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SEMICLASSICAL FORMS OF CLASS s = 2:
THE SYMMETRIC CASE, WHEN Φ(0) = 0∗

M. SGHAIER† AND J. ALAYA‡

Abstract. A regular linear form u is said to be semiclassical, if there exist two polynomials
Φ monic and Ψ, deg(Ψ) ≥ 1 such that (Φu)′ + Ψu = 0. Recently, all the symmetric semiclassical
linear forms of class s ≤ 1 are determined. In this paper, by considering the inverse problem of
the product of a form by a polynomial in the square case, we carry out the complete description
of the symmetric semiclassical linear forms of class s = 2, when Φ(0) = 0 which generalize those
of class s = 1. Essentially, three canonical cases appear. Some particular cases refer to well-known
orthogonal sequences. Representations of these linear forms are given.

Key words. Orthogonal polynomials, symmetric forms, semiclassical forms, integral represen-
tations.
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Introduction. Semiclassical orthogonal polynomials were introduced in [23].
They are natural generalization of the classical polynomials. Maroni [19,21] has
worked on the linear form of moments and has given a unified theory of this kind
of polynomials. A semiclassical linear form u satisfies the distributional equation
(Φu)′ + ψu = 0 where Φ(x) is a monic polynomial and Ψ(x) is a polynomial with
deg(Ψ) ≥ 1. In [2], the authors determine all the symmetric semiclassical linear forms
of class s = 1. See also [3,4] for some special cases. It is natural to consider the
problem of determining all the symmetric semiclassical linear forms of class s = 2.
In this paper, we are interested in the case when Φ(0) = 0. For this, we consider
the inverse problem of the product of a linear form by a polynomial by studying the
following problem: given a symmetric semiclassical linear form v, find the symmetric
linear form u defined by x2u = −λv ⇔ u = −λx−2v + δ0, λ ∈ C

∗ in a different way
than [17,1]. This kind of problem is an interesting process to construct certain families
of semiclassical polynomials as treated in many recent works ([1], [5], [16], [17], [22]).
The first section is devoted to the preliminary results and notations used in the sequel.
In the second section, We found a relation between the symmetric semiclassical linear
forms of class s = 2 and those of class s ≤ 1 (Theorem 2.3.). Using this relation, we
give, in Section 2, all the linear forms which we look for. Three canonical cases for the
polynomial Φ arise: Φ(x) = x2 , Φ(x) = x4 and Φ(x) = x2(x2 − 1). Representations
of the new linear forms are obtained. As it turned out, we obtained explicitly three
nonsymmetric semiclassical linear forms of class s = 1.

1. Notations and preliminary results. Let P be the vector space of polyno-
mials with coefficients in C and let P ′ be its topological dual. We denote by 〈u, f〉
the action of u ∈ P ′ on f ∈ P . In particular, we denote by (u)n := 〈u, xn〉 , n ≥ 0,
the moments of u. For any linear form u and any polynomial h let Du = u′, hu,
δ0, and x−1u be the linear forms defined by: 〈u′, f〉 := −〈u, f ′〉, 〈hu, f〉 := 〈u, hf〉,
〈δc, f〉 := f(c), and

〈

(x − c)−1u, f
〉

:= 〈u, θcf〉 where
(

θcf
)

(x) =
f(x) − f(c)

x− c
, c ∈ C,
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f ∈ P .
Then, it is straightforward to prove that for f ∈ P and for u ∈ P ′, we have

x(x−1u) = u , (1.1)

x−1(xu) = u− (u)0δ0 , (1.2)

x−2(x2u) = u− (u)0δ0 + (u)1δ
′
0 , (1.3)

(fu)′ = f ′u+ fu′ . (1.4)

Let us define the operator σ : P −→ P by (σf)(x) := f(x2). Then, we define the
even part σu of u by 〈σu, f〉 := 〈u, σf〉.
Therefore, we have [20]

f(x)(σu) = σ(f(x2)u) , (1.5)

σu′ = 2(σ(xu))′ . (1.6)

The linear form v will be called regular if we can associate with it a sequence
{Sn}n≥0

(

deg(Sn) ≤ n
)

such that

〈v, SnSm〉 = rnδn,m , n,m ≥ 0 , rn 6= 0 , n ≥ 0 .

Then deg(Sn) = n , n ≥ 0, and we can always suppose each Sn monic (i.e. Sn(x) =
xn + · · · ). The sequence {Sn}n≥0 is said to be orthogonal with respect to v.

A form v is regular if and only if △n =: det

(

(v)i+j

)n

i,j=0

6= 0 , n ≥ 0
(

Hankel

determinants
)

[8].
It is a very well known fact that the sequence {Sn}n≥0 satisfies the recurrence

relation
(

see, for instance, the monograph by Chihara [8]
)

Sn+2(x) = (x− ξn+1)Sn+1(x) − ρn+1Sn(x) , n ≥ 0 ,
S1(x) = x− ξ0 , S0(x) = 1 ,

(1.7)

with
(

ξn, ρn+1

)

∈ C × C
∗ , n ≥ 0 , by convention we set ρ0 = (v)0 = 1.

In this case, let {S(1)
n }n≥0 be the associated sequence of first kind for the sequence

{Sn}n≥0 satisfying the three-term recurrence relation

S
(1)
n+2(x) = (x− ξn+2)S

(1)
n+1(x) − ρn+2S

(1)
n (x) , n ≥ 0,

S
(1)
1 (x) = x− ξ1, S

(1)
0 (x) = 1 ,

(

S
(1)
−1(x) = 0

)

,
(1.8)

and {Sn(., µ)}n≥0 the co-recursive polynomials for the sequence {Sn}n≥0 satisfying
[9]

Sn+1(x, µ) = Sn+1(x) − µS(1)
n (x) , n ≥ 0 . (1.9)

A linear form v is called symmetric if (v)2n+1 = 0, n ≥ 0 . The conditions
(v)2n+1 = 0, n ≥ 0 are equivalent to the fact that the corresponding sequence of
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orthogonal polynomials (OPS) {Sn}n≥0 satisfies the recurrence relation (1.7) with
ξn = 0, n ≥ 0 [8]. The linear form x2v is also symmetric.

In all this paper, except opposite mention, the linear form v will be supposed
normalized, (i.e: (v)0 = 1), symmetric, and regular.

Let us consider the quadratic decomposition of {Sn}n≥0 and {S(1)
n }n≥0 (see [8],

[20])

S2n(x) = P̃n(x2) , S2n+1(x) = xR̃n(x2) , (1.10)

S
(1)
2n (x) = R̃n

(

x2,−ρ1

)

, S
(1)
2n+1(x) = xP̃ (1)

n (x2) . (1.11)

The sequences {P̃n}n≥0 and {R̃n}n≥0 are respectively orthogonal with respect to σv
and xσv. We have for instance:

P̃n+2(x) =
(

x− ξP̃
n+1

)

P̃n+1(x) − ρP̃
n+1P̃n(x) , n ≥ 0 ,

P̃1(x) = x− ξP̃
0 , P̃0(x) = 1 ,

(1.12)

with

ξP̃
0 = ρ1 , ξP̃

n+1 = ρ2n+2 + ρ2n+3 , ρP̃
n+1 = ρ2n+1ρ2n+2 , n ≥ 0 . (1.13)

Proposition 1.1. [17] We have

S2n+1(0) = 0 , S2n+2(0) = (−1)n+1
n
∏

v=0

ρ2v+1 , n ≥ 0 , (1.14)

S
(1)
2n+1(0) = 0, S

(1)
2n (0) = (−1)n

n
∏

v=0

ρ2v , n ≥ 0 . (1.15)

Proposition 1.2.[8, 21] v is regular if and only if σv and xσv are regular.

The study of the linear form u = −λx−2v + δ0 , λ ∈ C
∗. For a λ ∈ C

∗, we
can define a new linear form u as following:

u = −λx−2v + δ0 . (1.16)

From (1.16), and (1.1), we have

x2u = −λv . (1.17)

Remark. The above problem was treated by the second author and Maroni in [1,
17] and we are going to handle it differently using the quadratic decomposition to
have new applications.

Proposition 1.3. The functional u is regular if and only if P̃n(0, λ) 6= 0 , n ≥ 0 ,
where P̃n is defined by (1.10).

Proof. Applying the operator σ for (1.17), and using (1.5), we obtain

xσu = −λσv . (1.18)
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From (1.18), and (1.2), we get

σu = −λx−1σv + δ0 . (1.19)

From (1.16), we deduce that u is symmetric linear form. Then, according to Proposi-
tion 1.2. u is regular if and only if xσu and σu are regular. But xσu = −λσv is regular
because λ 6= 0 and σv is regular. So u is regular if and only if σu = −λx−1σv + δ0 is
regular.
Or, {P̃n}n≥0 is the corresponding orthogonal sequence to σv, and it was shown in

[17] that σu = −λx−1σv+ δ0 is regular if and only if λ 6= 0, and P̃n(0, λ) 6= 0 , n ≥ 0 .
Then we deduce the desired result.

Remark. In fact, using the well known identity (see [8], page 86)

P̃n+1(0)P̃
(1)
n+1(0) − P̃n+2(0)P̃ (1)

n (0) =

n
∏

v=0

ρP̃
v+1 , n ≥ 0 . (1.20)

Dividing the above equation by P̃n+2(0)P̃n+1(0), and using (1.10), (1.13), (1.14), we
get

P̃
(1)
n+1(0)

P̃n+2(0)
− P̃

(1)
n (0)

P̃n+1(0)
= −

n+1
∏

v=0

ρ2v

ρ2v+1
, n ≥ 0 .

This leads to

P̃ (1)
n (0) = −P̃n+1(0)

n
∑

k=0

k
∏

v=0

ρ2v

ρ2v+1
, n ≥ 0 . (1.21)

Using (1.9), and (1.21) we can easily find the result given in [17] according to Propo-
sition 1.3.. When the linear form v is symmetric, then u is regular if and only if

λ 6=
(

n
∑

k=0

k
∏

v=0

ρ2v

ρ2v+1

)−1

.

When u is regular let {Zn}n≥0 be its corresponding sequence of polynomials
satisfying the recurrence relation

Zn+2(x) = xZn+1(x) − γn+1Zn(x) , n ≥ 0 ,
Z1(x) = x , Z0(x) = 1 .

(1.22)

Since {Zn}n≥0 is symmetric, let us consider its quadratic decomposition:

Z2n(x) = Pn(x2) , Z2n+1(x) = xRn(x2) . (1.23)

From (1.18), we have

Rn(x) = P̃n(x) , n ≥ 0 . (1.24)

Remark. From (1.13), and (1.22), the sequence {Pn}n≥0 satisfies the recurrence
relation (1.12) with

βP
0 = γ1 , βP

n+1 = γ2n+2 + γ2n+3 , γP
n+1 = γ2n+1γ2n+2 . (1.25)
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From (1.19), we can deduce the following result

Proposition 1.4.[22] The sequence of polynomials {Pn}n≥0 satisfy the relation

Pn+1(x) = P̃n+1(x) + ãnP̃n(x) , n ≥ 0 (1.26)

where

ãn = − P̃n+1(0, λ)

P̃n(0, λ)
, n ≥ 0 . (1.27)

Lemma 1.5. We have

Zn+2(x) = Sn+2(x) + anSn(x) , n ≥ 0 with

a2n = ãn , a2n+1 = ρ2n+2 , n ≥ 0 . (1.28)

Proof. According to formula (1.16) of [1, p.14], we have
a2n+1 = ρ2n+2 , n ≥ 0 , and

Z2n+2(x) = S2n+2(x) + a2nS2n(x) , n ≥ 0 .

In (1.26) replace x by x2 and compare the obtained equation by the above one, we
obtain a2n = ãn , n ≥ 0 , according to (1.23).

Proposition 1.6. We may write

γ1 = −λ , γ2n+2 = ãn , γ2n+3 =
ρ2n+1ρ2n+2

ãn
, n ≥ 0 . (1.29)

Definition 1.7. (see [19],[21]) A linear form v is called semiclassical when it is
regular and there exist two polynomials Φ̃ and Ψ̃ such that:

(

Φ̃v
)′

+ Ψ̃v = 0, deg(Ψ̃) ≥ 1, Φ̃ monic. (1.30)

Proposition 1.8. [19] The semiclassical linear form v verifying equation (1.30)
is of class s̃ = max

(

deg Ψ̃ − 1, deg Φ̃ − 2
)

if and only if

∏

c

(

|Φ̃′(c) + Ψ̃(c)| +
∣

∣

∣

〈

u, θcΨ̃ + θ2c Φ̃
〉∣

∣

∣

)

> 0 , (1.31)

where c goes over the roots set of Φ̃.

The semiclassical character is kept by shifting. Indeed, the shifted linear form
v̂ = (ha−1oτ−b)v , a ∈ C

∗ , b ∈ C satisfies

(

ˆ̃Φv̂
)′

+ ˆ̃Ψv̂ = 0 (1.32)

with

ˆ̃Φ(x) = a−tΦ̃(ax+ b) , ˆ̃Ψ(x) = a1−tΨ̃(ax+ b) , t = deg(Φ̃) . (1.33)

Where the linear forms τ−bv
(

translation of v
)

and hav
(

dilatation of u
)

are defined
by

〈τbv, f〉 := 〈v, τ−bf〉 := 〈v, f(x+ b)〉 , 〈hav, f〉 := 〈v, haf〉 := 〈v, f(ax)〉 , f ∈ P .
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The sequence {Ŝn(x) = a−nSn(ax+ b)}n≥0 is orthogonal with respect to v̂ and fulfills
(1.7) with

ξ̂n =
ξn − b

a
, ρ̂n+1 =

ρn+1

a2
, n ≥ 0 . (1.34)

In the sequel, the linear form v will be supposed symmetric semiclassical of class
s̃ and satisfying (1.30).

From (1.17), and (1.30), it is clear that when the linear form u is regular it is also
semiclassical and satisfies

(Φu)
′
+ Ψu = 0 (1.35)

with

Φ(x) = x2Φ̃(x) , Ψ(x) = x2Ψ̃(x) . (1.36)

The class s of u is at most s̃+ 2.

Proposition 1.9. The class of u depends only on the zero x = 0 of Φ.

Proof. Let c be a root of Φ such that c 6= 0, then Φ̃(c) = 0.

If Φ̃′(c) + Ψ̃(c) 6= 0, using (1.36) we have Φ′(c) + Ψ(c) = c2
(

Φ̃′(c) + Ψ̃(c)
)

6= 0.

If Φ̃′(c) + Ψ̃(c) = 0, we have c2
(

Φ̃′(c) + Ψ̃(c)
)

= x2
(

Φ̃′(c) + Ψ̃(c)
)

= 0, which leads

to θ2cΦ + θcΨ = x2
(

θ2c Φ̃ + θcΨ̃
)

. Then, using (1.17) and the above result, we get
〈

u, θ2cΦ + θcΨ
〉

= −λ
〈

v, θ2c Φ̃ + θcΨ̃
〉

6= 0 , according to (1.31).

Proposition 1.10. We have

1) If Φ̃(0) − λ
〈

v, θ0Ψ̃ + θ20Φ̃
〉

6= 0 then s = s̃+ 2.

2) If Φ̃(0) =
〈

v, θ0Ψ̃ + θ20Φ̃
〉

= 0 and 2Φ̃′(0) + Ψ̃(0) − λ
〈

v, θ20Ψ̃ + 2θ30Φ̃
〉

6= 0 then

s = s̃+ 1.

Proof. For 1) see formula (2.3) of [1, p.14] .

According to Proposition 1.9., the class of u depends only on the zero x = 0 of Φ. If

Φ̃(0) =
〈

v, θ0Ψ̃ + θ20Φ̃
〉

= 0, then it is possible to simplify by x (1.35)-(1.36), and u

fulfils (1.35) with

Φ(x) = xΦ̃(x) , Ψ(x) = Φ̃(x) + xΨ̃(x) . (1.37)

Here, we have

Φ′(0) + Ψ(0) = 2Φ̃(0) = 0, and
〈

u, θ0Ψ + θ20Φ
〉

=
〈

u, Ψ̃ + 2θ0Φ̃
〉

.

From (1.17), we get
〈

u, θ0Ψ + θ20Φ
〉

= 2Φ̃′(0) + Ψ̃(0) − λ
〈

v, θ20Ψ̃ + 2θ30Φ̃
〉

. Hence 2) follows.

A differential recurrence relation. Note that the OPS relatively to a semi-
classical linear form has a differential recurrence relation [21]. Then, if we consider
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that the linear form v is semiclassical, its OPS {Sn}n≥0 fulfills the following differen-
tial recurrence relation

Φ̃(x)S′
n+1(x) =

C̃n+1(x) − C̃0(x)

2
Sn+1(x) − ρn+1D̃n+1(x)Sn(x) , n ≥ 0 (1.38)

where














C̃0(x) = −Φ̃′(x) − Ψ̃(x) , D̃0(x) = −
(

vθ0Ψ̃
)

(x) −
(

vθ0Φ̃
)′

(x) , D̃−1(x) = 0 ,

C̃n+1(x) = −C̃n(x) + 2xD̃n(x) , n ≥ 0 ,

ρn+1D̃n+1(x) = −Φ̃(x) + ρnD̃n−1(x) − xC̃n(x) + x2D̃n(x) , n ≥ 0 ,

(1.39)

with
(

vθ0Ψ̃
)

(x) =

〈

v,
Ψ̃(x) − Ψ̃(ζ)

x− ζ

〉

.

According to (1.16), and (1.35)-(1.36), the linear form u is also symmetric and
semiclassical and its OPS {Zn}n≥0 satisfied a differential recurrence relation.

We have the following result (see [1] , [5]):

Proposition 1.11. The sequence {Zn}n≥0 fulfills

Φ(x)Z ′
n+1(x) =

Cn+1(x) − C0(x)

2
Zn+1(x) − γn+1Dn+1(x)Zn(x) , n ≥ 0 (1.40)

with



























Cn+2(x) = x2C̃n+1(x) + 2(an − ρn+1)xD̃n(x) − 2(an+1 − ρn+2)xD̃n+1(x), n ≥ 0,

C1(x) = x2C̃0(x) − 2λxD̃0(x) , C0(x) = −2xΦ̃(x) + x2C̃0(x) ,

Dn+2(x) = x2D̃n+1(x) + (an − ρn+1)

(

D̃n(x) − an+1

an
D̃n+2(x)

)

, n ≥ 0 ,

D1(x) = x2D̃0(x) , D0(x) = −Φ̃(x) + xC̃0(x) − λD̃0(x) .

Corollary 1.12. Each polynomial of {Zn}n≥0 satisfies a second order differen-
tial equation of Laguerre-type, (or holonomic second order differential equation)

J(x, n)Z ′′
n+1(x) +K(x, n)Z ′

n+1(x) + L(x, n)Zn+1(x) = 0, n ≥ 0, (1.41)

with8>>>><>>>>: J(x, n) = x2Φ̃(x)
�
x2D̃n(x) + vn(x)

�
,

K(x, n) = x2
�
C̃0(x) + Φ̃′(x)

�
(x2D̃n(x) + vn(x)

�
− x2Φ̃(x)

�
2xD̃n(x) + x2D̃′

n(x) + v′
n(x)

�
,

L(x, n) = 1
2

�
C̃n(x) − C̃0(x)

��
x4D̃′

n(x) + x2v′
n(x) − 2xvn(x)

�
+ (θnun(x) − θ̃n+1un+1(x))×

1
2

�
2xD̃n(x) + x2D̃′

n(x) + v′
n(x)

�
−

�
x2D̃n(x) + vn(x)

��
1
2

�
C̃′

n(x) − C̃′
0(x)+

+θnu′
n(x) − θ̃n+1u

′
n+1(x)

�
− xΨ(x) − λD̃0(x) + x2

∇n + ∇̃n

	
,

and














un(x) = (an−1 − ρn)xD̃n−1(x), vn(x) = (an−1 − ρn)
�
D̃n−1(x) − an

an−1
D̃n+1(x)

�
,

θn = 1 − (−1)n, θ̃n = (−1)n+1
− 1, ∇n =

nX
k=0

Dk, ∇̃n =

[
n−2

2
]X

k=0

v2k+1(x),
−1X
0

= 0, a−1 = 1.
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Proof. It is well known that a semiclassical OPS fulfils a second order differential
equation [21]. For the sequence {Zn}n≥0, we have

ΦDn+1Z
′′
n+1 + {C0Dn+1 −W (Φ, Dn+1)}Z ′

n+1+

+

{

W

(

Cn+1 − C0

2
, Dn+1

)

−Dn+1

n
∑

k=0

Dk

}

Zn+1 = 0 , n ≥ 0 ,

where W (f, g) = fg′ − f ′g . Then, substituting for Cn and Dn , n ≥ 0 , from the
previous proposition into the above equation and taking into account (1.28), (1.36),
and (1.39) we get the desired result.

Proposition 1.13. We have

2x2Φ(x)P ′
n+1(x

2) =

(

1

2
x
(

C2n+2(x) − C0(x)
)

− γ2n+2D2n+2(x)

)

Pn+1(x
2)−

−γP
n+1D2n+2(x)Pn(x2) , n ≥ 0 . (1.42)

Proof. In the relation (1.40), replace n by 2n + 1 and then multiply it by x, so

that xΦ(x)Z ′
2n+2(x) = x

C2n+2(x) − C0(x)

2
Z2n+2(x)− γ2n+2xD2n+2(x)Z2n+1(x), but

xZ2n+1(x) = Z2n+2(x) + γ2n+1Z2n(x) according to (1.22), then

xΦ(x)Z ′
2n+2(x) =

(

x
C2n+2(x) − C0(x)

2
− γ2n+2D2n+2(x)

)

Z2n+2(x)

−γ2n+2γ2n+1D2n+2(x)Z2n(x).

Finally, from (1.23), and (1.25) we get (1.42).

Remark. The relation (1.42) enables us to obtain the differential recurrence rela-
tion satisfied by the sequence {Pn}n≥0

(

see the second section
)

.

Finally, if we suppose that the form v has the following integral representation:

〈v, f〉 =

∫ +∞

−∞

V (x)f(x)dx , f ∈ P , with (v)0 =

∫ +∞

−∞

V (x)dx = 1

where V is a locally integrable function with rapid decay, then the form u is repre-
sented by [1]

〈u, f〉 = f(0)

{

1 + λPf

∫ +∞

−∞

V (x)

x2
dx

}

− λPf

∫ +∞

−∞

V (x)

x2
f(x)dx , (1.43)

where

Pf

∫ +∞

−∞

V (x)

x2
f(x)dx =

lim
ǫ−→0

{
∫ −ǫ

−∞

V (x)

x2
f(x)dx +

∫ +∞

+ǫ

V (x)

x2
f(x)dx − 2

ǫ
V (0)f(0)

}

.

2. Symmetric semiclassical forms of class s = 2 : Case Φ(0) = 0. Let us
recall that a regular linear form u is called a Laguerre-Hahn form of class s

(

see [2]
)

,
if it satisfies the function equation

(Φu)
′
+ Ψu+B(x−1u2) = 0 , (2.1)
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where Φ, Ψ, and B are polynomials, (Φ monic) and s = max(p−1, d−2) , t = deg(Φ),
p = deg(Ψ), r = deg(B), d = max(t, r).

When B = 0, we meet the semiclassical linear forms.

Proposition 2.1. (see [2]) Let u be a symmetric Laguerre-Hahn form of class
s, satisfying (2.1), then if s is even, Φ and B are even and Ψ is odd ; if s is odd, Φ
and B are odd and Ψ is even.

In the semiclassical case (B = 0), we obtain

Corollary 2.2. Let u be a symmetric semiclassical form of class s, satisfying
(1.35). If s is even then Φ is even and Ψ is odd. If s is odd then Φ is odd and Ψ is
even.

In the sequel, we suppose s = 2, u symmetric, and Φ(0) = 0. Then, according to
the above corollary u satisfies (1.35) with

Φ(x) = c4x
4 + c2x

2 , Ψ(x) = a3x
3 + a1x , |c4| + |a3| 6= 0 . (2.2)

In this particular case, it is possible to characterize the involved semiclassical
forms of class s = 2 as following:

Theorem 2.3. The following statements are equivalent

(a) u is a symmetric semiclassical form of class s = 2 satisfying (1.35) with
Φ(0) = 0

(

i.e. with (2.2)
)

.

(b) There exist a symmetric semiclassical normalized linear form v of class s̃ ≤ 1,
and

(

ã0, ã2, c̃1, c̃3
)

∈ C
4 such that :

u = −λx−2v + δ0 , λ = −(u)2 , (2.3)

{

(

(c̃3x
3 + c̃1x)v

)′
+ (ã2x

2 + ã0)v = 0 ,

|c̃3| + |c̃1| 6= 0 , ã2 6= 0 , ã0 6= 0 ,
(2.4)

−
(

2c̃3 + ã2

)

λ+
(

2c̃1 + ã0

)

6= 0 . (2.5)

For the proof, we need the following lemma

Lemma 2.4. When u is a symmetric semiclassical linear form of class s = 2
satisfying (1.35) with Φ(0) = 0 , then xσu and x2σu are regular.

Proof. Since u is a regular and symmetric linear form , then xσu is regular
according to Proposition 1.2.

From (1.35) and (2.2), we have

(

(c4x
4 + c2x

2)u
)′

+ (a3x
3 + a1x)u = 0 .

Multiplication by x gives

(

(c4x
5 + c2x

3)u
)′

+
(

(a3 − c4)x
4 + (a1 − c2)x

2
)

u = 0 . (2.6)
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Applying the operator σ for the previous equation and using (1.5)-(1.6), we obtain

(

ΦR(x)(xσu)
)′

+ ΨR(x)(xσu) = 0

where ΦR(x) = c4x
2 + c2x, and ΨR(x) =

1

2

(

(a3 − c4)x+ a1 − c2
)

.

Assume a3 − c4 = 0 . Then, from (2.6),we obtain

〈

(

(c4x
5 + c2x

3)u
)′

+
(

a1 − c2
)

x2u , x2n
〉

= 0 , n ≥ 0 , (2.7)

By (2.7) with n = 0, it is easy to see that a1 − c2 = 0 since (u)2 = γ1 6= 0 and then,
(2.7) becomes

c4(u)2n+4 + c2(u)2n+2 = 0 , n ≥ 1 . (2.7)′

If c4 = 0 then (u)2n+2 = 0 , n ≥ 1 (since Φ is monic) and if c4 6= 0 then

(u)2n+4 = k(u)4 , n ≥ 1 where k = −c2
c4

. Therefore, we can deduce that the Hankel

determinant △5 =: det

(

(u)i+j

)5

i,j=0

= 0 which is contradictory with the regularity

of u. Hence

a3 − c4 6= 0 . (2.8)

Thus, deg(ΨR) = 1 and deg(ΦR) ≤ 2. Then, xσu is a classical form. So, there exist
parameters λn+1 ∈ C

∗ , n ≥ 0 such that its corresponding OPS {Rn}n≥0 satisfies the
following differential equation

ΦR(x)R′′
n+1(x) − ΨR(x)R′

n+1(x) = λn+1Rn+1(x) , n ≥ 0 ,

since, the classical orthogonal polynomials are solutions of a second order differential
equation of hypergeometric type according to [7].
Substituting x by 0 in the above equation, we obtain

ΨR(0)R′
n+1(0) = λn+1Rn+1(0) , n ≥ 0 . (2.9)

We have necessarily

2ΨR(0) = a1 − c2 6= 0 . (2.10)

In fact, if ΨR(0) = 0, then Rn+1(0) = 0 , n ≥ 0. Taking into account (1.24), (1.20)

becomes

n
∏

v=0

ρP̃
v+1 = 0 , n ≥ 0 , which is contradictory with the regularity of xσu .

Now, assume that there exists n0 ≥ 1 such that Rn0
(0) = 0. Then, according to

(2.9)-(2.10), we get R′
n0

(0) = 0 which is a contradiction because it is well known (see
[7],[22]) that the zeros of the classical OPS are simple. Hence Rn(0) 6= 0 n ≥ 0. So,
by [8], the linear form x2σu = x(xσu) is regular.

Now, we are able to give the proof of Theorem 2.3.

Proof. (a)⇒ (b). Let v = − 1

λ
x2u which is equivalent to (2.3). Since v is sym-

metric, σv = − 1

λ
xσu and xσv = − 1

λ
x2σu, then v is regular according to Proposition
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1.2. and Lemma 2.4. .

From (1.17), (2.2), (2.6), (2.8), and (2.10), we obtain (2.4) where

c̃3 = c4 , c̃1 = c2 , ã2 = a3 − c4 , and ã0 = a1 − c2 .

From (2.4), it is clear that the linear form v is semiclassical of class s̃ ≤ 1 .

Finally, we have Φ′(0) + Ψ(0) = 0 and
〈

u, θ0Ψ + θ20Φ
〉

= −λ(c4 + a3) + (c2 + a1).

Then, using Proposition 1.8., and the above results, we deduce (2.5).

(b)⇒ (a). From (2.4), v satisfies (1.30) with Φ̃(x) = c̃3x
3 + c̃1x , Ψ̃(x) = ã2x

2 + ã0 .

Here, we have
〈

v, θ0Ψ̃ + θ20Φ̃
〉

= 0 and Φ̃′(0) + Ψ̃(0) = ã0 + c̃1 .

Then, using the standard criterion of simplification (1.31), we obtain the two different
cases :

i) ã0 + c̃1 6= 0, then v is of class s̃ = 1.

In this case, we have Φ̃(0) =
〈

v, θ0Ψ̃ + θ20Φ̃
〉

= 0, and from (2.5), we obtain

2Φ̃′(0) + Ψ̃(0) − λ
〈

v, θ20Ψ̃ + 2θ30Φ̃
〉

= −(2c̃3 + ã2)λ+ (2c̃1 + ã0) 6= 0 .

Then, the class of u is s = 2 according to Proposition 1.10., 2).

ii) ã0 + c̃1 = 0, then it is possible to simplify (2.4) by x. Thus, v satisfies (1.30) with
Φ̃(x) = c̃3x

2 + c̃1, Ψ̃(x) = (ã2 + c̃3)x.

It is clear that the linear form v is of class s̃ = 0. In this case, we have

Φ̃(0) − λ
〈

v, θ0Ψ̃ + θ20Φ̃
〉

= −(2c̃3 + ã2)λ+ c̃1 6= 0 .

Then, the class of u is s = 2 according to Proposition 1.10., 1).

From (1.32), Corollary 2.2 and Theorem 2.3. , we distinguish three canonical cases
for Φ:

Φ(x) = x2 , Φ(x) = x4 , Φ(x) = x2(x2 − 1)

which correspond respectively to the three canonical cases for Φ̃:

Φ̃(x) = x , Φ̃(x) = x3 , Φ̃(x) = x(x2 − 1) .

The last one was mentioned in [2], the authors gave all the symmetric semiclassical
linear forms v of class s = 1. They are obtained as particular cases of symmetric
Laguerre-Hahn forms of class s = 1, when B = 0.

2.1. Φ(x) = x2. In this case , v is the symmetric semiclassical form with Φ̃(x) =
x. Indeed, v = H(2α+ 1) : the generalized Hermite form (see [2,8]).

We have [2]

ρ2n+1 = n+ α+ 1 , ρ2n+2 = n+ 1 , (2.11)

{

Ψ̃(x) = 2x2 − 2(α+ 1) ,

C̃n(x) = −2x2 + (−1)n(2α+ 1) , D̃n(x) = −2x , n ≥ 0 .
(2.12)

In addition, {Sn}n≥0 verifies (1.10) with

P̃n(x) = Lα
n(x) , R̃n(x) = Lα+1

n (x) , n ≥ 0 , (2.13)
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where Lα
n(x) denotes the classical Laguerre polynomials which are orthogonal with

respect to σv = L(α).

Using (1.10), (1.11), (2.11), and Proposition 1.1., we get successively

P̃n(0) = (−1)n Γ(n+ α+ 1)

Γ(α + 1)
, n ≥ 0 , (2.14)

S
(1)
2n+2(0) = R̃n+1 (0,−ρ1) = (−1)n+1Γ(n+ 2) , n ≥ 0 . (2.15)

From (2.15) and (1.9), we obtain

(α+ 1)R̃(1)
n (0) = (−1)n+1Γ(n+ 2) − R̃n+1(0) , n ≥ 0 .

Then, by replacing α+ 1 by α in the above equation and using (2.13)-(2.14), we get
if α 6= 0

P̃ (1)
n (0) =

(−1)n+1

α

(

Γ(n+ 2) − Γ(n+ α+ 2)

Γ(α+ 1)

)

, n ≥ 0 . (2.16)

And if α = 0, from (1.21) and (2.11), we obtain

P̃ (1)
n (0) = (−1)nΓ(n+ 2)

n
∑

k=0

1

k + 1
, n ≥ 0 . (2.17)

So, from (1.9), (2.14), (2.16), and (2.17) we deduce

P̃n(0, λ) =
(−1)nΓ(n+ α+ 1)dα,n

(α+ δα,0) Γ(α+ 1)
, n ≥ 0 , (2.18)

where

dα,n =



















(α+ λ) − λΓ(α + 1)Γ(n+ 1)

Γ(n+ α+ 1)
, α 6= 0 , n ≥ 0 ,

1 + λ

n−1
∑

k=0

1

k + 1
, α = 0 , n ≥ 0 .

(

−1
∑

0

= 0

)

(2.19)

The regularity conditions are α 6= −(n+ 1) , dα,n 6= 0 , n ≥ 0 .

(1.27) and (2.18)-(2.19) give

ãn =
(n+ α+ 1)dα,n+1

dα,n
, n ≥ 0 . (2.20)

Using (2.11), (2.20), and Proposition 1.6., we get

γ1 = −λ , γ2n+2 = ãn , γ2n+3 =
(n+ 1)dα,n

dα,n+1
, n ≥ 0 . (2.21)

From (1.37), we have Ψ(x) = 2x3 − (2α+ 1)x.

Using Proposition 1.11., (1.28), (2.12), (2.19), and (2.20), we obtain after division by
x, for n ≥ 0
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





























C0(x) = −2x3 + (2α− 1)x , C1(x) = −2x3 + (2α+ 4λ+ 1)x ,

C2n+2(x) = −2x3 −Xn , C2n+3(x) = −2x3 +Xn+1 ,

D0(x) = −2x2 + 2(α+ λ) , D2n+1(x) = −2x2 ,

D2n+2(x) = −2x2 − 2
(

α2 + δ0,α

)

(α+ λ)λΓ(α + 1)Γ(n+ 1)

Γ(n+ α+ 2)dα,ndα,n+1
,

(2.22)

where Xn =

(

2α+ 1 +
4λ (α+ δ0,α) Γ(α+ 1)Γ(n+ 1)

Γ(n+ α+ 1)dα,n

)

x .

Next, the focus will be put on σu: the even part of u .

The linear form u verifies the functional equation

(

x2u
)′

+
(

2x3 − (2α+ 1)x
)

u = 0 .

Multiplication by x gives

(

x3u
)′

+
(

2x4 − 2(α+ 1)x2
)

u = 0 .

Applying the operator σ for the above equation and using (1.5)-(1.6), we obtain

2
(

x2σu
)′

+ 2
(

x2 − (α+ 1)x
)

σu = 0 .

Then σu is semiclassical form and satisfies the functional equation

(

ΦP (x)σu
)′

+ ΨP (x)σu = 0 (2.23)

where ΦP (x) = x2 , ΨP (x) = x2 − (α + 1)x .

We have ΨP (0) + (ΦP )′(0) = 0 and
〈

σu, θ0Ψ
P + θ20Φ

P
〉

= −(λ+ α) .
Then, using Proposition 1.8., we obtain the two different cases:

i) λ 6= −α , the class of σu is equal to 1.

ii) λ = −α , σu is a Laguerre form with parameter value of α− 1 .

From (1.25) and (2.22), the coefficients
{

βP
n , γ

P
n+1

}

n≥0
of {Pn}n≥0 are given by

βP
0 = γ1 , βP

n+1 = γ2n+2 + γ2n+3 , γP
n+1 = γ2n+1γ2n+2 ,

where γn , n ≥ 1 are given by (2.21).

According to Proposition 1.13. and (2.22) where x2 → x , the sequence {Pn}n≥0

satisfies the following differential recurrence relation (for n ≥ 0 )

ΦP (x)P ′
n+1(x) =

CP
n+1(x) − CP

0 (x)

2
Pn+1(x) − γP

n+1D
P
n+1(x)Pn(x) (2.24)

with

CP
n+1(x) − CP

0 (x)

2
=

(

−α− λ (α+ δ0,α) Γ(α + 1)Γ(n+ 1)

Γ(n+ α+ 1)dα,n
+

(n+ α+ 1)dα,n+1

dα,n

)

x

+

(

α2 + δ0,α

)

(α+ λ)λΓ(α + 1)Γ(n+ 1)

Γ(n+ α+ 1)(dα,n)2
,

DP
n+1(x) = −x−

(

α2 + δ0,α

)

(α+ λ)λΓ(α + 1)Γ(n+ 1)

Γ(n+ α+ 2)dα,ndα,n+1
,
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CP
0 (x) = −x2 + (α− 1)x, DP

0 (x) = −x+ λ+ α .

Finally, we give the integral representations of u and σu.

The linear form v = H(2α+ 1) has the following integral representation [ 8, p. 157]

〈v, f〉 =
1

Γ(α+ 1)

∫ +∞

−∞

|x|2α+1e−x2

f(x)dx , ℜ(α) > −1 , f ∈ P . (2.25)

Therefore, (1.43) becomes (see also [15] )

〈u, f〉 =

(

1 +
λ

α

)

f(0) − λ

Γ(α+ 1)

∫ +∞

−∞

|x|2α−1e−x2

f(x)dx ,ℜ(α) > 0 . (2.26)

From (2.26)), we get
〈σu, f(x)〉 = 〈u, f(x2)〉

=

(

1 +
λ

α

)

f(0) − 2λ

Γ(α+ 1)

∫ +∞

0

|x|2α−1e−x2

f(x2)dx .

Then, we obtain after a change of variables

〈σu, f〉 =

(

1 +
λ

α

)

f(0) − λ

Γ(α+ 1)

∫ +∞

0

xα−1e−xf(x)dx ,ℜ(α) > 0 . (2.27)

Remarks. 1. From (2.26)-(2.27), we deduce that the linear form u is the sym-
metrized of a Laguerre-type linear form (see [3,11,12,13,14]).
2. A remarkable particular case is λ = −α , the linear form u is the generalized
Hermite form corresponding to the parameter value 2α− 1.

In the two other cases, we are going to proceed with the same stages and tech-
niques.

2.2. Φ(x) = x4 . Let us keep the same notations of [2] where it was shown that
the symmetric semiclassical v̂ of class s = 1 with Φ̃(x) = x3 satisfies

(

x3v̂
)′

+

(

−2(ν + 1)x2 − 1

2

)

v̂ = 0 .

Putting ν = 2α− 1 and using (1.33)-(1.34), then the regular linear form
v = h2

√
2v̂ satisfies

(

x3v
)′ − 4

(

αx2 + 1
)

v = 0 (2.28)

and

ρ1 = − 1

α
, ρ2n+2 =

n+ 1

(n+ α)(2n+ 2α+ 1)
,

ρ2n+3 = − n+ 2α

(n+ α+ 1)(2n+ 2α+ 1)
, n ≥ 0 .

The regularity condition is α 6= −n
2
, n ≥ 0 , and we have

Ψ̃(x) = −4(αx2 + 1) ,

C̃n(x) = (2n+ 4α− 3)x2 + 4(−1)n , n ≥ 0 ,

D̃n(x) = 2(n+ 2α− 1)x , n ≥ 0 .
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Applying the operator σ for (2.28) and using (1.5)-(1.6), we obtain

(

x2σv
)′ − 2

(

αx+ 1
)

σv = 0 . (2.29)

Multiplication by x gives

(

x2(xσv)
)′ − 2

((

α+
1

2

)

x+ 1

)

(xσv) = 0 . (2.30)

From (2.29)-(2.30), we deduce that {Sn}n≥0 satisfies (1.10) with

P̃n(x) = Bα
n (x) , R̃n(x) = B

α+ 1
2

n (x) , n ≥ 0 , (2.31)

where Bα
n (x) denotes the classical Bessel polynomials which are orthogonal with

respect to σv = B(α) (see [21] ).

Remark.[3] From (2.31), v is the symmetrized linear form associated with the
linear form B(α)

(

i.e. v is symmetric and σv = B(α)
)

, with the notation v =

w
(

B(α)
)

.

By applying the same process as we did to obtain (2.18)-(2.19) and using the above
results, we get

Pn(0, λ) =
2nΓ(n+ 2α− 1)

(

1 − 2α+ 2δα, 1
2

)

dα,n

2Γ(2n+ 2α− 1)
, n ≥ 0 , (2.32)

where

dα,n =















λ− 2

2α− 1
− (−1)nλΓ(2α− 1)Γ(n+ 1)

Γ(n+ 2α− 1)
, n ≥ 0 , α 6= 1

2
,

1 + (−1)nnλ

2
, n ≥ 0 , α =

1

2
.

(2.33)

The regularity conditions are dα,n 6= 0 , α 6= −n
2
, n ≥ 0.

From (1.27) and (2.32)-(2.33), we get

ãn = −
(

n+ 2α− 1
)

dα,n+1
(

n+ α
)(

2n+ 2α− 1
)

dα,n

, n ≥ 0 . (2.34)

So, from Proposition 1.6 we get







γ1 = −λ , γ2n+2 = ãn , n ≥ 0 ,

γ2n+3 =
(n+ 1)dα,n

(2n+ 2α+ 1)(n+ α)dα,n+1
, n ≥ 0 .

(2.35)

From (1.28), (1.37), (2.34), and Proposition 1.11., we obtain for n ≥ 0
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





































































Ψ(x) = (1 − 4α)x3 − 4x ,

C0(x) = (4α− 5)x3 + 4x , C1(x) = (4a− 3)x3 + 4 (1 − λ(2α− 1))x ,

C2n+2(x) = (4n+ 4α− 1)x3 − Yn ,

C2n+3(x) = (4n+ 4α+ 1)x3 + Yn+1 ,

D0(x) = 4(α− 1)x2 + 4 − 2λ(2α− 1) ,

D2n+1(x) = 2(2n+ 2α− 1)x2 ,

D2n+2(x) = 4(n+ α)






x2 − 2(−1)nλ

(

λ(2α − 1) − 2
)

Γ(2α)Γ(n+ 1)
(

1 − 2α− 2δ 1
2
,α

)2

Γ(n+ 2α)dα,ndα,n+1






,

(2.36)

where Yn =



4 +
(−1)n+18λΓ(2α)Γ(n+ 1)

(

1 − 2α− 2δ 1
2
,α

)

Γ(n+ 2α− 1)dα,n



x .

σu is a semiclassical linear form and satisfies (2.23) with

ΦP (x) = x3 , ΨP (x) = −2αx2 − 2x.

For the class of σu, we distinguish the two following cases:

i) 2λ−1 6= 2α− 1 , the class of σu is equal to 1.

ii) 2λ−1 = 2α− 1 , σu is a Bessel form with parameter value of α− 1

2
.

From (1.25) and (2.35) the coefficients
{

βP
n , γ

P
n+1

}

n≥0
of {Pn}n≥0 are given by

βP
0 = γ1 , βP

n+1 = γ2n+2 + γ2n+3 , γP
n+1 = γ2n+1γ2n+2 ,

where γn , n ≥ 1 are given by (2.35).

From Proposition 1.13. and (2.36), the sequence {Pn}n≥0 satisfies (2.24) with

CP
n+1(x) − CP

0 (x)

2
= (n+ 1)x2 −

−2



1 − (n+ 2α− 1)dα,n+1

(2n+ 2α− 1)dα,n
+

(−1)n+1λΓ(n+ 1)Γ(2α)
(

1 − 2α+ 2δα, 1
2

)

Γ(n+ 2α− 1)dα,n



x

−4
(−1)nλ

(

λ(2α− 1) − 2
)

Γ(2α)Γ(n+ 1)
(

1 − 2α− 2δα, 1
2

)2

Γ(n+ 2α− 1)(dα,n)2
, n ≥ 0 ,

DP
n+1(x) = 2(n+ α)x− 4

(−1)nλ
(

λ(2α− 1) − 2
)

(n+ α)Γ(2α)Γ(n+ 1)
(

1 − 2α− 2δα, 1
2

)2

Γ(n+ 2α)dα,ndα,n+1

, n ≥ 0 ,

CP
0 (x) = (2α− 3)x2 + 2x , DP

0 (x) = 2(α− 1)x+ (1 − 2α)λ+ 2 .

Integral representations. First, let us recall some results which are useful to
obtain the integral representations of v, u and σu.

A solution of (1.30) has the integral representation

〈v, f〉 =

∫ +∞

−∞

U(x)f(x)dx , f ∈ P ,
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where we suppose that the function U is absolutely continuous on R and its derivative
U ′, if the following conditions hold [18]

(Φ̃(x)U(x))′ + Ψ(x)U(x) = ηg , (2.37)

Φ̃(x)U(x)f(x)]+∞
−∞ = 0 , f ∈ P , (2.38)

∫ +∞

−∞

U(x)dx 6= 0 , (2.39)

where η 6= 0 is arbitrary ; g is locally integrable function with rapid decay representing

the null form:

∫ +∞

−∞

xng(x) = 0 , n ≥ 0 .

The fundamental example representing the null linear form is given by the Stieltjes
function [21]

s(x) =

{

0 , x ≤ 0 ,

e−x
1
4 sinx

1
4 , x > 0 .

Proposition 2.4. [18] Let hα(t) =

∫ t

0

x2αe−
2
x dx; we have the following expres-

sion

J(α) := 4

∫ +∞

0

t3−8αe
2

t4 e−t sin(t)hα−1(t
4)dt (2.40)

=
1

22m

2m+1
∏

µ=0

(2α+ µ)

∫ +∞

0

t3−8αe
2

t4 e−t sin(t)hα+m(t4)dt , m ≥ 0 , α ∈ C .

Corollary 2.5. [18] We have J
(

(−n
2 )
)

= 0, n ≥ 0.

This result is consistent with the fact that the Bessel form is not regular for these
values of α.

Conjecture 2.6. [18] The unique zeros of J(α) are αn = −n
2
, n ≥ 0.

Proposition 2.7. [18] For α ≥ 1, we have J(α) > 0.

Proposition 2.8.

⋆) For α such that J(α) 6= 0

〈v, f〉 = J(α)−1

∫ +∞

−∞

|x|4α−3e−
2

x2

(
∫ +∞

x2

ξ−2αe
2
ξ s(ξ)dξ

)

f(x)dx . (2.41)

⋆ ) For α such that J

(

α− 1

2

)

6= 0 and α 6= 1

2

〈v, f〉 = − 2α− 1

2J
(

α− 1
2

)

∫ +∞

−∞

|x|4α−3e−
2

x2

(
∫ +∞

x2

ξ−2α+1e
2
ξ s(ξ)dξ

)

f(x)dx . (2.42)
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Proof. From (2.37) a solution of (2.28) has the integral representation

〈v, f〉 =

∫ +∞

−∞

V (x)f(x)dx , f ∈ P if
(

x3V (x)
)′ − 4

(

αx2 + 1
)

V (x) = ηg(x).

With the choice of g(x) = sgn(x)s(x2) , we obtain the following solution:

V (x) =







0 , x = 0 ,

η|x|4α−3e−
2

x2

∫ +∞

x2

ξ−2αe
2
ξ s(ξ) , x 6= 0 .

(2.43)

It is evident when |x| → +∞ [18]

|V (x)| ≤ |η||x|4ℜ(α)−3

∫ +∞

x2

ξ−2ℜ(α)e−ξ
1
4 dξ = o(e

−|x|
1
2

2 ) .

So, the condition (2.38) is fulfilled. It remains just to prove (2.39). From (2.43), using
(2.40), we get

∫ +∞

−∞

V (x)dx = 2η

∫ +∞

0

x4α−3e−
2

x2

(
∫ +∞

x2

ξ−2αe
2
ξ s(ξ)dξ

)

dx

= η

∫ +∞

0

y2α−2e−
2
y

(
∫ +∞

y

ξ−2αe
2
ξ s(ξ)dξ

)

dy

= ηJ(α) .

Hence (2.41).
Using the same process described above with g(x) = x|x|s(x2) instead of

g(x) = sgn(x)s(x2) , we get (2.42).

Remark. If we start from (2.42) and apply the same process as we did for (2.26), we
obtain the following new integral representation of B(α) for α such that J

(

α− 1
2

)

6= 0

and α 6= 1
2

〈B(α), f〉 = −
2α − 1

2J
�
α −

1
2

� Z +∞

0

x2α−2e−
2
x

�Z +∞

x

ξ−2α+1e
2
ξ s(ξ)dξ

�
f(x)dx . (2.44)

From (1.43) and (2.42), we obtain

〈u, f〉 =
(2α− 1)λ

2J
(

α− 1
2

)

∫ +∞

−∞

|x|4α−5e−
2

x2

(
∫ +∞

x2

ξ−2α+1e
2
ξ s(ξ)dξ

)

f(x)dx+

+

(

1 − (2α− 1)λ

2J
(

α− 1
2

)

∫ +∞

−∞

|x|4α−5e−
2

x2

(
∫ +∞

x2

ξ−2α+1e
2
ξ s(ξ)dξ

)

dx

)

f(0) ,

but according to (2.41), where α→ α− 1

2
, we have

− 2α− 1

2J(α− 1
2 )

∫ +∞

−∞

|x|4α−3e−
2

x2

(
∫ +∞

x2

ξ−2α+1e
2
ξ s(ξ)dξ

)

1

x2
dx = −2α− 1

2
.

Therefore, for α such that J(α− 1
2 ) 6= 0 and α 6= 1

2

〈u, f〉 =

(

1 − (2α− 1)λ

2

)

f(0)+
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+
(2α− 1)λ

2J
(

α− 1
2

)

∫ +∞

−∞

|x|4α−5e−
2

x2

(
∫ +∞

x2

ξ−2α+1e
2
ξ s(ξ)dξ

)

f(x)dx . (2.45)

If we start from (2.45) and apply the same process as we did for (2.26), we obtain for

α such that J
(

α− 1
2

)

6= 0 and α 6= 1

2

〈σu, f〉 =

(

1 − (2α− 1)λ

2

)

f(0) +

+
(2α− 1)λ

2J
(

α− 1
2

)

∫ +∞

0

x2α−3e−
2
x

(
∫ +∞

x

ξ−2α+1e
2
ξ s(ξ)dξ

)

f(x)dx . (2.46)

Remarks. 1. From (2.45)-(2.46), we deduce that the linear form u is the sym-
metrized of a Bessel-type linear form (see [3]).
2. A remarkable particular case is 2λ−1 = 2α− 1, the form u = w

(

B
(

α− 1
2

))

.

2.3. Φ(x) = x2(x2 − 1). It was shown in [2] that the symmetric semiclassical v
of class s = 1 with Φ̃(x) = x(x2 − 1) satisfies

(

x(x2 − 1)v
)′

+
(

−2(α+ β + 2)x2 + 2(β + 1)
)

v = 0 .

Indeed, v = GG(α, β) , the generalized Gegenbauer (see [6]).

Again in [2 , 8] , we have















ρ2n+1 =
(n+ β + 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
, n ≥ 0 ,

ρ2n+2 =
(n+ 1)(n+ α+ 1)

(2n+ α+ β + 2)(2n+ α+ β + 3)
, n ≥ 0 .

(2.47)

The regularity conditions are α 6= −n , β 6= −n , α+ β 6= −(n+ 1) , n ≥ 1.

And we have
{

C̃n(x) = (2n+ 2α+ 2β + 1)x2 + (−1)n+1(2β + 1) , n ≥ 0 ,

D̃n(x) = 2(n+ α+ β + 1)x , n ≥ 0 .
(2.48)

In addition, {Sn}n≥0 verifies (1.10) with

P̃n(x) =
1

2n
Pα,β

n (2x− 1) , R̃n(x) =
1

2n
Pα,β+1

n (2x− 1) , n ≥ 0 , (2.49)

where Pα,β
n (x) denotes the classical Jacobi’s polynomials which are orthogonal with

respect to J (α, β). This last linear form satisfies
(

(x2 − 1)J (α, β)
)′

+
(

−(α + β +

2)x− α+ β
)

J (α, β) = 0 (see[6, 8]).

Then, σv = (h 1
2
oτ1)J (α, β) .

By applying the same process as we did to obtain (2.18)-(2.19) and using the above
results, we can get for n ≥ 0

Pn(0, λ) =
(−1)n(α+ β + 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)

(β + δβ,0)Γ(β + 1)Γ(2n+ α+ β + 1)
dβ

n , (2.50)

with
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dβ,n =



































−λΓ(β + 1)Γ(α+ β + 1)Γ(n+ 1)Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)
+

+
β

α+ β + 1
+ λ , β 6= 0 , n ≥ 0 ,

1

α+ 1
+ λ

n−1
∑

k=0

2k + α+ 2

(k + 1)(k + α+ 1)
, β = 0 , n ≥ 0 ,

(

−1
∑

0

= 0

)

.

(2.51)

The regularity condition is dβ
n 6= 0 , n ≥ 0 .

Again from (1.27) and (2.50)-(2.51), we get

ãn =
(n+ β + 1)(n+ α+ β + 1)dβ,n+1

(2n+ α+ β + 1)(2n+ α+ β + 2)dβ
n

, n ≥ 0 . (2.52)

We deduce according to Proposition 1.6., (2.47), and (2.52)







γ1 = −λ , γ2n+2 = ãn , n ≥ 0 ,

γ2n+3 =
(n+ 1)(n+ α+ 1)dβ,n

(2n+ α+ β + 2)(2n+ α+ β + 3)dβ,n+1
, n ≥ 0 .

(2.53)

From (1.28), (1.37), (2.52), and Proposition 1.11., we get for n ≥ 0






















































































Ψ(x) = (−2α− 2β − 3)x3 + (2β + 1)x ,

C0(x) = (2α+ 2β − 1)x3 − (2β − 1)x ,

C1(x) = (2α+ 2β + 1)x3 −
(

2β + 1 + 4λ(α+ β + 1)
)

x ,

C2n+2(x) = (4n+ 2α+ 2β + 3)x3 + Zn ,

C2n+3(x) = (4n+ 2α+ 2β + 5)x3 − Zn+1 ,

D0(x) = 2(α+ β)x2 − 2
(

β + λ(α+ β + 1)
)

,

D2n+1 = 2(2n+ α+ β + 2)x2 ,

D2n+2 = 2(2n+ α+ β + 2)×
(

x2 +

(

β2 + δ0,β

)

λ
(

β
α+β+1 + λ

)

Γ(β + 1)Γ(α+ β + 1)Γ(n+ α+ 1)Γ(n+ 1)

Γ(α+ 1)Γ(n+ β + 2)Γ(n+ α+ β + 2)dβ,ndβ,n+1

)

,

(2.54)

with Zn =

(

2β + 1 +
4 (β + δ0,β)λΓ(β + 1)Γ(α+ β + 1)Γ(n+ 1)Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)dβ,n

)

x .

σu is a semiclassical linear form and satisfies (2.23) with

ΦP (x) = x2(x− 1) , ΨP (x) = −
(

α+ β + 2
)

x2 +
(

β + 1
)

x .

Concerning the class of σu, we have the two different cases:

i) λ 6= − β

α+ β + 1
, the class of σu is equal to 1.

ii) λ = − β

α+ β + 1
,
(

h2oτ− 1
2

)

σu = J (α, β − 1).

From (1.25) and (2.53) the coefficients
{

βP
n , γ

P
n+1

}

n≥0
of {Pn}n≥0 are given by

βP
0 = γ1 , βP

n+1 = γ2n+2 + γ2n+3 , γP
n+1 = γ2n+1γ2n+2 ,

where γn , n ≥ 1 are given by (2.53).
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The sequence {Pn}n≥0 satisfies (2.24) with (for n ≥ 0)

1

2

(

CP
n+1(x) − CP

0 (x)
)

= (n+ 1)x2 + Λnx+ Υn ,

DP
n+1(x) = (2n+ α+ β + 2)

(

x+ Ξn

)

,

CP
0 (x) = (α + β − 1)x2 − (β − 1)x , DP

0 (x) = (α+ β)x −
(

λ(α + β + 1) + β
)

,

where

Λn = β +
(β + δ0,β)λΓ(β + 1)Γ(α+ β + 1)Γ(n+ 1)Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)dβ
n

−

− (n+ β + 1)(n+ α+ β + 1)dβ,n+1

(2n+ α+ β + 1)dβ,n
,

Υn = −
(

β2 + δ0,β

)

λ
(

λ+ β
α+β+1

)

Γ(β + 1)Γ(α+ β + 1)Γ(n+ 1)Γ(n+ α+ 1)

(2n+ α+ β + 1)Γ(α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)(dβ,n)2
,

Ξn =

(

β2 + δ0,β

)

λ
(

λ+ β
α+β+1

)

Γ(β + 1)Γ(α+ β + 1)Γ(n+ 1)Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ β + 2)Γ(n+ α+ β + 2)dβ,ndβ,n+1
.

The form v has the following integral representation [8, p. 156], for ℜ(α) > −1,
ℜ(β) > −1, f ∈ P

〈v, f〉 =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ 1

−1

|x|2β+1(1 − x2)αf(x)dx . (2.55)

Therefore, for ℜ(α) > −1 , ℜ(β) > 0, we obtain by (1.43)

〈u, f〉 = −λ Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ 1

−1

|x|2β−1(1 − x2)αf(x)dx+

+

(

1 +
λ(α + β + 1)

β

)

f(0) . (2.56)

Applying
(

h2oτ− 1
2

)

for (1.19), we get in this case

σ̂u = δ−1 − 2λ
(

x+ 1
)−1J (α, β) (2.57)

where σ̂u =
(

h2oτ− 1
2

)

(

σu
)

.

Remark. If {P̂n}n≥0 is the corresponding orthogonal sequence to σ̂u, then ac-

cording to (1.34), we have βP̂
n = 2βP

n − 1 , γP̂
n+1 = 4γP

n+1 , n ≥ 0 .

We have for ℜ(α) > −1 , ℜ(β > −1[21]

〈J (α, β), f〉 =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)

∫ 1

−1

(1 − x)α(1 + x)βf(x)dx . (2.58)

Then, from (2.57)-(2.58), we obtain

〈σ̂u, f〉 = f(−1) − 2λ
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)

∫ 1

−1

(1−x)α(1+x)β f(x) − f(−1)

x+ 1
dx .
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But, when ℜ(β) > 0 we have

Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)

∫ 1

−1

(1 − x)α(1 + x)β 1

x+ 1
dx =

α+ β + 1

2β
.

Therefore, for ℜ(α) > −1 , ℜ(β) > 0, we obtain

〈σ̂u, f〉 = −λ Γ(α+ β + 2)

2α+βΓ(α+ 1)Γ(β + 1)

∫ 1

−1

(1 − x)α(1 + x)β−1f(x)dx+

+

(

1 +
λ(α + β + 1)

β

)

f(−1) . (2.59)

Remarks. 1. From (2.56) and (2.59), we deduce that the linear form u is the
symmetrized of a Jacobi-type linear form (see [3, 11, 12, 13, 14]).

2. Z2n(x) =
1

2n
P̂n(2x2 − 1) , Z2n+1(x) =

1

2n
xP (α,β)

n (2x2 − 1) , n ≥ 0.

Particular cases:

1) λ = − β

α+ β + 1
, u = GG(α, β − 1) (see [5]).

2) α =
1

2
, β = −1

2
, u = δ0 − λPf

1

π

Y (1 − x2)

x2
√

1 − x2
(see [1]), with the definition

〈

Pf
Y (1 − x2)

x2
√

1 − x2
, f

〉

= lim
ǫ→0

(
∫ −ǫ

−1

f(x)
√

1 − x2

x2
dx+

∫ 1

ǫ

f(x)
√

1 − x2

x2
dx

)

where Y is the characteristic function of R
+.

3) α = β =
1

2
, λ = −1

8
, u =

1

2
δ0 + 2U where U is a Tchebychev form of second

kind. In this case, the sequence {Zn}n≥0 satisfies (1.22) with

γ2n+1 =
n+ 1

4(n+ 2)
, γ2n+2 =

n+ 3

4(n+ 2)
, n ≥ 0 .

In a very interesting work [10], J. Charris, G. Salas and V. Silva studied this
sequence of orthogonal polynomials.

Remark. Theorem 2.3. is the main result of our paper. From it, we carry out the
complete description of the symmetric semiclassical linear forms of class s = 2, when
Φ(0) = 0. Unfortunately, the case when Φ(0) 6= 0 is not covered by this theorem and
the description of these linear forms remains open.

Acknowledgment. We strongly believe that the referees contributions and sup-
port do make the difference in the development of this project. So, we owe a great
deal to the dedicated referees whose considerable comments, helpful suggestions and
valuable references have done so much to illustrate this work.
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di Mat. Pura ed Appl., 6 (1991), pp. 19–53.
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