
METHODS AND APPLICATIONS OF ANALYSIS. c© 2008 International Press
Vol. 15, No. 1, pp. 053–064, March 2008 004

LOCAL PROPERTIES OF SOLUTIONS OF ELLIPTIC EQUATIONS

DEPENDING ON LOCAL PROPERTIES OF THE DATA
∗

LUCIO BOCCARDO
†

AND TOMMASO LEONORI
‡

Neil: “. . . ma misi me per l’alto mare aperto sol con un legno”;

qui trovasti “quella compagna picciola da la qual non fui diserto.”

(Dante: Inferno XXVI)

Abstract. In this paper we deal with local properties of solutions of the boundary value problem(
−div(a(x, u,∇u)) = µ in Ω,

u = 0 on ∂Ω

where the left hand side is a Leray-Lions operator and µ a Radon measure. In particular we look at

properties of the solution away from the set where the datum is singular.
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1. Introduction and main results. This paper deals with properties of solu-

tions of nonlinear boundary value problems of the type

(1.1)

{

−div(a(x, u,∇u)) = µ in Ω,

u = 0 on ∂Ω

or

(1.2)

{

−div(a(x, u,∇u)) = f(x) in Ω,

u = 0 on ∂Ω

where Ω is a bounded, open subset of R
N

, N > 2, the right hand side is either

a bounded Radon measure µ or a summable function f and the partial differential

operator A is defined as

A(v) = −div (a(x, v,∇v))

where a : Ω × R × R
N → R

N
is a Carathéodory function (that is, measurable with

respect to x in Ω for every (s, ξ) in R × R
N

, and continuous with respect to (s, ξ)
in R × R

N
for almost every x in Ω). We assume that there exist two real positive

constants α and β, such that for almost every x in Ω, for every s in R, for every ξ
and ξ′ in R

N
(ξ 6= ξ′),

(1.3) a(x, s, ξ) · ξ ≥ α|ξ|2,

(1.4) |a(x, s, ξ)| ≤ β|ξ|,
∗
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(1.5) (a(x, s, ξ) − a(x, s, ξ′)) · (ξ − ξ′) > 0 .

Under these assumptions, A turns out to be pseudomonotone, and is hence surjective

on W 1,2
0

(Ω) (see [5]).

We point out that, for the sake of simplicity, we will restrict ourselves to the case

of differential operators defined in W 1,2
0

(Ω), even though our techniques work also in

the W 1,p
0

(Ω)-framework, p > 1.

Of course, the function u is a solution (solution in the sense of distributions) of

(1.1) if u ∈W 1,1
0

(Ω) and if

∫

Ω

a(x, u,∇u) · ∇ϕ =

∫

Ω

ϕdµ , ∀ϕ ∈ C∞
0

(Ω) .

The existence of a distributional solution u of (1.1) and (1.2) has been proved by an

approximation procedure (see [2], [3]): u belongs to W 1,q
0

(Ω), q < N
N−1

, and is the

W 1,q
0

(Ω)-limit of a subsequence of {un}, where un is a weak solution of the Dirichlet

problem

(1.6) un ∈ W 1,2
0

(Ω) : −div(a(x, un,∇un)) = fn(x)

and

(1.7)

{ {fn} is a sequence of smooth functions

converging to µ in M(Ω),
∫

Ω

|fn| bounded,

if we study the boundary value (1.1), and

(1.8)

{

{fn} is a sequence of smooth functions

converging to f in L1
(Ω),

if we study the boundary value (1.2).

Thus the results of Theorem 1.1 and Theorem 1.2 concern the solutions u obtained

as limit of un, as above.

On the other hand if we consider a datum f ∈ Lm
(Ω), 1 < m < 2N

N+2
, it has been

proved in [3] that the sequence {un} is bounded in W 1,m∗

0
(Ω), so that u belongs to

W 1,m∗

0
(Ω), where by m∗

=
mN

N−m , m < N , we denote the Sobolev conjugate exponent

of m.

The properties of local summability for “local solutions” have been studied by G.

Stampacchia (see Theorem 5.4 of [8]), if m > 2N
N+2

.

Here we look at local properties of (global) solutions of (1.1); more precisely we

study the behavior of the solutions “far” from the singularities of the datum.

In other words, as the intuition suggests, we expect that a solution of the men-

tioned problems has suitable summability properties that depend on the local regular-

ity of the datum. For instance, if the datum f(x) (or µ) has a singularity concentrated

only at a certain x0 ∈ Ω, we expect that the solution is smooth away from x0.

We state here our results if the right hand side f belongs to L1
(Ω), whereas

f ψ ∈ Lm
(Ω), m > 1, where the function ψ belongs to W 1,∞

(Ω): even if u only

belongs to W 1,q
0

(Ω), q < N
N−1

, the function uψη
is more regular for some η > 1 (its

regularity depending on m).

In the same spirit of the existence results quoted above, the main point in our are

a priori estimates on the sequences {ψηun}, {ψη∇un}, for some η > 1.
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Our proofs are completely self contained and follow the techniques of [8], [2], [3],

[1]. In particular, in Lemma 2.3 we follow the idea of the paper [8] by G. Stampacchia;

it would be interesting to give a second proof following the idea of the paper [10] by

N. Trudinger.

Let us define, now,

(1.9) EL = {ψ ∈W 1,∞
(Ω) : 0 ≤ ψ ≤ 1, |∇ψ| ≤ L} .

Theorem 1.1. Assume (1.3), (1.4), (1.5). Let f ∈ L1
(Ω) be such that there

exists ψ ∈ EL with the property f ψ ∈ Lm
(Ω), 1 < m. Then there exist a distributional

solution u of (1.2) and η > 1 (depending on ψ, m and N) such that

• uψη ∈W 1,m∗

0
(Ω), if 1 < m < 2N

N+2
;

• uψη ∈W 1,2
0

(Ω) ∩ Lm∗∗

(Ω), if 2N
N+2

≤ m < N
2
;

• uψη ∈W 1,2
0

(Ω) ∩ L∞
(Ω), if m > N

2
.

We also state the following theorem concerning Dirichlet problems with right hand

side measure. Thanks to the above considerations, the proof is the same of Theorem

1.1.

Theorem 1.2. Assume (1.3), (1.4), (1.5). Assume that there exists ψ ∈ EL with
the property that the sequence {fnψ} is bounded in Lm

(Ω), 1 < m, where {fn} is the
sequence defined in (1.7). Then there exist a distributional solution u of (1.1) and
η > 1 (depending on ψ, m and N) such that

• uψη ∈W 1,m∗

0
(Ω), if 1 < m < 2N

N+2
;

• uψη ∈W 1,2
0

(Ω) ∩ Lm∗∗

(Ω), if 2N
N+2

≤ m < N
2
;

• uψη ∈W 1,2
0

(Ω) ∩ L∞
(Ω), if m > N

2
.

Note that we prove the results for distributional solutions of (1.1) and (1.2) ob-

tained as limit of approximations. The enhanced regularity of solutions is not true in

general since, as a counterexample by J. Serrin shows ([7]), distributional solutions of

(1.1) and (1.2) may not be unique. Moreover the conclusion of our theorems are false

for the pathological solution of the counterexample by J. Serrin.

In [1] (see also [4]), a notion of solution for (1.2) has been introduced if f ∈ L1
(Ω)

and the function a(x, s, ξ) does not depend on s, so that the differential operator A is

strictly monotone, with the purpose of proving its uniqueness: the so-called entropy

solution. In this case, the strong limit u in W 1,q
0

(Ω), q < N
N−1

, of the sequence {un}
is the unique entropy solution of (1.2), so that Theorem 1.1 can be seen as giving

improved summability properties of the entropy solution.

2. A priori estimates and proof of the results. We begin recalling the

following proposition (see [2]).

Proposition 2.1. The sequence {un} of solutions of (1.6) is bounded in Lσ
(Ω),

for every σ < N
N−2

.

The first step relies in proving some local summability properties of the sequence

{un}.
Lemma 2.2. Assume (1.3), (1.4), (1.5) and that {fnψ} is bounded in Lm

(Ω),
1 < m < N

2
, where {fn} is as in (1.8) and ψ ∈ EL. Then there exists η1 > 1

(depending on ψ, m and N) such that the sequence {unψ
η1} is bounded in Lm∗∗

(Ω).
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Proof. We follow [3] and we choose vǫψ
p

as test function in (1.6), where vǫ is the

function [(ǫ+ |un|)2γ−1 − ǫ2γ−1
]sgn(un), p = 2+2γ, γ ∈ (

1

2
, m∗∗

2
∗ ). Note that

1

2
< m∗∗

2
∗

since m > 1. Moreover since fn ∈ L∞
(Ω), then every un is a bounded function, so

that vǫ belongs to W 1,2
0

(Ω) ∩ L∞
(Ω). Hence, by (1.3) and (1.4), we have

α(2γ − 1)

∫

Ω

ψp|∇un|2(ǫ+ |un|)2(γ−1) ≤
∫

Ω

(fnψ)(vǫψ
p−1

)

+pβ

∫

Ω

ψp|∇un||∇ψ|[(ǫ+ |un|)(2γ−1) − ǫ(2γ−1)

] ,

and by Young’s inequality we get

(2.1)

∫

Ω

ψp|∇un|2(ǫ+ |un|)2(γ−1) ≤
2‖fnψ‖

m

α(2γ − 1)

(

∫

Ω

|vǫ|m
′

ψ(p−1)m′
)

1

m′

+
p2β2L2

α2(2γ − 1)2

∫

Ω

ψp−2

(ǫ+ |un|)2γ .

We note that

|∇{[(ǫ+ |un|)γ − ǫγ ]ψ
p
2 }|2

≤ 2γ2ψp|∇un|2(ǫ+ |un|)2(γ−1)

+
p2

2
ψp−2L2

[(ǫ+ |un|)γ − ǫγ ]
2,

so that by Sobolev inequality (S denotes the Sobolev constant) we have

S2

(

∫

Ω

{[(ǫ+ |un|)γ − ǫγ ]ψ
p
2 }2

∗
)

2

2∗ ≤
∫

Ω

|∇{[(ǫ+ |un|)γ − ǫγ ]ψ
p
2 }|2

≤ 2γ2

2‖fnψ‖
m

α(2γ − 1)

(

∫

Ω

|vǫ|m
′

ψ(p−1)m′
)

1

m′

+

[

2γ2p2β2

α2(2γ − 1)2
+
p2

2

]

L2

∫

Ω

ψp−2

(ǫ+ |un|)2γ .

Now, taking the limit as ǫ → 0 and using that γ < m∗∗

2
∗ (and consequently that

(2γ − 1)m′ < γ2
∗
) we get

(2.2)

S2

(

∫

Ω

|un|2
∗γψ

p2
∗

2

)
2

2∗

≤
4γ2‖fnψ‖

m

α(2γ − 1)

(

∫

Ω

|un|(2γ−1)m′

ψ(p−1)m′
)

1

m′

+

[

2γ2p2β2

α2(2γ − 1)2
+
p2

2

]

L2

∫

Ω

ψp−2|un|2γ

≤
4γ2‖fnψ‖

m

α(2γ − 1)
|Ω|

γ2
∗−(2γ−1)m′

γ2∗m′

(

∫

Ω

|un|γ2
∗

ψ
(p−1)γ2

∗

(2γ−1)

)

(2γ−1)

γ2∗

+

[

2γ2p2β2

α2(2γ − 1)2
+
p2

2

]

L2

∫

Ω

ψp−2|un|2γ .
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Note that
(p−1)γ2

∗

(2γ−1)
> p2

∗

2
since p > 2γ, so we apply Young’s inequality in the first

term on the right hand side of the previous inequality (with exponents
2γ

2γ−1
and 2γ)

and we have

S2

(

∫

Ω

|un|2
∗γψ

p2
∗

2

)
2

2∗

≤ S2

2

(

∫

Ω

|un|γ2
∗

ψ
p2

∗

2

)
2

2∗

+
S2

2(2γ − 1)

[

4γ‖fnψ‖
m

αS2
|Ω|

γ2
∗−(2γ−1)m′

γ2∗m′

]

2γ

+

[

2γ2p2β2

α2(2γ − 1)2
+
p2

2

]

L2

∫

Ω

ψp−2|un|2γ .

Setting

Cγ
1

=
1

2γ − 1

[

4γ|Ω|
γ2

∗−(2γ−1)m′

γ2∗m′

αS2

]

2γ

and Cγ
2

= 2

[

2γ2p2β2

α2(2γ − 1)2
+
p2

2

]L2

S2
,

we get

(2.3)

(

∫

Ω

∣

∣un[ψ
p−2

2γ ]
p

p−2

∣

∣

2
∗γ

)
2

2∗ ≤ Cγ
1
‖fnψ‖2γ

m
+ Cγ

2

∫

Ω

|unψ
p−2

2γ |2γ .

Note that both Cγ
1

and Cγ
2

blow-up for γ =
1

2
; nevertheless, as we will see later, we

will need to deal with values of γ > γ0 >
1

2
.

Recalling that p = 2 + 2γ the previous inequality becomes

(2.4)

∫

Ω

∣

∣un[ψ]
1+

1

γ

∣

∣

2
∗γ ≤ C0

[

‖fnψ‖2
∗γ

m
+

(

∫

Ω

|unψ|2γ
)

2
∗

2

]

,

where C0 = max{ (2Cγ
1
)

N
N−2

2
,

(2Cγ
2
)

N
N−2

2
, 1}.

It is clear that inequality (2.4) is crucial in order to obtain the result: indeed it

is, roughly speaking, a control of the weighted norm of un in a Lebesgue space with

a norm in a bigger Lebesgue space, but with a different weight.

Note that the previous inequality, thanks to Proposition 2.1, implies the result

for “small” m: 1 < m < N2

N2−2N+4
, that is m such that m∗∗ <

(

2
∗

2

)

2

.

In the case m∗∗ ≥
(

2
∗

2

)

2

, the idea of our proof is to use (2.4) recursively a finite

number of times; therefore we do not need a precise control on the quantities in the

left hand side of (2.4).

Recalling the result of Proposition 2.1, our starting point is I ∈ N, I ≥ 1, such

that 2
m∗∗

2
∗

2
I

(2
∗
)
I <

2
∗

2
, i.e.

I = min

{

j ∈ N : 2
m∗∗

2∗

(

2

2∗

)j

<
N

N − 2

}

= min

{

j ∈ N : m∗∗ <

(

2
∗

2

)j+2
}

.

Moreover we define

γi =
m∗∗

2∗

(

2

2∗

)I−i

, 0 ≤ i ≤ I ,
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and we note that

1

2
<
m∗∗

2∗

(

2

2∗

)I

= γ0 ≤ γi ≤ γI =
m∗∗

2∗
,

so that our constants, which depend continuously on γi, will run on a bounded subset

of R.

If I = 1, we consider only the first inequality below (I ≥ 1 since m∗∗ ≥
(

2
∗

2

)

2

);

while, if I ≥ 2, let us define ψi+1 = ψ
1+

1

γi

i , i ≥ 1; ψ0 = ψ. Note that 2γi = 2
∗γi−1

and that ψi ≤ ψi−1, so that, ∀i ∈ [1, I],

∫

Ω

∣

∣unψi

∣

∣

2γi
=

∫

Ω

∣

∣unψi

∣

∣

2
∗γi−1 ≤ C0

[

‖fnψi−1‖2
∗γi−1

m
+

(

∫

Ω

|unψi−1|2γi−1

)
2
∗

2

]

= C0

[

‖fnψi−1‖2γi

m
+

(

∫

Ω

|unψi−1|2
∗γi−2

)
2
∗

2

]

≤ C0

[

‖fnψi−1‖2
∗γi−1

m
+ 2

2
∗

2 C
2
∗

2

0

[

‖fnψi−2‖
2
∗

2
(2

∗γi−2)

m
+

(

∫

Ω

|unψi−2|2γi−2

)(
2
∗

2 )
2
]

]

≤ 2
2
∗

2 C
2
∗

2
+1

0

[

‖fnψi−1‖2γi

m
+ ‖fnψi−2‖2γi

m
+

(

∫

Ω

|unψi−2|2γi−2

)(
2
∗

2 )
2]

,

Thus setting i = I and iterating this inequality we deduce that there exist two con-

stants Cf and C2 such that

(2.5)

∫

Ω

∣

∣unψI

∣

∣

2γI ≤ Cf + C3

(

∫

Ω

|unψ0|2γ0

)(
2
∗

2 )
I

,

where

C3 = C0(2C0)

P
I
k=1

(
2∗
2

)
k

and Cf = C3

( I
∑

j=1

‖fnψI−j‖2γI

m

)

;

using again inequality (2.4) we obtain

∫

Ω

∣

∣un[ψI ]
1+

1

γI

∣

∣

m∗∗

=

∫

Ω

∣

∣un[ψI ]
1+

1

γI

∣

∣

2
∗γI

≤ C

[

‖fnψI‖2γI

m
+

(

∫

Ω

|unψI |2γI

)
2

2∗
]

.

Combining the above inequality with (2.5), using that 2γ0 <
N

N−2
and the result of

Proposition 2.1, we deduce that there exist η1 > 0 and M > 0 such that

(2.6) ‖unψ
η1‖

m∗∗ ≤M , where η1 =

I
∏

i=0

(

1 +
1

γi

)

.

Now we prove a local boundedness property for the sequence {un}.
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Lemma 2.3. Assume (1.3), (1.4), (1.5), (1.8) and that {fnψ} is bounded in
Lm

(Ω), m > N
2
, where {fn} is as in (1.8) and ψ ∈ EL. Then there exists η1 > 1

(depending on ψ and N) such that the sequence {unψ
1+η1} is bounded in L∞

(Ω).

Proof. We first note that by Lemma 2.2, since {fnψ} is bounded also in Ls
(Ω),

∀ s ≤ N
2

, then for every fixed r > 1, there exists η > 1 such that {unψ
η} is bounded

in Lr
(Ω) (even though not uniformly with respect to r). Following G. Stampacchia

(see [8]), we define

Gk(s) =







s+ k, if s ≤ −k;
0, if − k ≤ s < k;
s− k, if s ≥ k;

and

Ak = {x ∈ Ω : |unψ
p| ≥ k}.

Let us multiply the equation (1.6) by ψpGk(unψ
p
), where p > 1 is to be chosen. Thus

(2.7)

p

∫

Ak

a(x, un,∇un) · ∇ψψp−1Gk(unψ
p
)

+p

∫

Ak

a(x, un,∇un) · ∇ψψ2p−1un

+

∫

Ak

a(x, un,∇un) · ∇unψ
2p

=

∫

Ak

fnψ
pGk(unψ

p
) .

By (1.4) and Young’s inequality, we deduce

p

∫

Ak

|a(x, un,∇un) · ∇ψψ2p−1un|

≤ α

4

∫

Ak

|∇un|2ψ2p
+
p2β2

α

∫

Ak

|∇ψ|2ψ2(p−1)|un|2 .

Moreover since |Gk(s)| ≤ |s|, ∀k > 0, ∀ s ∈ R, we have

p

∫

Ak

|a(x, un,∇un) · ∇ψψp−1Gk(unψ
p
)|

≤ p

∫

Ak

|a(x, un,∇un) · ∇ψ||un|ψ2p−1

≤ α

4

∫

Ak

|∇un|2ψ2p
+
β2p2

α

∫

Ak

|∇ψ|2ψ2(p−1)|un|2 .

Thus, by (1.3), by adding
α

2

∫

Ak

|un|2|∇ψp|2 on both sides of (2.7) and by the previous

inequalities, we get

α

2

∫

Ak

|∇un|2ψ2p
+
α

2

∫

Ak

|un|2|∇ψp|2

≤
∫

Ak

fnψ
pGk(unψ

p
) +

(

2
β2p2

α
+
αp2

2

)
∫

Ak

|∇ψ|2ψ2(p−1)|un|2 .
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Since Gk(unψ
p
) ∈W 1,2

0
(Ω) we deduce by Sobolev inequality

(2.8)

S2
α

4

(
∫

Ω

|Gk(unψ
p
)|2∗

)
2

2∗

≤ α

4

∫

Ω

|∇Gk(unψ
p
)|2

≤
∫

Ak

fnψ
pGk(unψ

p
) +

(

2
β2p2

α
+
αp2

2

)

L2

∫

Ak

ψ2(p−1)|un|2 .

Moreover we fix r > N > 2, so that

∫

Ak

ψ2(p−1)|un|2 ≤
(

∫

Ak

(ψp−1|un|)r

)
2

r

|Ak|1−
2

r .

Choosing, now, p = 1 + η1 (η1 has been defined in (2.6)) and setting ‖unψ
η1‖r = R,

we obtain, using (2.6),

∫

Ak

ψ2η1 |un|2 ≤ R2|Ak|1−
2

r .

On the other hand, by Hölder and Young inequalities, we deduce

∫

Ak

fnψ
pGk(unψ

p
) ≤ 2

S2α

(
∫

Ak

|ψpfn|
2N

N+2

)

N+2

N

+ S2
α

8

(
∫

Ak

|Gk(unψ
p
)|2∗

)
2

2∗

.

Thus the first integral in the right hand side of (2.8) can be absorbed in the left

hand side of (2.8), while again by Hölder inequality (with exponents
m(N+2)

2N and

m(N+2)

m(N+2)−2N ) we get

S2
α

8

(
∫

Ω

|Gk(unψ
p
)|2∗

)
2

2∗

≤ 2

S2α

(
∫

Ak

|ψpfn|m
)

2

m

|Ak|
m(N+2)−2N

mN +

(

2
β2p2

α
+
αp2

2

)

L2R2|Ak|1−
2

r .

Now for every h > k, there exists C = C(R) such that

(h− k)2|Ah|
2

2∗ ≤ C(R)

(

|Ak|
m(N+2)−2N

mN + |Ak|1−
2

r

)

.

Moreover , since r > N and m > N
2

, for k large enough so that |Ak| < 1 we have

(h− k)2|Ah|
2

2∗ ≤ 2C(R)|Ak|
m(N+2)−2N

mN

which implies

(2.9) |Ah| ≤ C1(R)
|Ak|

m(N+2)−2N

m(N−2)

(h− k)2∗ .
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Since m > N
2

, we have
m(N+2)−2N

m(N−2)
> 1. Thus, thanks to Real Analysis lemma by G.

Stampacchia (see [8], Lemma 4.1, first part) there exists t > 0 such that

|At| = 0 .

Hence

(2.10) ‖unψ
1+η1‖∞ ≤ C(‖fnψ‖m) .

Remark 2.4. If in Theorems (1.1) and (1.2) we assume that m =
N
2
, we can

deduce on uψη an exponential summability result thanks to inequality (2.9) and the
second part of Lemma 4.1 of [8].

Remark 2.5. If the datum f ∈ L1
(Ω) of Theorem 1.2 is such that there exists

ψ ∈ EL with the property that f ψ belongs to the Marcinkiewicz space Mm
(Ω), 1 < m,

then there exist a distributional solution u of (1.2) and η > 1 (depending on ψ, m
and N) such that the conclusion of Theorem 1.2 holds changing Lebesgue spaces with
Marcinkiewicz spaces. Indeed, the proof of the previous lemma still holds with the use
of Hölder inequality for Marcinkiewicz spaces. Moreover inequality (2.9) and the third
part of Lemma 4.1 of [8] imply that {unψ

1+η1} is bounded in the Marcinkiewicz space
Mm∗∗

(Ω), since 2
∗

1−
m(N+2)−2N

m(N−2)

= m∗∗.

The next two lemmas give local estimates on the sequence {∇un}.

Lemma 2.6. Assume (1.3), (1.4), (1.5), (1.8) and that {fnψ} is bounded in
Lm

(Ω), 1 < m < 2N
N+2

, where {fn} is as in (1.8) and ψ ∈ EL. Then there exists

η2 > 1 such that the sequence {ψη2 |∇un|m
∗} is bounded in L1

(Ω).

Proof. Arguing as in the first part of the proof of Lemma 2.2 we deduce the ana-

logue of inequality (2.1) with γ =
m∗∗

2
∗ (note that now

1

2
< γ < 1): hence (2γ−1)m′

=

m∗∗
, and 2γ < (2γ−1)m′

. Moreover we set η2 = max{η1 m∗∗

m′ +1, η1
2m∗∗

2
∗ +2, η1m

∗∗},
where η1 has been defined in (2.6), so that we have (we use Hölder inequality with

exponents
2
∗

2
=

m∗∗

2γ and
N
2

)

(2.11)

∫

Ω

ψη2
|∇un|2

(ǫ+ |un|)2(1−γ)

≤
2‖fnψ‖

m

α(2γ − 1)

(

∫

Ω

|vǫ|m
′

ψ(η2−1)m′
)

1

m′

+
η2

2β2L2

α2(2γ − 1)2

∫

Ω

(ǫ+ |un|)2γψη2−2

≤
2‖fnψ‖

m

α(2γ − 1)

(

∫

Ω

(ǫ+ |un|)m∗∗

ψ(η2−1)m′
)

1

m′

+
η2

2β2L2

α2(2γ − 1)2
|Ω| 2

N

(

∫

Ω

(ǫ+ |un|)m∗∗

ψ
(η2−2)2

∗

2

)
2

2∗

.

Note that, since m < 2N
N+2

, then m∗ < 2. Moreover
2m∗

(1−γ)

2−m∗ = m∗∗
. Thus by Hölder
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inequality, using (2.11) and 1 − m∗

2
> 0 (since m < 2N

N+2
), we deduce

∫

Ω

ψη2 |∇un|m
∗

=

∫

Ω

ψ
η2m∗

2

|∇un|m
∗

(ǫ+ |un|)(1−γ)m∗ (ǫ+ |un|)(1−γ)m∗

ψη2(1−m∗

2
)

≤
[

∫

Ω

ψη2
|∇un|2

(ǫ+ |un|)2(1−γ)

]
m∗

2
[

∫

Ω

(ǫ+ |un|)
2m∗

(1−γ)

2−m∗ ψη2

]

2−m∗

2

≤
[

2‖fnψ‖
m

α(2γ − 1)

(

∫

Ω

(ǫ+ |un|)m∗∗

ψ(η2−1)m′
)

1

m′

+
η2

2β2L2|Ω| 2

N

α2(2γ − 1)2

(

∫

Ω

(ǫ+ |un|)m∗∗

ψ
(η2−2)2

∗

2

)
2

2∗

]
m∗

2
[

∫

Ω

(ǫ+ |un|)
2m∗

(1−γ)

2−m∗ ψη2

]
2−m∗

2

.

Letting now ǫ go to 0 and recalling the choice of η2, we deduce that

∫

Ω

ψη2 |∇un|m
∗ ≤

[

2‖fnψ‖
m

α(2γ − 1)

(

∫

Ω

(|un|ψη1)
m∗∗

)
1

m′

+
η2

2β2L2

α2(2γ − 1)2
|Ω| 2

N

(

∫

Ω

(|un|ψη1)
m∗∗

)
2

2∗

]
m∗

2
[

∫

Ω

(|un|ψη1)
m∗∗

]
2−m∗

2

.

Using Lemma 2.2, the right hand side of the previous inequality is bounded and so

the proof is completed.

Lemma 2.7. Assume (1.3), (1.4), (1.5), (1.8) and that {fnψ} is bounded in
Lm

(Ω), m ≥ 2N
N+2

, where {fn} is as in (1.8) and ψ ∈ EL. Then there exists η3 > 1

(depending on ψ, m and N) such that the sequence {ψη3 |∇un|2} is bounded in L1
(Ω).

Proof. Using Lemma 2.2 and m ≥ 2N
N+2

, we can multiply equation (1.6) by

unψ
2(η1+1)

(η1 as in (2.6)) and thus, using that m∗∗ ≥ m′
, we deduce by standard

computations that

∫

Ω

ψη3 |∇un|2 ≤ ‖fnψ‖m‖unψ
η1‖

m∗∗

m′

m∗∗ + 2
(η1 + 1)

2β2L2

α

∫

Ω

(|un|ψη1)
2 .

Therefore, the result holds with η3 = 2(η1 + 1).

Now we can prove Theorem 1.1 and Theorem 1.2.

Proof. As already remarked, the existence of a solution for (1.2) and (1.1) is a

consequence of compactness results for un (see [2], [3], [1], [4]), thanks to the properties

of the sequence {fn} defined in (1.8) and (1.7). The results follow by applying the four

lemmas above and by choosing η in a suitable way (depending, of course by η1, η2, η3,
where ηi, i = 1, 2, 3 are the exponents defined in the lemmas).

3. Local properties of solutions depending on local properties of the

data. A consequence of Theorem 1.1 is a local estimate on solutions of (1.1) away

from the singularities of the datum. Indeed assume that f ∈ L1
(Ω) and there exists

a subset S such that S̄ ⊂ Ω and

(3.1) f(x)[1 − χS(x)] ∈ Lm
(Ω), m > 1.
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The existence of a function ψ ∈W 1,∞
(Ω), 0 ≤ ψ ≤ 1,

(3.2) ψ =

{

0 in S,

1 in Ω \ S′,

S̄ ⊂⊂ S′ ⊂⊂ Ω , follows in a standard way by regularization.

With this choice of ψ we can write the statement of Theorem 1.1 in the following

manner.

Theorem 3.1. Assume (1.3), (1.4), (1.5), (3.1) and define ψ as in (3.2). Then
there exists a distributional solution u of (1.2) such that

• ∇u ∈ Lm∗

(Ω \ S′
), if 1 < m < 2N

N+2
;

• ∇u ∈ L2
(Ω \ S′

) and u ∈ Lm∗∗

(Ω \ S′
), if 2N

N+2
≤ m < N

2
;

• ∇u ∈ L2
(Ω \ S′

) and u ∈ L∞
(Ω \ S′

), if m > N
2
.

Remark 3.2. In the previous theorem, the first part of the second item is related
with Theorem 2 of [6].

Remark 3.3. It is possible to state a theorem similar to the previous one if we
consider the boundary value problem (1.1). For example, if S is the support of the
measure µ, then we can say that ∇u ∈ L2

(Ω \ S′
) and u ∈ L∞

(Ω \ S′
).

We conjecture that in this case u is Hölder continuous in Ω\S′. We also conjecture
that Neil Trudinger can prove this conjecture (perhaps with the approach of [9]).
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Inst. Fourier (Grenoble), 18 (1968), pp. 115–175.

[6] J. Droniou, Global and local estimates for nonlinear noncoercive elliptic equations with mea-

sure data, Comm. Partial Differential Equations, 28 (2003), pp. 129–153.

[7] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Pisa,

18 (1964), pp. 385–387.
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