on ∂Ω. We fix T1 ∈ (0, T ), and (y, t1) ∈ ∂Ω × [0, T1] such that
F̃1(∂u0, ∂

2u0 + uγ∂γ) reaches its minimum at (y, t1). As in [3] page 27, an upper
bound of unn on ∂Ω× [0, T1] follows from an upper bound of unn(y, t1). We keep the
notation introduced above, but here adapted to the boundary-point y. We set

g(x, p) = F̃1(∂u0(x
′), ∂2u0(x

′) + 〈p, γ(x′)〉∂γ(x′)),

and

W̃ (x, t) = exp[−C1g(y,Du(y, t1))] {1 − exp [−C1(g(x,Du(x, t)) − g(y,Du(y, t1)))]

× exp
(

C1
K
2

∑n−1
k=1 (uk(x, t) − uk(y, t1))

2
)}

− b|x− y|2.

We consider the barrier function

v = −a0|x− y|2 − h(d) + ψ(x′)

with h(d) = c0(1 − e−b0d) and

ψ(x′) = exp(−C1g(y,Du(y, t1)))
{

1 − exp
(

C1K
∑n−1

k=1 (u0k(x′) − u0k(y))2

+2C1K(|u0n(x′)|2 + 1)|Dρ(x′)|2
)}

.

For suitable constants a0, b0, c0 under control, we have v ≤ W̃ on the parabolic bound-
ary of Ω∩Br×[0, T1), and Lv > C2(1+|Dv|) in Ω∩Br×[0, T1) (see above the estimate
of the mixed derivatives). By the comparison principle and since v(y) = W̃ (y, t1) = 0,
we obtain that vn(y) ≤ W̃n(y, t1), which gives

unn(y, t1) ≤ C4,

where C4 is a constant under control. We finally observe that the bound is independent
of T1.

7. Existence of the entire flow reduced to obtaining local C1 and C2

estimates, and convergence. We suppose here that F, u, u and u0 satisfy the
hypotheses of Theorem 1.4: u, u : R

n → R are the barriers constructed Section 3 (u is
a smooth spacelike and strictly convex function with constant mean curvature h and
u is the supremum of spacelike functions with constant scalar curvature H2 = k) and
u0 : R

n → R is some smooth spacelike and strictly convex function such that

u < u0 < u and 1 ≤ H2[u0] ≤ k. (7.1)
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To construct the entire flow, we solve a family of parabolic Dirichlet problems with
parabolic boundary data u0 on a growing sequence of balls. We modify slightly the
equations near the boundary of the balls such that the problems are compatible on the
corner of the parabolic domains. This is done in such a way that the normal velocities
are uniformly bounded in terms ofH2[u0].Moreover the functions u, u are still barriers
for the modified evolution equations. This theorem is analogous to Theorem B.4 in
[5] for the logarithmic Gauss curvature flow.

Theorem 7.1. Let R > 1 and the ball of R
n, BR := {x ∈ R

n : |x| < R}.
We choose a smooth function η : BR × R → [0, 1] such that η = 0 on (BR−1 × R) ∪
graphu ∪ graphu, and η = 1 near graphu0|∂BR

. We also choose a smooth function
ζ : [0,+∞) → [0, 1] such that ζ(t) = 1 near t = 0, ζ(t) = 0 for t ≥ 1, and ζ′ ≤ 0. We
set

f̂(x, u, t) := η(x, u)ζ

(

t

ε

)

[

H2[u0]
1
2 − 1

]

+ 1. (7.2)

If ε > 0 is chosen sufficiently small, the parabolic Dirichlet problem
{

− u̇√
1−|Du|2

+H2[u]
1
2 = f̂(x, u, t) in BR × (0,+∞)

u(x, t) = u0(x) on ∂BR × [0,+∞) ∪BR × {0},
(7.3)

has an admissible solution u : BR × [0,+∞) → R such that the normal velocity
u̇√

1−|Du|2
is uniformly bounded in terms of H2[u0]. Moreover

u ≤ u ≤ u (7.4)

for all time.

Observe that u solution of (7.3) is also solution of (1.10) on BR−1 × [0,+∞). We also
write problem (7.3) in the equivalent form:

{

Ẋ = (F − f̂)N
X = X0 on ∂ΣR

0 × [0,+∞) ∪ ΣR
0 × {0}, (7.5)

where f̂ is given by (7.2), ΣR
0 = graphBR

u0 and X : ΣR
0 × [0,+∞) → R

n,1 is the
embedding function.

Proof. The existence of a solution follows from Theorem 6.1: f̂t ≤ 0 holds,
the compatibility conditions are fulfilled on the corner of the parabolic domain, and,
observing that

f̂|t=0 = ηH2[u0]
1
2 + (1 − η)1 ≤ H2[u0]

1
2 , (7.6)

we get (H
1
2

2 − f̂)|t=0 ≥ 0.
We now prove (7.4). We consider the operators P1, P2 defined in (6.7). We recall

that u is of the form u = supi∈I ui, where for all i ∈ I the function ui is spacelike with

H2[ui] = k. Defining ui(x, t) := ui(x), we have P2[ui] = H2[ui]
1
2 = k

1
2 .Moreover, from

(7.2)-(7.1), we have P2[u] = f̂ ≤ k
1
2 . Thus, since u ≥ ui on the parabolic boundary,

we get by the maximum principle that u ≥ ui during the evolution, and finally that
u ≥ u. Now, setting u(x, t) := u(x), we get

P1[u] = c(n)h. (7.7)
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Moreover, since f̂ ≥ 1 and recalling (1.1), we have

P1[u] = f̂ + c(n)H1[u] −H2[u]
1
2 ≥ 1. (7.8)

Since c(n)h ≤ 1 (see Proposition 1.1), (7.7) and (7.8) imply that P1[u] ≥ P1[u], and
thus that u ≤ u since this inequality also holds on the parabolic boundary.

We now estimate the normal velocity. We consider X : ΣR
0 × [0,+∞) → R

n,1

solution of (7.5). We first suppose that t ∈ [0, ε]. We note that |f̂t| ≤ C0

ε where C0 is
a constant controlled in terms of H2[u0]; recalling inequality (6.9) in Proposition 6.4,
we get

0 ≤ F − f̂ ≤ eKt sup
t=0

(F − f̂) +
C0

εK
(eKt − 1),

whereK is a bound of |Nαf̂α|. Observe that K may grow with R but is independent of
ε (see Propositions 6.2 and 6.3). Taking ε = 1

K , we get the estimate: for all t ∈ [0, ε],

0 ≤ F − f̂ ≤ C

(

sup
t=0

(F − f̂), C0

)

, (7.9)

where the right-hand side term is a constant bounded in terms of H2[u0]. For t ≥ ε
the normal velocity fulfills

d

dt
(F − f̂) − F ij(F − f̂)ij = −(F − f̂)F ijhikh

kj,

and the maximum principle implies that

0 ≤ F − f̂ ≤ sup
t=ε

(F − f̂). (7.10)

Estimates (7.9) and (7.10) imply the estimate of the normal velocity during the evo-
lution in terms of the curvature H2[u0] only.

We set uR for a solution of the parabolic Dirichlet problem (7.3) on BR× [0,+∞),
R > 1. By construction, the normal velocity of the solution uR is bounded by a
constant which is independent of R. Suppose that the following estimates hold: for
any R0 ≥ 0, there exists R1 = R1(R0) larger than R0, ϑ ∈ (0, 1) and C ≥ 0 such that,
for every R ≥ R1,

sup
BR0

×[0,+∞)

|DuR| ≤ 1 − ϑ, sup
BR0

×[0,+∞)

|uR| + |D2uR| ≤ C. (7.11)

Then, higher order derivative estimates (due to Krylov, Safonov, and Schauder for
positive times) imply that a subsequence converges in

C∞(Rn × (0,+∞)) ∩ C1,α;0, α
2 (Rn × [0,+∞))

for every 0 < α < 1 to a solution u ∈ C∞(Rn × (0,+∞)) ∩ C1,1;0,1(Rn × [0,+∞)) of
(1.10).

We now prove the convergence of the entire flow u, following [10, 9]. We first note

that H2[u]
1
2 ≥ 1 during the evolution, since this property holds for the solutions of the

Dirichlet problems (7.3). We deduce that u̇ ≥ 0. Thus, for every x ∈ R
n, t 7→ u(x, t)

is an increasing function, bounded above by u(x), and

u∞(x) := lim
t→+∞

u(x, t)
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is well defined. The a priori estimates, locally uniform in space and uniform in time,
show that u∞ is a smooth and spacelike function, and that u(., t) smoothly converges
to u∞ as t tends to +∞. We now fix x ∈ R

n. Since u̇ ≥ 0 and supt∈[0,+∞) |Du(x, t)| <
1, we get from (1.10) that

0 ≤ H2[u]
1
2 (x, t) − 1 ≤ c(x)u̇(x, t),

where c(x) ∈ R does not depend on t. Thus

∫ +∞

0

[H2[u]
1
2 (x, t) − 1]dt < +∞,

and there exists a sequence (tn) such that tn → +∞ and H2[u](x, tn) → 1 as n tends
to infinity. Thus u∞ is a solution of (1.6).

In the rest of the article, we prove the local estimates (7.11).

8. The local C1 estimate. We obtain here the local C1 estimate in the spirit
of R.Bartnik’s estimate concerning hypersurfaces of prescribed mean curvature. See
e.g. [1].

8.1. The estimate with a general time function. We suppose that X :
Σ0 × [0,+∞) → R is a solution of (5.1) with f̂ ≡ 1. Let τ : R

n,1 → R be a smooth
function whose lorentzian gradient Dτ is a timelike and past oriented field (τ is a
time function on R

n,1). We set α−2 = −〈Dτ,Dτ〉 and T = −αDτ. Using the timelike
vector field T, we define a Riemannian metric on R

n,1 by

|Y |2T := 〈Y, Y 〉 + 2〈Y, T 〉2.

If S is a tensor field on R
n,1, we denote by |S|T its norm with respect to the metric

|.|T . For instance, if Y is a vector field on R
n,1,

|DY |T =





n+1
∑

i,j=1

〈Dui
Y, uj〉2





1
2

where (u1, . . . , un, un+1) is an orthonormal basis of R
n,1 such that un+1 = T. We fix

τ0 > 0, and we suppose that, for every t ≥ 0,

Σt,τ≥τ0
:= {X(x, t) : x ∈ Σ0, τ(X(x, t)) ≥ τ0} (8.1)

is a compact (spacelike) hypersurface such that τ = τ0 on its boundary, and that the
set Σt,τ≥2τ0

is non-empty. We moreover suppose that τ, α, α−1, |Dα|T , |DT |T and
|D2T |T are bounded on the region

Dτ0
:=
⋃

t≥0

Σt,τ≥τ0
(8.2)

of R
n,1, and we fix τ1 such that τ1 ≥ τ on Dτ0

. Finally, we assume that F has positive
lower and upper bounds on Dτ0

. Setting here ν := −〈T,N〉, we prove the following
estimate:

Theorem 8.1. There exists a constant C such that, for every t ≥ 0,

sup
Σt,τ≥2τ0

ν ≤ C. (8.3)
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The constant C depends on τ0, τ1, upper bounds of α, α−1, |Dα|T , |DT |T and |D2T |T
on the set Dτ0

, on lower and upper bounds of F on Dτ0
, and on supΣ0,τ≥τ0

ν.

This estimate relies on the maximum principle applied to the function ϕ = ην,
where η = (τ − τ0)

K with K a large constant. We fix T1 ∈ (0,+∞), and we consider
ϕ on the compact set

J = {(x, t) ∈ Σ0 × [0, T1] : τ(X(x, t)) ≥ τ0}.

The function ϕ reaches its maximum at a point (x0, t0) ∈ J. Our purpose is to estimate
ϕ(x0, t0) by a constant under control which does not depend on T1; such an estimate
clearly implies (8.3). If t0 = 0, we readily get that ϕ(x0, t0) ≤ C′ where C′ =
C′(K, τ0, τ1,Σ0,τ≥τ0

) is a constant, and the result follows. We thus suppose that
t0 > 0, and we prove the following proposition, which implies the estimate of ϕ(x0, t0),
and the theorem:

Proposition 8.2. Let ν0 > 1. If K is sufficiently large,

ν(x0, t0) ≤ ν0.

The constant K depends on ν0, τ0, τ1, and on bounds on α, α−1, |DT |T , |D2T |T and
F on the region Dτ0

.

In the following, we suppose that ν(x0, t0) > ν0, and we will obtain a contradiction
if K is large under control. Let us denote by T || the orthogonal projection of T on
the tangent space of Σt0 . By definition of T, we have T || = −α∇τ, and

ν2 − 1 = |T |||2 = α2|∇τ |2. (8.4)

Let Z be the tangent vector field of Σt0 such that 〈Z, h〉 = 〈N,DhT 〉, for all tangent
vector h. By a direct computation,

∇ν = −S(T ||) − Z = αS(∇τ) − Z. (8.5)

Here S stands for the curvature endomorphism of Σt0 . We first estimate |Z|:

Lemma 8.3. We have

|Z| ≤ C0ν
2, (8.6)

where C0 only depends on an upper bound of |DT |T .

Proof. Let u1, . . . , un, un+1 be an orthonormal basis such that un+1 = T. Writing
N =

∑n
j=1 αjuj + νT, we have

∑

j≤n α
2
j = ν2 − 1. Let h :=

∑n+1
i=1 hiui be a vector

tangent to Σt0 . Since 〈T,DhT 〉 = 0,

|〈N,DhT 〉| ≤
n+1
∑

i=1

n
∑

j=1

|hiαj〈uj , Dui
T 〉| ≤ ν|h|T |DT |T . (8.7)

Observe that inequality

|h|T ≤
√

2ν|h| (8.8)
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holds for all tangent vector h. To prove this, suppose that h 6= 0, and define

δ :=
h2

n+1
∑n

i=1 h
2
i

. By a straightforward computation,

|h|2T =

(

1 + δ

1 − δ

)

|h|2. (8.9)

Since h is a tangent vector, 〈h,N〉 =
∑n

i=1 hiαi − hn+1ν = 0, and the Schwarz

inequality readily gives that δ ≤ ν2−1
ν2 ; inequality (8.8) then follows from (8.9). Finally,

inequalities (8.7) and (8.8) imply that |〈Z, h〉| ≤
√

2ν2|h||DT |T , and the lemma.

We need the evolution equation of ν :

Lemma 8.4. During the evolution,

ν̇ − F ijνij = 〈DNT,N〉 + F ij〈D2
ei,ej

T,N〉+ 2F ij〈Dei
T,Dej

N〉
−νF ijhk

jhki. (8.10)

Here (ei) is a basis of TΣt at X(x, t).

Proof. By Lemma 3.3 in [10], the normal evolves according to Ṅ = ∇F (recall

that f̂ ≡ 1 here) and thus

〈T, Ṅ〉 = gijF;itj = gijF klhkl;itj .

Thus

ν̇ = −〈Ṫ , N〉 − 〈T, Ṅ〉
= −(F − f̂)〈DNT,N〉 − gijF klhkl;itj . (8.11)

We fix (x, t) ∈ Σ0×[0,+∞). Let (ei) be a local frame of Σt such that ∇ei
ej(X(x, t)) =

0. Thus Dei
ej(X(x, t)) = hijN, and we have

Dej
(Dei

T ) = D2
ei,ej

T + hijDNT

and

Dej
(Dei

N) = Dej
(hk

i ek) = hk
i;jek + hk

i hkjN.

Thus

F ijνij = −F ij〈D2
ei,ej

T,N〉 − F 〈DNT,N〉 − 2F ij〈Dei
T,Dej

N〉
−F ijhk

i;j〈T, ek〉 + F ijhk
i hkjν. (8.12)

Equations (8.11) and (8.12), together with the symmetry of hij;k in the three indices
(the Codazzi equations), imply (8.10).

Thus, the maximum condition d
dt (logϕ) − F ij(logϕ)ij ≥ 0 reads

(

F ijhk
jhki − 1

ν2F
ijνiνj

)

−
(

d
dt log η − F ij (log η)ij

)

≤ 1
ν

(

〈DNT,N〉 + F ij〈D2
ei,ej

T,N〉 + 2F ij〈Dei
T,Dej

N〉
)

.
(8.13)
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Moreover, since νi = −hk
i tk − Zi (see (8.5)), we get:

F ijhk
jhki −

1

ν2
F ijνiνj =

(

F ijhk
jhki −

1

ν2
F ijhk

i tkh
l
jtl

)

− 1

ν2
F ijZiZj −

2

ν2
F ijhk

i tkZj . (8.14)

We now estimate the terms in the expressions above:

Lemma 8.5. There exist constants C1, C2, C3 such that

|〈DNT,N〉| ≤ C1ν
2, (8.15)

∣

∣

∣

∣

F ij〈D2
ei,ej

T,N〉 +
1

ν
F ijZiZj

∣

∣

∣

∣

≤ C2σ1ν
3, (8.16)

and

∣

∣

∣

∣

2

ν
F ijhk

i tkZj + 2F ij〈Dei
T,Dej

N〉
∣

∣

∣

∣

≤ C3ν
2
∑

i

σ1,i|λi|. (8.17)

The constants C1, C2, C3 only depend on bounds on |DT |T , |D2T |T and F.

Proof. Let (ui)1≤i≤n+1 be an orthonormal basis of R
n,1 such that un+1 = T. We

suppose that e1, . . . , en is an orthonormal basis of principal directions of Σt0 at x0,
and we define (αij)1≤i,j≤n+1 such that

ei =

n+1
∑

j=1

αijuj and N =

n+1
∑

j=1

αn+1,juj .

The following estimates hold: for all i = 1, . . . , n + 1,

n+1
∑

j=1

α2
ij ≤ 2ν2 (see (8.8) for

i < n+ 1, and use 〈N,N〉 = −1 for i = n+ 1).
We first prove (8.15): using the Schwarz inequality,

|〈N,DNT 〉| ≤
n+1
∑

i,j=1

|αn+1,i||αn+1,j ||〈ui, Duj
T 〉| ≤ 2ν2|DT |T ,

and we get (8.15).
We estimate the first term in (8.16):

∣

∣

∣

∣

∣

∣

∑

ij

F ij〈N,D2
ei,ej

T 〉

∣

∣

∣

∣

∣

∣

≤ 1

2F

∑

i

σ1,i

∑

jkl

|αn+1,j ||αik||αil|
∣

∣〈uj , D
2
uk,ul

T 〉
∣

∣

≤ 1

2F
(n− 1)23/2σ1ν

3|D2T |T .

For the second term in (8.16), we readily get: F ijZiZj ≤ n− 1

2F
σ1|Z|2, and we obtain

the estimate from (8.6).
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We finally prove (8.17):

∣

∣

∣

∣

2

ν
F ijhk

i tkZj + 2F ij〈Dei
T,Dej

N〉
∣

∣

∣

∣

≤ 1

F

∑

i

σ1,i|λi|
(

1

ν
|ti||Zi| + |〈Dei

T, ei〉|
)

;

using |T ||| ≤ ν, |Z| ≤ C0ν
2 (Lemma 8.3) and |〈Dei

T, ei〉| ≤ 2ν2|DT |T we obtain
(8.17).

We now prove that the smallest principal curvature of Σt0 at x0 is negative, with
absolute value arbitrarily large, if the constant K is chosen sufficiently large:

Lemma 8.6. If

K ≥ 2C0α(τ1 − τ0)
ν2
0

ν2
0 − 1

, (8.18)

the smallest principal curvature λn is negative and is estimated by

λn ≤ −1

2

α−1K

τ − τ0
ν. (8.19)

Note that since ϕ vanishes if τ = τ0 and is positive if τ > τ0, we have τ > τ0 at
(x0, t0).

Proof. By (8.5),

S(∇τ) =
1

α
(∇ν + Z);

moreover, the extremum condition ∇ϕ(x0, t0) = 0 reads

∇ν
ν

= − K

τ − τ0
∇τ.

Thus
〈

S

( ∇τ
|∇τ |

)

,
∇τ
|∇τ |

〉

= −να−1 K

τ − τ0
+

α−1

|∇τ |2 〈Z,∇τ〉. (8.20)

By Lemma 8.3 and expression (8.4), we estimate

α−1

|∇τ |2 |〈Z,∇τ〉| ≤ α−1 |Z|
|∇τ | ≤ C0

ν3

ν2 − 1
.

Since ν > ν0 > 1, we have ν2

ν2−1 ≤ ν2
0

ν2
0−1

, and thus

−να−1 K

τ − τ0
+ C0

ν3

ν2 − 1
≤ ν

(

−α−1 K

τ − τ0
+ C0

ν2
0

ν2
0 − 1

)

≤ −1

2
α−1 K

τ − τ0
ν

if 1
2α

−1 K
τ−τ0

≥ C0
ν2
0

ν2
0−1

, which follows from the hypothesis (8.18). Thus expression

(8.20) is bounded by −1

2
α−1 K

τ − τ0
ν, and the result follows.
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As in Lemma 4.6. of [4], we obtain the key inequality:

Lemma 8.7. If λn ≤ 0,

F ijhk
jhki −

1

ν2
F ijhk

i tkh
l
jtl ≥ εσ1,nλ

2
n,

where ε is a positive constant which only depends on an upper bound of F.

Proof. Just follow the lines of the proof of Lemma 4.6. in [4], with λn instead of
λi0 and ti instead of ui, using here identity (8.4).

Inequality (8.13) and Lemmas 8.5 and 8.7 thus imply that

εσ1,nλ
2
n −

(

d

dt
log η − F ij (log η)ij

)

≤ C1ν + C2σ1ν
2 + C3ν

∑

i

σ1,i|λi|. (8.21)

The next lemma permits to balance the last term in (8.21):

Lemma 8.8. If λn ≤ 0, then, for all i,

σ1,i|λi| ≤ σ2 +
β

ν
σ1,nλ

2
n,

where β is a constant arbitrarily small, if K = K(α, β, τ0, τ1) is chosen sufficiently
large.

Proof. We first suppose that λi ≤ 0 : we thus have |λi| ≤ |λn|, and, since
σ1,n ≥ σ1,i,

σ1,i|λi| ≤ σ1,n|λn|.

By estimate (8.19) in Lemma 8.6, ν
β ≤ |λn|, if K = K(τ0, τ1, α, ν0, β) is sufficiently

large. This implies

σ1,i|λi| ≤
β

ν
σ1,nλ

2
n,

and the estimate. We now suppose that λi ≥ 0 : the proof relies on the following
inequality:

λiσ1,i ≤ σ2 + γnσ1,n|λn|, (8.22)

where γn is a positive constant which only depends on n. With this inequality at hand,
taking as above K sufficiently large such that γnν

β ≤ |λn|, we obtain the lemma. To

finish the proof we thus focus on the proof of (8.22): first,

λiσ1,i = σ2 − σ2,in − σ1,niλn,

where −σ2,in is a sum of terms of the form −λjλk, with j 6= k, and j, k /∈ {i, n}.
We observe that −σ1,niλn = σ1,ni|λn| ≤ σ1,n|λn|, since λi ≥ 0. It thus remains
to bound the positive terms appearing in −σ2,in : let j, k /∈ {i, n} be such that
−λjλk > 0. We suppose that λk < 0, and thus that λj > 0. We have λj ≤ σ1,n

since σ1,n = λj + σ1,j − λn with σ1,j and −λn positive. Moreover |λk| ≤ |λn| since
λn ≤ λk ≤ 0. Thus −λjλk ≤ σ1,n|λn|, which concludes the proof of (8.22).
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From (8.21) and Lemma 8.8 we obtain the inequality

εσ1,nλ
2
n−
(

d

dt
log η − F ij (log η)ij

)

≤ C1ν+C2σ1ν
2+nC3ν

(

σ2 +
β

ν
σ1,nλ

2
n

)

. (8.23)

Choosing β small such that ε− nC3β ≥ ε
2 , we obtain

ε

2
σ1,nλ

2
n −

(

d

dt
log η − F ij (log η)ij

)

≤ C1ν + C2σ1ν
2 + nC3νσ2. (8.24)

We now estimate the contribution of the cut-off function:

Lemma 8.9. There exists a constant C4 such that

d

dt
(log η) − F ij (log η)ij ≤ C4Kν

2 σ1

τ − τ0

(

1 +
1

τ − τ0

)

.

The constant C4 depends on bounds on α−1, |Dα|T , |DT |T and F.

Proof. By a direct computation,

d

dt
(log η) = (F − f̂)

K

τ − τ0
Dτ(N).

Since |Dτ(N)| = να−1, we get

d

dt
(log η) ≤ C

K

τ − τ0
ν, (8.25)

where C depends on bounds on α−1 and F − f̂ . Moreover

∑

i

σ1,i(log η)ii = K

(

∑

i

σ1,i
τii

τ − τ0
−
∑

i

σ1,i
τ2
i

(τ − τ0)2

)

. (8.26)

Using (8.4), the last term is directly estimated by

∑

i

σ1,i
τ2
i

(τ − τ0)2
≤ (n− 1)α−2ν2 σ1

(τ − τ0)2
. (8.27)

To estimate the first term in (8.26), we extend e1, . . . , en to vector fields of Σt0 such
that ∇ei

ei(x0) = 0. Since τi = −〈α−1T, ei〉 and Dei
ei = λiN, we get

τii = −〈Dei
(α−1T ), ei〉 + α−1νλi.

Since 〈Dei
(α−1T ), ei〉 = (α−1)i〈T, ei〉 + α−1〈Dei

T, ei〉, and since

|〈T, ei〉| ≤ ν, |〈Dei
T, ei〉| ≤ 2ν2|DT |T , and |(α−1)i| ≤

√
2ν|Dα−1|T

(see the proof of Lemma 8.5), we obtain

∣

∣

∣

∣

∣

∑

i

σ1,i
τii

τ − τ0

∣

∣

∣

∣

∣

≤ α−1

τ − τ0

(

2(n− 1)σ1ν
2

{

1

α−1
|Dα−1|T + |DT |T

}

+ 2νσ2

)

.
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Observing moreover that σ1 is bounded below by a positive constant (Mac-Laurin
inequality), this last estimate together with (8.26) and (8.27) imply that

−F ij (log η)ij ≤ CKν2 σ1

τ − τ0

(

1 +
1

τ − τ0

)

(8.28)

where C only depends on bounds on α−1, |Dα|T , |DT |T , and F. Finally, estimates
(8.25) and (8.28) give the result.

Using the lower bound
ε

2
σ1,nλ

2
n ≥ ε

2
σ1

α−2K2

4(τ − τ0)2
ν2 given by Lemma 8.6, we fi-

nally obtain

ε

2
σ1

1

4
K2ν2 − C4Kν

2α2σ1((τ − τ0) + 1) ≤
(

C1ν + C2σ1ν
2 + nC3νσ2

)

α2(τ − τ0)
2,

which is impossible if K is sufficiently large under control.

8.2. The construction of the adapted time function. We suppose that u
and u are the barriers constructed Section 3. Let R0 > 0, and consider Ψ : R

n → R

such that Ψ < u on BR0
, and Ψ ≥ u near infinity, given by Lemma 3.5. We define

τ(x1, . . . , xn, xn+1) := xn+1 − Ψ(x1, . . . , xn).

The function τ is a time function since ψ is spacelike. We fix τ0 > 0 such that
Ψ + 2τ0 ≤ u on BR0

. We also fix R1 such that ψ(x) ≥ u(x) if |x| ≥ R1, and, for
R ≥ R1 + 1, we consider XR : ΣR

0 × [0,+∞) → R
n,1 solution of (7.5). We set K

for the compact set {ψ(x1, . . . , xn) ≤ xn+1 ≤ u(x1, . . . , xn)}. Note that f̂ ≡ 1 on
K, and that the normal velocity F is bounded from above and from below during
the evolution, uniformly in R. For all t ∈ [0,+∞), the set ΣR

t,τ≥τ0
defined by (8.1)

is compact, and is such that τ = τ0 on its boundary. Moreover, since the set Dτ0

defined by (8.2) belongs to the compact set K, the time function τ satisfies all the
requirements of the previous section. Thus Theorem 8.1 applies and gives the gradient
estimate on the set

{(x, t) ∈ ΣR
0 × [0,+∞) : τ(XR(x, t)) ≥ 2τ0}.

We deduce the required local gradient estimate (7.11) since

graphBR0

uR ⊂ {X ∈ R
n,1 : τ(X) ≥ 2τ0}.

9. The local C2 estimate. We suppose that u, u are the barriers constructed
Section 3.

Theorem 9.1. Let R0 ≥ 0, and let R0
′ ≥ R0 and Φ : BR0

′ → R be such that

Φ > u on BR0
, Φ ≤ u on ∂BR0

′ ,

given by Lemma 3.7 . We fix δ0 > 0 such that Φ ≥ u+ δ0 on BR0
, and we set, for all

X = (x1, . . . , xn+1) ∈ BR0
′ × R ⊂ R

n,1,

η(X) := Φ(x1, . . . , xn) − xn+1.

Then, there exists R1 ≥ R0
′ such that, for all R ≥ R1, the solution XR of (7.5)

satisfies the following local C2 estimate:

sup
{(x,t): η(XR(x,t))≥δ0}

|IIR
(x,t)| ≤ C.
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Here |IIR
(x,t)| stands for the norm of the second fundamental form of ΣR

t at XR(x, t),

and C is a constant controlled by the local C1 estimate on the set where η ≥ 0.

Proof. We fix R1 ≥ R0
′ such that for all R ≥ R1 the local C1 estimate holds on

the set where u ≤ xn+1 ≤ Φ. For T1 > 0 we define

ΓT1
= {(x, t) ∈ ΣR

0 × [0, T1] : η(XR(x, t)) ≥ 0}.

Following J.Urbas [19], we suppose that the function

W̃ (x, t, ξ) := ηβ(XR(x, t))hijξ
iξj , (9.1)

defined for all (x, t) ∈ ΓT1
and all unit ξ ∈ TXR(x,t)Σt, reaches its maximum at a point

(x0, t0, ξ0), with t0 > 0. Arguing as in Paragraph 6.3.1, we also get here inequality
(6.15) at (x0, t0). Moreover, using the evolution equation (5.5) of u = xn+1, we obtain

d

dt
log η − F ij (log η)ij =

νf̂

η
+

1

η

(

Φ̇ − F ijΦij

)

+ F ij ηiηj

η2
. (9.2)

The following estimates hold: F ijΦij ≥ c0
∑

i F
i
i − c, Φ̇ ≤ c, and νf̂ ≤ c where c0

and c are controlled constants; for the first estimate we refer to [19] p.313, and for
the second estimate to (6.16). Thus

−β
(

d

dt
log η − F ij (log η)ij

)

≥ β

η

(

c0
∑

i

F i
i − c′

)

− βF ij ηiηj

η2
. (9.3)

Inequalities (6.15) and (9.3) give inequality (2.8) obtained by J.Urbas in [19] p. 312
(where the first term in (2.8) is moreover estimated by (2.12) [19] p. 313). We then
follow the arguments in [19], and obtain an upper bound of W̃ (x0, t0, ξ0), if β is chosen
sufficiently large (under control). The bound is independent of T1 and R. This gives
an upper bound of the second fundamental form during the evolution, on the set
where η ≥ δ0.

This estimate implies the local C2 estimate (7.11) since

graphBR0

uR ⊂ {X ∈ R
n,1 : η(X) ≥ δ0},

and thus completes the proof of Theorem 1.4.

Appendix A.

Lemma A.1. Let u be a spacelike and convex function defined on R
n, and let

x′0 ∈ R
n−2. Setting

ũ(x1, x2) := u(x1, x2, x
′
0),

we have, for all (x1, x2) ∈ R
2,

H1[ũ](x1, x2) ≤ H1[u](x1, x2, x
′
0).

Proof. The second fundamental form of the graph of ũ in the chart (x1, x2) is

ĨI =
1

√

1 − |Dũ|2
D2ũ.
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Since |Du| ≥ |Dũ| and D2ũ = D2u|
R2×{0}

, we obtain

1
√

1 − |Dũ|2
D2ũ ≤ 1

√

1 − |Du|2
D2u|

R2×{0}
.

The right-hand side term is the second fundamental form II of the graph of u, in the
chart (x1, . . . , xn), restricted to the plane x3 = · · · = xn = 0. Let us fix (e1, e2, . . . , en)
a basis in the chart (x1, . . . , xn) which induces an orthonormal basis (ê1, . . . , ên) of
the tangent space of graphu at (x1, x2, x

′
0). We suppose moreover that e1, e2 belong

to the plane x3 = · · · = xn = 0. Thus ê1, ê2 are tangent to graph ũ, and we get:

H1[ũ](x1, x2) = ĨI(ê1) + ĨI(ê2) ≤ II(ê1) + II(ê2)

≤
n
∑

i=1

II(êi) ≤ H1[u](x1, x2, x
′
0),

where the second inequality follows from the convexity of u.
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