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Abstract. In this paper, we shall establish the well-posedness of a mathematical model for a

special class of electrochemical power device – lithium-ion battery. The underlying partial differential

equations in the model involve a (mix and fully) coupled system of quasi-linear elliptic and parabolic

equations. By exploring some special structure, we are able to adopt the well-known Nash-Moser-

DeGiorgi boot strap to establish suitable a priori supremum estimates for the electric potentials.

Using the supremum estimates, we apply the Leray-Schauder theory to establish the existence and

uniqueness of a subsystem of elliptic equations that describe the electric potentials in the model.

We then employ a Schauder fix point theorem to obtain the local (in time) existence for the whole

model. We also consider the global existence of a modified 1-d governing system under additional

assumptions. In particular, we are able to derive uniform a priori estimates depending only on the

existence time T , including the supremum estimates for electric potentials and growth and decay

estimates for the concentration c. Using the uniform estimates, we prove that the modified system

has a solution for all time t > 0.

Key words. Lithium-ion battery; Nash-Moser-DeGiorgi boot strap; fixed point theorems; a

priori estimates; Newton-Krylov-multigrid method
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1. Introduction. In this paper, we study a special class of coupled elliptic-

parabolic system of nonlinear partial differential equations which has its origin in

the mathematical modelling of electro-chemical devices such as Lithium-ion battery

system. This system of equations can be prescribed on a bounded domain Ω ⊂ R
n

(1 ≤ n ≤ 3) such that

Ω̄ = Ω̄a ∪ Ω̄s ∪ Ω̄c ⊂ R
n,

where Ωa, Ωs and Ωc are rectangular subdomains of Ω that correspond to the neg-

ative electrode, the separator and the positive electrode of the Lithium ion battery

respectively, see Fig.1.1 below.

Set Ω
′
= Ωa ∪ Ωc. The system of partial differential equations that we are inter-

ested takes the following form:

−∇ · (κ(c)∇Φe) +∇ · (α1κ(c)∇ ln c)− Se = 0, x ∈ Ω, (1.1)

−∇ · (σ∇Φs) + Se(Φs − Φe, c) = 0, x ∈ Ω
′, (1.2)

∂(εec)

∂t
−∇ · (D∇c)− Sc(Φs − Φe, c) = 0, x ∈ Ω, (1.3)
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Γa

negative electrode separator positive electrode

Ωa Ωs Ωc
Γc

Fig. 1.1. The domain Ω

Here Φe and Φs are electric potentials (in the electrolyte phase and solid phase re-

spectively) and c is the concentration of the lithium ion in the electrolyte. Proper

Neumann boundary conditions are prescribed for Φe, Φs and, together with an initial

condition, for c.

The above system of equation represents certain mathematical model for the

Lithium-ion battery system. Details of this model can be found in Gu and Wang [8],

Wang [16], Fuller et al [5] and [3, 2, 9]. Similar but more complicated model equations

can also be found in the modelling of other electrochemical device such as fuel cell

systems, see [16].

In this paper, we are mainly interested in the new mathematical features that

present in this type of partial differential equations. Equations (1.1-1.3) is a fully

coupled system of quasi-linear elliptic and parabolic partial differential equations.

There are at least two distinctive features that contribute to the complication of

this system. First of all, the system is highly degenerate as the diffusion coefficients

κ(c) vanishes when c = 0 and σ ≡ 0 on some entire subdomain Ωs (the separator).

Secondly, the “source” terms Sc and Se are highly nonlinear with respect to Φs and

Φe and singular at c = 0.

To our knowledge, such coupled elliptic-parabolic partial differential equations

with the aforementioned complications have not been well-studied in the literature.

By exploring a special structure in the system, we are able to employ the well-known

Nash-Moser-DeGiorgi boot-strap [14, 15] (which is often used for scalar equation) to

establish ‘conditional’ a priori supremum estimates for the elliptic sub-system (1.1)

and (1.2) that describe the electric potentials in the model. With these estimates,

we use the Leray-Schauder theory to establish the existence and uniqueness of this

sub-system. A Schauder fix point theorem is then applied (to the concentration c) to

establish the local (in time) existence for the entire system (1.1-1.3).

The global (in time) existence of the solutions to the model is a more complex

matter and it is not yet established in this paper. Based on some physical arguments

and numerical evidences, we tend to believe that a global existence of the solution can

not be expected in general. We are, however, able to prove a global existence result

for a modified system in one spatial dimension.

The paper is organized as follows. Section 2 contains the discussion and simplifi-
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cation of the (mathematical) governing (partial differential) equations of the system,

including solution spaces. The local existence for the Lithium-ion model is proved in

Section 3. Section 4 is then devoted to establish the global existence for the slightly

modified model when the spatial dimension n = 1.

2. The model equations. In this section, we will describe some details related

to the system (1.1)-(1.3).

First of all, let us introduce some standard notation and terminologies.

Lp
(Ω)(p > 1) denotes the space of measurable functions v defined on Ω such that

|v|p is integrable. L∞
(Ω) denotes the space of measurable functions on Ω that are

bounded almost everywhere.

H1

(Ω) = {u ∈ L2

(Ω) | Du ∈ L2

(Ω)}

Cβ
(Ω) (0 < β < 1) denotes the set of the functions v such that

[v]β,Ω = sup
x,y∈Ω

|v(x) − v(y)|

|x− y|β
<∞.

Cβ,β/2

(Ω× [0, T ]) = {u | [u]
β,Ω×[0,T ]

= sup

(x,t),(y,τ)∈Ω×[0,T ]

|u(x, t)− u(y, τ)|

(|x− y|2 + |t− τ |)β/2

<∞}

In (1.1), κ represents the effective diffusional conductivity which is a (continuous)

piecewise smooth function of c satisfying

κ(0) = 0; κ(c) > 0 for c > 0.

This degenerating property of κ is one of the many complications of our model equa-

tion.

In (1.2), σ is another effective diffusional conductivity. It is piecewise constant,

positive on Ω
′
but identically zero in the subdomain domain Ωs (the separator). This

is another degenerating feature of the system. In (1.3), both D and εe are positive

and piecewise constant.

The function U is a known bounded smooth function of c. The function Se is a

nonlinear function of Φe,Φs and c, taking the following form:

Se = j =

{
α4c

1

2 sinh (α2(Φs − Φe − U(c))) , in Ω
′

0, in Ωs,
(2.1)

and

Sc = α3j = α3Se.

We note again that Se vanishes in the domain Ωs.

Finally, αi (1 ≤ i ≤ 4) are all positive constants, see [8, 16] for the values of all

the constants.

Let us now discuss the initial and boundary conditions. We first impose conditions

on the ‘external’ boundary Γa ∪ Γc of Ω
′
as follows:

−σ
∂Φs

∂n
= I,
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where I is a given current and Γa = ∂Ωa ∩ ∂Ω, Γc = ∂Ωc ∩ ∂Ω. We assume that

∫

Γa∪Γc

IdA = 0.

This means, for lithium-ion battery, no charge is generated or consumed within the

battery. Since Φs is only defined in Ω
′
one prescribes for Φs on the ‘inner’ boundaries

of Ω
′

−σ
∂Φs

∂n
= 0, on (∂Ωa ∩ ∂Ωs) ∪ (∂Ωc ∩ ∂Ωs).

(no current through the separator for the solid phase).

Let Φ
0

s ∈ H
1
(Ω

′
) ∩ L∞

(Ω
′
) that satisfies the same boundary conditions for Φs,

namely

∂Φ
0

s

∂n
=
∂Φs

∂n
, x ∈ ∂Ω

′

and satisfies the following equation

−∇ · (σ∇Φ
0

s) = f, x ∈ Ω
′,

where f be a constant function on Ωa and Ωc respectively, satisfying

∫

Ωa

f =

∫

∂Ωa

I and

∫

Ωc

f =

∫

∂Ωc

I.

By the choice of f , it is easy to see that Φ
0

s is well-defined.

For convenience, with the help of the above function Φ
0

s, we make the following

change of variables

Φs ← Φs − Φ
0

s, Φe ← Φe − α1 ln c, U(c)← U(c)− Φ
0

s.

We have the following equivalent system of partial differential equations:

−∇ · (κ(c)∇Φe)− Se = 0, x ∈ Ω, (2.2)

−∇ · (σ∇Φs) + Se + f = 0, x ∈ Ω
′, (2.3)

∂(εec)

∂t
−∇ · (D∇c)− Sc = 0, (x, t) ∈ Ω× (0, T ) (2.4)

with homogeneous Neumann boundary conditions:

∂Φe

∂n
=
∂c

∂n
= 0, for x ∈ ∂Ω, (2.5)

σ
∂Φs

∂n
= 0, for x ∈ ∂Ω

′
; (2.6)

and also the initial condition:

c(x, 0) = c0(x), x ∈ Ω, (2.7)

where we assume that c0 ≥ ǫ0 > 0, and c0 ∈ C
0,β0(Ω̄) for some β0 > 0.
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Given T > 0, by a weak solution of (2.2–2.7), we mean a triple (Φe,Φs, c) with

Φe ∈ C([0, T ], H1

(Ω) ∩ L∞
(Ω)),

Φs ∈ C([0, T ], H1

(Ω
′
) ∩ L∞

(Ω
′
)),

and

c ∈ C([0, T ], H1

(Ω) ∩ L∞
(Ω)), ct ∈ L

∞
([0, T ], L2

(Ω)), c > 0

satisfying

∫

Ω

κ(c)∇Φe · ∇Φ̃e −

∫

Ω

SeΦ̃s = 0, ∀Φ̃e ∈ H
1

(Ω), t ∈ (0, T ) a.e.

∫

Ω
′

σ∇Φs · ∇Φ̃s +

∫

Ω

(Se + f)Φ̃s = 0, ∀Φ̃s ∈ H
1

(Ω
′
), t ∈ (0, T ) a.e.

∫

Ω

(εec)tc̃+

∫

Ω

D∇c · ∇c̃−

∫

Ω

Scc̃ = 0,

∀c̃ ∈ H1

(Ω).

We notice that, for any m(t) ∈ C([0, T ]), (Φe + m(t), Φs +m(t)) is obviously a

solution of the system (2.2) and (2.3), if (Φe, Φs) is a solution.

For uniqueness, we shall assume that Φe satisfies the following condition

∫

Ω

Φedx = 0, ∀t ∈ (0, T ), (2.8)

which is necessary for uniqueness. For convenience, we define

H1

∗ (Ω) = {u ∈ H1

(Ω),

∫

Ω

udx = 0},

and we can define L∞
∗ (Ω) and Cα

∗ (Ω) similarly.

3. The elliptic system for potential variables. For M > 0, T > 0 and

β ∈ (0, β0], denote

ZM = {c ∈ Cβ,β/2

(Ω× [0, T ]); c ≥ 1/M, ‖c‖
Cβ,β/2

(Ω×[0,T ])
≤M}.

Fixing c ∈ ZM , we first study the elliptic sub-system given by (2.2) and (2.3)

with homogeneous Neumann boundary conditions.

3.1. Uniqueness. First we show that the solution, subject to (2.8), to the el-

liptic system of (2.2) and (2.3) is unique. Let (Φ
i
e,Φ

i
s), i = 1, 2, be two solutions to

the system. Set

(φ, ψ) = (Φ
1

e − Φ
2

e,Φ
1

s
− Φ

2

s
).

Multiplying the difference of the equations for Φ
i
e by φ and integrating, we obtain

(κ(c)∇φ,∇φ) + (φ, S1

e − S
2

e ) = 0,

where

S1

e − S
2

e = Se(Φ
1

s − Φ
1

e)− Se(Φ
2

s − Φ
2

e) = S′
e(ξ)(φ − η)
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for some ξ between (Φ
1

s −Φ
1

e) and (Φ
2

s −Φ
2

e). Clearly, S′
e(ξ) is positive in Ω

′
(zero in

Ωs) by (2.1). Similarly,

(σ∇ψ,∇ψ) − (ψ, S1

e − S
2

e) = 0.

Taking the sum we then obtain

∫

Ω

κ(c)|∇φ|2dx+

∫

Ω
′

σ|∇ψ|2dx+

∫

Ω
′

(φ− ψ)
2S′

e(ξ)dx = 0.

It follows that

∫

Ω

κ(c)|∇φ|2 = 0, t ∈ (0, T ) a.e.,

which, by (2.8), in turn immediately implies

φ = 0, a.e. in Ω× (0, T ).

Similarly, we have

ψ = 0, a.e. in Ω
′ × (0, T ),

since now

∫

Ω
′

ψ2dx =

∫

Ω
′

(φ− ψ)
2S′

e(ξ)dx = 0.

This gives the uniqueness of the solution to the elliptic system.

3.2. A priori supremum estimates. The “source” term is

Se = α4c
1

2 sinh(α2(Φs − Φe − α1 ln c− U(c)))

= α4(hc
1/2−deα2(Φs−Φe) − h−1c1/2+de−α2(Φs−Φe)

)

where d = α1α2,

1

K
≤ h ≡ e−U(c) ≤ K <∞ (3.1)

for some fixed constant K > 0 since that U is a bounded smooth function of c.

For simplicity, in the following exposition, we take

h = α4 = 1. (3.2)

We note that the subsequent analysis without the above assumption is a little bit

more complicated but can be carried out similarly.

We define

X = L∞
∗ (Ω)× L∞

(Ω
′
), Y = H1

∗ (Ω)×H1

(Ω
′
).

Given any V = (u, v) ∈ X and δ ∈ [0, 1], consider the following decoupled system,

∫

Ω

κ(c)∇Φe · ∇φ−

∫

Ω

(δ(Se(v − u, c)− u))− Φe)φ = 0, ∀φ ∈ H1

∗ (Ω) (3.3)

∫

Ω
′

σ∇Φs · ∇ψ +

∫

Ω
′

(δ(Se(v − u, c) + f − v) + Φs)ψ = 0, ∀ψ ∈ H1

(Ω
′
). (3.4)
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The existence of a solution Φ = (Φe,Φs) ∈ X ∩ Y to the system of (3.3) and (3.4) is

standard via a minimization argument. The uniqueness of such a solution is obvious

(same as shown in 3.1.1.).

Now define a mapping

Z : X × [0, 1]→ X, Z((u, v), δ) = Φ = (Φe,Φs),

where Φ = (Φe,Φs) ∈ X ∩ Y is the unique solution to the system of (3.3) and (3.4).

Lemma 3.1. If Φ = Z(Φ, δ) is a solution to the elliptic system (3.3) and (3.4)
with (u, v) = Φ = (Φe,Φs), then

∫

Ω

κ(c)|∇Φe|
2

+

∫

Ω
′

σ|∇Φs|
2

+ (1− δ)

∫

Ω
′

Φ
2

s + (1− δ)

∫

Ω

Φ
2

e

+ δ

∫

Ω
′

|Φe − Φs|(c
1/2−deα2(Φe−Φs)

+ c1/2+de−α2(Φe−Φs)

) + δ

∫

Ω
′

fΦs

≤ (2/α2 + 2eα2)

∫

Ω

H(c),

where H(c) = c1/2−d
+ c1/2+d.

Proof. Adding (3.3) to (3.4) with φ = Φe and ψ = Φs, we obtain

∫

Ω

κ(c)|∇Φe|
2

+

∫

Ω
′

σ|∇Φs|
2

+ (1− δ)

∫

Ω
′

Φ
2

s + (1− δ)

∫

Ω

Φ
2

e

+ δ

∫

Ω
′

(Φe − Φs)Se + δ

∫

Ω
′

fΦs = 0.

Let

G1 = {x ∈ Ω
′
: Φs − Φe ≥ 1}, G2 = {x ∈ Ω

′
: Φs − Φe ≤ −1},

and

G3 = {x ∈ Ω
′
: |Φs − Φe| < 1}.

Thus Ω
′
= G1 ∪G2 ∪G3. Clearly

∣∣∣
∫

G3

(Φs − Φe)Se

∣∣∣ ≤
∫

G3

∣∣∣(Φs − Φe)Se

∣∣∣

≤

∫

G3

α|Φs − Φe|(c
1/2−de−α2(Φs−Φe)

+ c1/2+de−α2(Φs−Φe)

)

≤ 2eα2

∫

G3

(c1/2−d
+ c1/2+d

) ≤ 2eα2

∫

Ω

H(c).

On G1, we have

|(Φs − Φe)e
−α2(Φs−Φe)

)| ≤ max
τ≥1

(τe−α2τ
) ≤ (2α2)

−1,
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and in turn

∫

G1

(Φs − Φe)S =

∫

G1

(Φs − Φe)(e
α2(Φs−Φe)c1/2−d − e−α2(Φs−Φe)c1/2+d

)

=

∫

G1

|Φs − Φe|(e
α2(Φs−Φe)c1/2−d

+ e−α2(Φs−Φe)c1/2+d
)

−2

∫

G1

(Φs − Φe)e
−α2(Φs−Φe)c1/2+d

≥

∫

G1

|Φs − Φe|(e
α2(Φs−Φe)c1/2−d

+ e−α2(Φs−Φe)c1/2+d
)

−
1

α2

∫

Ω

c1/2+d.

Similarly, we have

∫

G2

(Φs − Φe)S =

∫

G2

(Φs − Φe)(e
α2(Φs−Φe)c1/2−d − e−α2(Φs−Φe)c1/2+d

)

≥

∫

G2

|Φs − Φe|(e
α2(Φs−Φe)c1/2−d

+ e−α2(Φs−Φe)c1/2+d
)

−
1

α2

∫

Ω

c1/2−d.

Combining the above three inequalities, we have,

∫

Ω
′

(Φs − Φe)S =

∫

G1

(Φs − Φe)S +

∫

G2

(Φs − Φe)S +

∫

G3

(Φs − Φe)S

≥

∫

Ω
′

|Φs − Φe|(e
α2(Φs−Φe)c1/2−d

+ e−α2(Φs−Φe)c1/2+d
)

−

(
2

α2

+ 2eα2

) ∫

Ω

H(c).

Combining (3.5) and the above inequalities, we complete the proof.

Next we shall use the classical Moser iteration [14, 15] to establish a priori supre-

mum estimates for Φ = (Φe,Φs) ∈ X ∩ Y . First, we prove the following uniform

L2
-estimates.

Lemma 3.2. For M > 0, let c ∈ ZM and Φ = (Φe,Φs) ∈ X ∩ Y be a solution of
the equation Φ = Z(Φ, δ) for some δ ∈ [0, 1]. Then there exists α(M) > 0 such that

∫

Ω

Φ
2

e +

∫

Ω
′

Φ
2

s ≤ α(M),

and

δ

∣∣∣∣
∫

Ω
′

Se

∣∣∣∣ ≤ α(M).

Proof. Obviously Φ = Z(Φ, δ) is a solution to the elliptic system (3.3) and (3.4)
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with (u, v) = Φ = (Φe,Φs). Then

∫

Ω

κ(c)|∇Φe|
2

+

∫

Ω
′

σ|∇Φs|
2

+ (1− δ)

∫

Ω
′

Φ
2

s + (1− δ)

∫

Ω

Φ
2

e

+ δ

∫

Ω
′

|Φe − Φs|(c
1/2−deα2(Φe−Φs)

+ c1/2+de−α2(Φe−Φs)

) + δ

∫

Ω
′

fΦs

≤ (2/α2 + 2eα2)

∫

Ω

H(c).

In the rest of the proof, we should use the special notation . and &. x . y means

x ≤ β(M)y for some positive constant β(M) depending on M similarly x & y means

x ≥ γ(M)y for some positive constant γ(M) depending on M .

Evidently

|Φe − Φs|(e
α2(Φe−Φs)

+ e−α2(Φe−Φs)

) & |Φe − Φs|
2.

Using the fact that c ∈ ZM , we have

1 . σ, c1/2−d, c1/2+d, H(c), κ(c) . 1.

It follows that

∫

Ω

κ(c)|∇Φe|
2

+ σ

∫

Ω
′

|∇Φs|
2

&

∫

Ω

|∇Φe|
2

+

∫

Ω
′

|∇Φs|
2,

and

∫

Ω
′

|Φe − Φs|(c
1/2−deα2(Φe−Φs)

+ c1/2+de−α2(Φe−Φs)

) &

∫

Ω
′

|Φe − Φs|
2.

It follows that

∫

Ω

|∇Φe|
2

+

∫

Ω
′

|∇Φs|
2

+ δ

∫

Ω
′

|Φe − Φs|
2

(3.5)

+ (1 − δ)

∫

Ω
′

Φ
2

s + (1 − δ)

∫

Ω

Φ
2

e . (1 +

∣∣∣∣
∫

Ω
′

fΦs

∣∣∣∣).

By (2.8) and the Poincaré’s inequality,

∫

Ω

Φ
2

e =.

∫

Ω

|∇Φe|
2

. 1.

We now write φs = δ(φs − φe) + (1− δ)φs + δφe. It follows from (3.5) again

1

3

∫

Ω
′

Φ
2

s ≤ δ

∫

Ω
′

|Φe − Φs|
2

+ (1− δ)

∫

Ω
′

Φ
2

s + δ

∫

Ω

Φ
2

e

. (1 +

∣∣∣∣
∫

Ω
′

fΦs

∣∣∣∣) .

∫

Ω
′

Φ
2

s +

∫

Ω
′

f2

. 1.

Finally, taking ψ = 1 in (3.4) yields

δ

∣∣∣∣
∫

Ω
′

Se

∣∣∣∣ ≤ (1− δ)

∣∣∣∣
∫

Ω
′

Φs

∣∣∣∣ + δ

∣∣∣∣
∫

Ω
′

fΦs

∣∣∣∣ . 1.



284 J. WU, J. XU AND H. ZOU

The proof is complete.

With the aid of Lemma 3.2, we are in a position to derive the following a priori

estimates, independent of both δ and the solution Φ = (Φe,Φs) ∈ X ∩ Y . In the

following, α(M) denotes a generous constant which depends on M .

Lemma 3.3. Let Φ = (Φe,Φs) ∈ X ∩ Y be a solution of Φ = Z(Φ, δ) for some
δ ∈ [0, 1]. Then there exists a positive constant α(M) such that

‖Φe‖L∞
(Ω)
≤ α(M); ‖Φs‖L∞

(Ω
′
)
≤ α(M).

Proof. For x0 ∈ Ω
′
, let R > 0 such that R < dist(x0, ∂Ω

′
). Put BR = BR(x0),

the ball centered at x0 with radius R. Let ξ ∈ C∞
0

(BR(x0)) be a standard cut-off

function with ξ ≡ 1 on BR/2
. Given any even integer p > 1, we use the test function

φ = ξ2Φp−1

e −
1

|Ω|

∫

Ω

ξ2Φp−1

e ∈ H1

∗

in (3.3) ((u, v) = (Φe,Φs)) to obtain

∫

BR

κ(c)∇Φe · ∇(ξ2Φp−1

e )−

∫

BR

(δSe − (1− δ)Φe))ξ
2

Φ
p−1

e

+
δ

|Ω|

∫

Ω

ξ2Φp−1

e

∫

Ω
′

Se = 0.

Similarly, using ψ = ξ2Φp−1

s in (3.4)

∫

BR

σ∇Φs · ∇(ξ2Φp−1

s ) +

∫

BR

(δSe + δf + (1 − δ)Φs)ξ
2

Φ
p−1

s = 0.

Taking the sum, we then obtain

∫

BR

κ(c)∇Φe · ∇(ξ2Φp−1

e ) +

∫

BR

σ∇Φs · ∇(ξ2Φp−1

s )

+δ

∫

BR

Seξ
2

(Φ
p−1

s − Φ
p−1

e ) + (1− δ)

∫

BR

ξ2(Φp
s + Φ

p
e)

+
δ

|Ω|

∫

Ω

ξ2Φp−1

e

∫

Ω
′

Se + δ

∫

BR

fξ2Φp−1

s = 0.

Using (2.1) once more, we have

Se(Φs − Φe, c) = Se(0, c) + S′
e(η, c)(Φs − Φe),

where S′
e(η, c) ≥ 0. It follows that

∫

BR

Se(Φs − Φe, c)ξ
2

(Φ
p−1

s − Φ
p−1

e )dx

≥ −α(M)

∫

BR

ξ2(|Φe|
p−1

+ |Φs|
p−1

)dx,

since (recall p even)

(Φ
p−1

s − Φ
p−1

e )(Φs − Φe) ≥ 0.
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∫

BR

fξ2Φp−1

s ≤ ‖f‖L∞

∫

BR

ξ2|Φs|
p−1

By Lemma 3.2, we have

δ

∫

Ω

ξ2Φp−1

e

∫

Ω
′

Se ≥ −α(M)

∫

BR

ξ2|Φe|
p−1.

Therefore

∫

BR

ξ2|∇Φ
p/2

e |
2

+

∫

BR

ξ2|∇Φ
p/2

s |
2

≤ α(M)

(∫

BR

|∇ξ|2(Φp
e + Φ

p
s) + p

∫

BR

ξ2(|Φe|
p−1

+ |Φs|
p−1

) + p2

∫

BR

ξ2|Φs|
p−2

)
.

With the above estimate, we can use a standard argument from the classical Nash-

Moser-De Giorgi boot-strap to show that there exists α(M) > 0 such that (see [7, 11]

for details)

sup

BR/2

|Φe| ≤
α(M)

|BR|

∫

BR

|Φe|+
α(M)

|BR|

∫

BR

|Φs|,

and

sup

BR/2

|Φs| ≤
α(M)

|BR|

∫

BR

|Φe|+
α(M)

|BR|

∫

BR

|Φs|.

Clearly the above estimates are valid on all of Ω (including the boundary) for Φe

and Ω
′
for Φs, in view of the homogeneous Neumann boundary conditions. Namely,

∀x0 ∈ Ω and R ≤ 1, we have

sup

BR/2(x0)∩Ω

|Φe| ≤ α(M)

( ∫

Ω

|Φe|+

∫

Ω
′

|Φs|
)
,

and

sup

BR/2(x0)∩Ω
′

|Φs| ≤ α(M)

( ∫

Ω

|Φe|+

∫

Ω
′

|Φs|
)
.

Now the proof follows directly from Lemma 3.2.

3.3. Existence using Leray-Schauder theory. Now, for t ∈ (0, T ), we shall

prove the existence of a solution (in H1

∗ ×H
1
) to the system of (2.2) and (2.3) using

the Leray-Schauder theorem (see Theorem 11.6, p.280, [7]). Specifically, we want to

show that V = Z(V, 1) (V ∈ X) has a fixed point in the Banach space X . To this

end, let us first state and verify the following properties of Z:

1. Z(V, 0) = 0 for all V ∈ X . This is obvious.

2. Z : X → X is compact. Let Φ = Z(V, δ). That is, Φ satisfies the system (3.3)

and (3.4). A standard De-Giorgi estimate shows that Φ ∈ Cβ1

∗ (Ω)× Cβ1(Ω
′
)

for some β1 > 0 (independent of β). The claim follows by the fact that the

imbedding C
β1

∗ × C
β1 −→ X is compact.

3. There exists a positive constant α(M) (independent of δ and W ) such that

‖W‖X ≤ α, ∀W ∈ {V ∈ X | ∃δ ∈ [0, 1], V = Z(V, δ)}.

This is the estimate proved in Lemma 3.3.
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Thus by the Leray-Schauder theorem, the mapping V = Z(V, 1) has a fix point

Φ in X .

Theorem 3.4. Let β ∈ (0, β0], M > 0 and T > 0. Suppose c ∈ ZM . Then for
any t ∈ (0, T ), the system of (2.2) and (2.3), with homogeneous Neumann boundary
condition, admits a unique solution Φ = (Φe,Φs) ∈ X ∩ Y . Moreover, there exists
α(M) > 0 such that

‖Φe‖L∞
(Ω)

+ ‖Φs‖L∞
(Ω

′
)
≤ α(M).

Proof. The fixed point Φ = (Φe,Φs) ∈ X ∩ Y of x = Z(x, 1) obtained above

clearly satisfies the system of (3.3) and (3.4) with (u, v) = Φ = (Φe,Φs) and δ = 1.

Moreover, there exists α(M) > 0 such that

‖Φe‖L∞
(Ω)

+ ‖Φs‖L∞
(Ω

′
)
≤ α(M).

Clearly there exists a constant α(M) such that

∫

Ω
′

Se(Φs ± α(M)− Φe, c)dx = 0,

in view of the definition (2.1), since

c, c−1, |Φs|, |Φe| ≤ α(M).

Φ = (Φe,Φs ± α(M)) is the desired solution to the system (2.2) and (2.3) with

homogeneous Neumann boundary conditions.

We close this section by giving the following regularity of Φ in t.

Lemma 3.5. Let β ∈ (0, β0], M > 0 and T > 0. Suppose c ∈ ZM and κ ∈ Cγ for
some γ ∈ (0, 1). Then the unique solution Φ = (Φe,Φs) ∈ X ∩ Y given in Theorem
3.4 satisfies

Φ ∈ Cγ
′

([0, T ], H1

∗(Ω)×H1

(Ω
′
)),

for some γ′ ∈ (0, 1).

Remark. The exponent γ′ depends on the Hölder exponents β and γ.

Proof. The proof is essentially the same as the uniqueness argument given in

4.1.1. Indeed, for ti ∈ (0, T ), i = 1, 2, put

Φ
i
e = Φe(x, ti), Φ

i
s = Φs(x, ti), ci = c(x, ti),

and

φ = Φ
1

e − Φ
2

e ψ = Φ
1

s − Φ
2

s.

Similarly as in 3.1.1, we have

∫

Ω

κ(c1)|∇φ|
2

+

∫

Ω
′

σ|∇ψ|2 +

∫

Ω
′

(φ− ψ)
2S′

e(ξ)

+

∫

Ω
′

(φ− ψ)
2

(Se(Φ
2

s − Φ
2

e, c2)− Se(Φ
2

s − Φ
2

e, c1))

+

∫

Ω

(κ(c1)− κ(c2))∇φ∇Φ
2

e = 0.

Now the conclusion follows from Theorem 3.4, Lemmas 3.2-3.3 and their proofs, and

the assumptions.
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4. Local existence. In this section, we shall prove that the system (1.1-1.3)

poses a unique solution upto certain time t∗ under some proper initial and boundary

value conditions.

Now we will prove a local (in time) existence result for the system of (2.2), (2.3)

and (2.4). Set

M = 2‖c0‖L∞ + 2‖1/c0‖L∞.

For β ∈ (0, β0] and T > 0, let ZM be the set given in the beginning of this section.

Clearly ZM is a nonempty, closed, bounded and convex subset of the Banach space

Cβ,β/2
(Ω× [0, T ]).

For v ∈ ZM , by Theorem 3.4 and Lemma 3.5, the system of (2.2) and (2.3) has a

unique solution Φ = (Φe,Φs) ∈ X ∩ Y satisfying

‖Φe‖L∞
(Ω)

+ ‖Φs‖L∞
(Ω

′
)
≤ α(M)

and for some γ′ ∈ (0, 1)

Φ ∈ Cγ
′

([0, T ], H1

∗(Ω)×H1

(Ω
′
)).

One can solve the parabolic initial-boundary value problem (2.4) (with Sc =

Sc(Φ, v)), (2.5) and (2.7) in C([0, T ], H1
(Ω)).

A classical Hölder estimate (cf. [10])
1

shows that there exists β1 ∈ (0, β0] (de-

pending only on ǫe and D) such that c ∈ Cβ1,β1/2
(Ω× [0, T ]) satisfying

‖c− c0‖Cβ,β/2 ≤ α(M)T β/2

for all β ≤ β1. Now fix

β ∈ (0,min[β0, β1]),

and define a mapping

T : ZM −→ Cβ,β/2

(Ω× [0, T ]), T(v) = c.

Clearly T is continuous. Take

T
β/2

0
= α−1

(M)min{M/2, 1/M}.

Then for T ∈ (0, T0]

‖c‖
Cβ,β/2

(Ω×[0,T ])
≤ ‖c0‖Cβ + α(M)T

β/2

0
≤M/2 +M/2 = M

and

c ≥ c0 − α(M)T
β/2

0
≥ 2/M − 1/M = 1/M.

It follows that

T : ZM −→ ZM

1Initial-Boundary (homogeneous Dirichlet) value problems were treated in [10]. But similar

arguments apply to Initial-Boundary (homogeneous Neumann) value problems



288 J. WU, J. XU AND H. ZOU

0 2000 4000 6000 8000 10000 12000
−8

−6

−4

−2

0

2

4

6

Simulation time (s)

C
e

ll 
p

o
te

n
ti
a

l 
(V

)

Cell potential during 0.3C discharge

0 100 200 300 400 500 600 700
−20

−15

−10

−5

0

5

Simulation time (s)

C
e

ll 
p

o
te

n
ti
a

l 
(V

)

Cell potential during 3C discharge

for all T ∈ (0, T0] and β ∈ (0,min[β0, β1]). Finally, note that T is also compact since

β < β1.

Therefore T has a fixed point c ∈ ZM by the Schauder fixed point theorem,

provided T ∈ (0, T0] and β ∈ (0,min[β0, β1]). Clearly (Φe,Φs, c) is a solution to (2.2),

(2.3), (2.4).

Theorem 4.1. There exists T > 0 such that the system of the equations (2.2),
(2.3) and (2.4) with homogeneous Neumann boundary conditions admits a solution
(Φe,Φs, c) where Φe satisfies (2.8).

5. Some remarks on the local existence. Naturally, one wishes to know

whether the local solutions obtained can be extended globally (in time). From the

physical point of view, a battery can last only for a limited period of time. In the model

under consideration, it is assumed that the battery is either only being (continuously)

discharged (I > 0) or charged (I < 0). Hence the battery is expected to be either

drawn out (in the former case) or to be blown-up (in the latter case) within a finite

amount of time. Furthermore, our numerical examples tend to support a finite time
extinction theory. The following figures give the numerical results for i = 0.3C =

0.678A and i = 3C = 6.78A, where the current i =
∫
Γc
IdA is the major input

variable in the model.

In each of the above, we observe a sharp change of value of cell potential at

a critical time and the solution cease to exist beyond this time. As expected, the

battery life expectance gets shorter when the current i gets larger. The following

tabular shows the relationship between i and the critical time T ∗
during discharge.

Current and critical time

Current (i) 0.3C 1C 1.5C 2C 3C

T ∗
(s) 11732.91 3332.934 2132.906 1523.385 639.0287

i× T ∗
3519.873 3332.934 3199.359 3046.770 1917.086

However, it is not clear if a global existence (in time) for the above model can

be established mathematically. Indeed, the system of partial differential equations is

only a model for the reality and the above observations may not necessarily imply a

finite time extinction mathematically. Nevertheless, it would be interesting to show

the existence of a critical (finite extinction) time mathematically. On the other hand,
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the model assumes that the diffusion coefficient σ identically zero in the separator

region. That is, one considers the separator an absolute insulator. Yet a (small)

diffusion is always present in the separator (typically σ ∼ 10
−9

in Ωs which can of

course be assumed zero in practice). This, however, suggests that a diffusion (of Φs)

indeed presents in the entire battery. That is, σ is a positive piece-wise constant in

the whole domain Ω (at least mathematically). In particular, the equation of Φs is

non-degenerate. Based on this observation, we shall study a slightly modified system

in which σ is positive piece-wise constant in the entire domain Ω. When the spatial

dimension n = 1, we derive supremum estimates of Φe and Φs (uniform for t ∈ (0, T )),

independent of the concentration c. We then establish Lp
-estimates for c and c−1

for

some p sufficiently large. As a result, one bounds c away from both infinity (upper

bound on growth) and the origin (lower bound on decay) by the classical Nash-Moser-

DeGiorgi boot strap. The desired global existence follows by a continuation argument.

6. Global existence of a modified system. Whether the system of our partial

differential equations admits a global solution in time is of great interest, particularly

from a theoretical point of view.

As mentioned in the introduction, we are not able to show that the current model

admits a global solution in time. A crucial reason is that it is assumed that there is no

diffusion in the separator, i.e., σ ≡ 0 in Ωs. This assumption is practically sound and

the local existence theory obtained in Section 3 is rather satisfying. Indeed, σ ∼ 10
−9

in Ωs (practically zero) and a battery can last for only a limited period of time. From

a mathematical point of view, however, the fact σ ∼ 10
−9

in Ωs asserts that σ > 0 is

a piece-wise constant in the entire domain Ω. For convenience, we make the following

change of variables from (1.1,1.2,1.3)

Φs ← Φs − Φ
0

s, Φe ← Φe − α1 ln c, U(c)← U(c)− Φ
0

s

where Φ is a bounded function which satisfies

−∇ · (σ∇Φ
0

s) = 0, x ∈ Ω,

with same boundary conditions for Φs. Consequently, our system of partial differential

equations reads

−
∂

∂x

(
κ(c)

∂Φe

∂x

)
− Se = 0, x ∈ Ω, (6.1)

−
∂

∂x

(
σ
∂Φs

∂x

)
+ Se = 0, x ∈ Ω (6.2)

∂(εec)

∂t
−

∂

∂x

(
D
∂c

∂x

)
− Sc = 0, (x, t) ∈ Ω× (0, T ) (6.3)

with homogeneous Neumann boundary conditions:

∂Φe

∂n
= σ

∂Φs

∂n
=
∂c

∂n
= 0, for x ∈ ∂Ω; (6.4)

and also the initial condition:

c(x, 0) = c0(x), x ∈ Ω. (6.5)

In this section, we show that the slightly modified system (6.1-6.5) admits a global

solution in time. Due to technicality, we only consider the one dimensional case n = 1.
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For 0 < Las < Lsc < L, denote

Ω = (0, L), Ωa = (0, Las), Ωs = (Las, Lsc), Ωc = (Lsc, L).

To ensure uniqueness for the system (6.1–6.5), without loss of generality, we shall

impose the following condition

Φ̄s =
1

L

∫

Ω

Φsdx = 0. (6.6)

Given T > 0, by a weak solution of (6.1–6.5), we mean a triple (Φe,Φs, c) with

Φe ∈ C([0, T ], H1

(Ω)), Φs ∈ C([0, T ], H1

(Ω)),

c ∈ C([0, T ], H1

(Ω)), ct ∈ L
∞

([0, T ], L2

(Ω)), c > 0

satisfying

∫

Ω

κ(c)
∂Φe

∂x

∂Φ̃e

∂x
−

∫

Ω

SeΦ̃e = 0, ∀Φ̃e ∈ H
1

(Ω), t ∈ (0, T ) a.e. (6.7)

∫

Ω

σ
∂Φs

∂x

∂Φ̃s

∂x
+

∫

Ω

SeΦ̃s = 0, ∀Φ̃s ∈ H
1

(Ω), t ∈ (0, T ) a.e. (6.8)

εe

∫ T

0

∫

Ω

ctc̃+D

∫ T

0

∫

Ω

∂c

∂x

∂c̃

∂x
−

∫ T

0

∫

Ω

Scc̃ = 0, (6.9)

∀c̃ ∈ C([0, T ], H1

(Ω) ∩ L∞
(Ω)).

6.1. Preliminary results. We first begin with technical lemmas. In the sequel,

M will denote generic constants depending only on T , K, α′
is and the domain Ω.

Without loss of generality, in the following exposition, we also take (3.1,3.2). Therefore

Se = Sc = S = c1/2−deα2(Φs−Φe) − c1/2+de−α2(Φs−Φe),

where d = α1α2 for simplicity.

Lemma 6.1. For t ∈ (0, T ) a.e., we have

∫

Ω

σ(Φ
′
s)

2dx+

∫

Ω

κ(c)(Φ′
e)

2dx

+

∫

Ω

|Φs − Φe|(c
1/2−deα2(Φs−Φe)

+ c1/2+de−α2(Φs−Φe)

)

≤ (2eα
2

+ 2/α2)

∫

Ω

H(c)dx

where the derivative is with respect to x and

H(c) = c1/2−d
+ c1/2+d.

Proof. The proof is similar as that of Lemma 3.1.

Lemma 6.2. Suppose d = α1α2 > 1/2 and there exists A > 0 such that

κ(c)c1/2−d−2 ≤ A, 0 < c ≤ 1.
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Then there exists M > 0 such that

εe

d

dt

∫

Ω

c1/2−ddx+
(4d2 − 1)D

8

∫

Ω

c−d−3/2|c′|2dx ≤M

∫

Ω

H(c)dx.

Proof. For t ∈ (0, T ) and fixed k > 0, taking c̃ = c−k−1
in (6.9) we obtain

−
εe

k

d

dt

∫

Ω

c−kdx− (k + 1)D

∫

Ω

c−k−2|c′|2dx =

∫

Ω

c−k−1S.

Using the test function Φ̃e = c−k−1
in (6.7), we derive

∣∣∣∣
∫

Ω

c−k−1S

∣∣∣∣ = (k + 1)

∣∣∣∣
∫

Ω

κ(c)c−k−2

Φ
′
ec

′

∣∣∣∣

≤M(k,D,A)

∫

Ω

κ(c)(Φ′
e)

2dx+
(k + 1)D

2A

∫

Ω

κ(c)c−2k−4|c′|2dx

≤M(k,D,A)

∫

Ω

κ(c)(Φ′
e)

2dx+
(k + 1)D

2

∫

Ω

Dcd−1/2−2k−2|c′|2dx

by the assumption. Therefore

εe

k

d

dt

∫

Ω

c−kdx+ (k + 1)D

∫

Ω

c−k−2|c′|2dx

≤M(k,D,A)

∫

Ω

κ(c)(Φ′
e)

2dx+
(k + 1)D

2

∫

Ω

Dcd−1/2−2k−2|c′|2dx.

The conclusion follows from Lemma 6.1 by taking k = d− 1/2 > 0.

Lemma 6.3. There exists M > 0 such that

εe

d

dt

∫

Ω

c2dx+D

∫

Ω

|c′|2dx ≤M

∫

Ω

H(c)dx.

Proof. For t ∈ (0, T ), taking c̃ = c in (6.9) we obtain

εe

2

d

dt

∫

Ω

c2dx +D

∫

Ω

|c′|2dx =

∫

Ω

cS.

Now taking Φs = c in (6.8) yields

∫

Ω

cS = −

∫

Ω

σΦ
′
sc

′ ≤M(D,σ)

∫

Ω

σ(Φ
′
s)

2dx+
D

2

∫

Ω

|c′|2dx.

The rest is the same as that of Lemma 6.2 and the proof is complete.

Remark. The way of using (6.9) in Lemmas 6.2 and 6.3 is readily justified if the

inequalities in both lemmas are understood in the weak sense.

Proposition 6.4. Suppose d = α1α2 ≤ 3/2. Then for t ∈ (0, T ) a.e., there
exists M > 0 such that

∫

Ω

H(c)dx ≤MeMt.
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Proof. With the aid of Lemmas 6.2 and 6.3, wee apply the Hölder inequality to

get

d

dt

∫

Ω

(c1/2−d
+ c2)dx ≤M

∫

Ω

H(c)dx ≤M

∫

Ω

(c1/2−d
+ c2)dx +M(|Ω|),

since by assumption 1/2 + d ≤ 2. Now the conclusion follows from the Gronwall

inequality.

Corollary 6.5. Suppose that the conditions in Lemma 6.2 and Proposition 6.4
hold. Then for t ∈ (0, T ) a.e., there exists M > 0 such that

||Φs||L∞
(Ω)
≤MeMt.

Proof. By Lemma 6.1 and Proposition 6.4, we have

∫

Ω

|Φ′
s|

2dx ≤MeMt.

The conclusion follows immediately, with the aid of (6).

Using the above corollary, we can strengthen Lemma 6.1.

Lemma 6.6. For k ≥ α2 and t ∈ (0, T ) a.e., there exists M > 0 such that
∫

Ω

σ(Φ
′
s)

2

(e−kΦs + ekΦs)dx+

∫

Ω

κ(c)(Φ′
e)

2

(e−kΦe + ekΦe)dx

+

∫

Ω

(c1/2−de(k+α2)(Φs−Φe)

+ c1/2+de−(k+α2)(Φs−Φe)

)dx

≤M

∫

Ω

(c1/2−kα1 + c1/2+kα1)dx.

Proof. The proof proceeds similarly as in Lemma 6.1. For k > 0 and t ∈ (0, T ),

use the test function ekΦs in (6.8) and ekΦe in (6.7) to obtain

k

∫

Ω

σekΦs (Φ
′
s)

2dx+ k

∫

Ω

κ(c)ekΦe (Φ
′
e)

2dx+

∫

Ω

(ekΦs − ekΦe )S = 0.

We shall estimate the last integral. Adopting the same notation as in Lemma 6.1,

clearly we have

|

∫

G3

(ekΦs − ekΦe)S| ≤M(ek
)

∫

G3

(c1/2−d
+ c1/2+d

) ≤M

∫

Ω

H(c),

since both Φs and Φe are bounded on G3 by the definition of G3 and by Corollary

6.5. Next, we bound

∫

G1

(ekΦs − ekΦe)S =

=

∫

G1

ekΦs(1− e−k(Φs−Φe)

)(c1/2−deα2(Φs−Φe) − c1/2+de−α2(Φs−Φe)

)

≥ −

∫

G1

ekΦs(1 − e−k(Φs−Φe)

)c1/2+de−α2(Φs−Φe)

≥ −Le−α2

∫

G1

c1/2+d
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by Lemma 6.1, where L = ek||Φs||∞ , since 0 < 1− e−k(Φs−Φe) < 1.

Rewrite

ekΦs − ekΦe = −le−k(Φs−Φe),

where

L ≥ l = ekΦs(1 − ek(Φs−Φe)

) ≥ (1− e−k
)/L = L1, x ∈ G2.

It follows that

∫

G2

(ekΦs − ekΦe)S =

∫

G2

l(c1/2+de(−(k+α2)(Φs−Φe) − c1/2−de(α2−k)(Φs−Φe)

)

≥ L1

∫

G2

c1/2+de−(k+α2)(Φs−Φe) − L

∫

G2

e(α2−k)(Φs−Φe)c1/2−d.

By Hölder’s inequality, one has

L

∫

G2

e(α2−k)(Φs−Φe)c1/2−d

≤
L1

2

∫

G2

c1/2+de−(k+α2)(Φs−Φe)

+M(k, α2, L1, L)

∫

G2

c1/2−kα1 .

Therefore

∫

G2

(ekΦs − ekΦe)S ≥
L1

2

∫

G2

c1/2+de−(k+α2)(Φs−Φe) −M

∫

G2

c1/2−kα1 .

Combining all above, we arrive at

k

∫

Ω

σ(Φ
′
s)

2ekΦsdx+ k

∫

Ω

κ(c)(Φ′
e)

2ekΦedx (6.10)

+
L1

2

∫

Ω

c1/2+de−(k+α2)(Φs−Φe) ≤M

∫

Ω

(c1/2+d
+ c1/2−kα1 ),

since

∫

G1∪G3

c1/2+de−(k+α2)(Φs−Φe) ≤ ek+α2

∫

G1∪G3

c1/2+d.

Next, using e−kΦs in (6.8) and e−kΦe in (6.7), we obtain

k

∫

Ω

σe−kΦs(Φ
′
s)

2dx+ k

∫

Ω

κ(c)e−kΦe (Φ
′
e)

2dx+

∫

Ω

(e−kΦe − e−kΦs)S = 0.

Proceeding similarly as before, we derive

∫

G2

(e−kΦe − e−kΦs)S ≥ −L

∫

G2

c1/2−d.

and

∫

G1

(e−kΦe − e−kΦs)S ≥
L1

2

∫

G1

c1/2−de(k+α2)(Φs−Φe) −M

∫

G1

c1/2+kα1 .
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It follows that

k

∫

Ω

σΦ
′
s)

2e−kΦsdx+ k

∫

Ω

κ(c)(Φ′
e)

2e−kΦedx (6.11)

+
L1

2

∫

Ω

c1/2−de(k+α2)(Φs−Φe) ≤M

∫

Ω

(c1/2−d
+ c1/2+kα1).

The proof is complete by combining (6.10) and (6.11).

We next estimate c−1
in Lp

-norm for all p > 0.

Proposition 6.7. Suppose d = α1α2 > 1. Then for p > 0 and t ∈ (0, T ) a.e.,
there exists M = M(p) > 0 such that

∫

Ω

c−pdx ≤M.

Proof. For t ∈ (0, T ) and fixed p > 0, multiply (6.9) by the test function c−p−1

and integrate over Ω to obtain

εe

p

d

dt

∫

Ω

c−pdx+ (p+ 1)D

∫

Ω

c−p−2|c′|2dx = −

∫

Ω

c−p−1S.

We shall estimate the term on the right hand side as follows

−

∫

Ω

c−p−1S ≤

∫

Ω

c1/2+d−p−1e−α2(Φs−Φe)

≤
(∫

Ω

c1/2+de−2α2(Φs−Φe)

)
1/2

·
( ∫

Ω

c1/2+d−2(p+1)

)
1/2

≤
(∫

Ω

c1/2−d
+

∫

Ω

c1/2+d
)

1/2

·
(∫

Ω

c1/2+d−2(p+1)

)
1/2

≤M
(∫

Ω

c1/2−d
+

∫

Ω

c1/2+d
)
· ||c2d−2(p+1)||1/2

∞

≤M(T )||cd−(p+1)||∞ = M(T )||c−p/2||2(p+1−d)/p
∞ ,

by Lemma 6.6 with the choice k = α2. On the other hand, the quantity minx∈Ω c
−p/2

is uniformly bounded for all t ∈ [0, T ) (depending only on the initial data c0 and of

course p) since the conservation of c

∫

Ω

c = const.

It follows that

||c−p/2||∞ ≤Mp
(∫

Ω

c−p−2|c′|2dx
)

1/2

+M.

Therefore,

−

∫

Ω

c−p−1S ≤M
(∫

Ω

c−p−2|c′|2dx
)d1

+M,

where

d1 =
1− d

p
+ 1 < 1
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by the assumption d = α1α2 > 1. Combining the above estimates yields

−

∫

Ω

c−p−1S ≤M + (p+ 1)D
(∫

Ω

c−p−2|c′|2dx
)
,

since d1 < 1. We finally reach

ε

p

d

dt

∫

Ω

c−pdx ≤M,

and the conclusion follows.

Corollary 6.8. Suppose that the conditions of Lemma 6.2 and Propositions 6.4
and 6.7 hold and that there exists k > 0 such that

κ(c) ≥ ck, c << 1.

Then for t ∈ (0, T ) a.e., there exists M > 0 such that

||Φe||∞ ≤MeMt.

Proof. By the assumption, Lemma 6.1 and Propositions 6.4 and 6.7 hold. We

have

∫
Ω
|Φ′

e|dx ≤
( ∫

Ω
κ(c)|Φ′

e|
2dx

)
1/2

( ∫
Ω
κ−1

(c)dx
)

1/2

≤M
( ∫

Ω
c−kdx

)
1/2

≤M.

Using Lemma 6.6 with k = α2, Propositions 6.4 and 6.7 and Corollary 6.5, we infer

that for all t ∈ (0, T ) a.e.,

∫

Ω

eα2Φe =

∫

Ω

c1/2−deα2Φecd−1/2

≤

(∫

Ω

c1/2−de2α2Φe

)
1/2

·

(∫

Ω

cd−1/2

)
1/2

≤M

since d− 1/2 ≤ 2. Similarly

∫

Ω

e−α2Φedx ≤M.

The conclusion follows.

6.2. Main result of global existence. In this section, we shall establish a

global existence of a weak solution to the system (6.2-6.5). First, we derive an a

priori estimate below, using the results obtained in the previous subsection.

We need the following supremum estimate.

Lemma 6.9. Let Ω ∈ R
n be bounded and smooth. Suppose that u is a non-

negative subsolution of the initial-boundary value problem

∂(Eu)

∂t
−

∂

∂x

(
D
∂u

∂x

)
= K(u(x) + 1), (x, t) ∈ Ω× (0, T ),
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where E and D are positive piece-wise constants, with homogeneous Neumann bound-
ary conditions:

∂u

∂n
= 0 for x ∈ ∂Ω;

and also the initial condition:

u(x, 0) = u0(x), x ∈ Ω

with u0 ∈ L
∞. Then there exists M > 0 such that

sup

Ω

u(·, t) ≤ sup

Ω

u0(x) +M.

Proof. The proof is standard via boot-strap, see for example [10] or [15]
2
.

Now we can prove the following a priori estimate.

Theorem 6.10. Let d = α1α2 ∈ (1, 3/2], Suppose that there exists k ≥ 3/2 + d,
k1 > 0 such that

ck ≤ κ(c) ≤ k1c
3/2+d, c ≤ 1.

Then there exists M > 0 such that

||Φs||L∞
(Ω)
≤MeMt, ||Φe||L∞

(Ω)
≤MeMt

; (6.12)

and

1

M
≤ c(x, t) ≤M, (x, t) ∈ Ω× (0, T ). (6.13)

Proof. By Corollaries 6.5 and 6.8, we have (6.12). We shall prove the first in-

equality in (6.13), the second being essentially the same. Put

u(x, t) = c−1

(x, t).

One readily verifies that u satisfies the equation

∂(εeu)

∂t
−

∂

∂x

(
D
∂u

∂x

)
=

− c−2

(
∂(εec)

∂t
−

∂

∂x

(
D
∂c

∂x

))
− 2Dc−3c′

2

= −c−2S − 2Dc−3c′
2

,

with the initial-Neumann boundary condition

u(x, 0) = 1/c0(x),
∂u

∂n
= 0 at x = 0 and L.

In particular, u is a positive subsolution of the equation

∂(εeu)

∂t
−

∂

∂x

(
D
∂u

∂x

)
= M(u+ 1), (x, t) ∈ Ω× (0, T ), (6.14)

2Again, Initial-Boundary (homogeneous Dirichlet) value problems were treated, see footnote 1
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since

|e−α2(Φs−Φe)| ≤M

by (6.12) and

−c−2S − 2Dc−3c′
2

= c1/2+d−2e−α2(Φs−Φe)

−c1/2−d−2eα2(Φs−Φe) − 2Dc−3c′
2

≤Mcd−3/2

= Mu3/2−d ≤M(u+ 1).

Now (6.13) follows from Lemma 6.9 immediately and the theorem is proved.

Local in time existence and uniqueness can be proved in the similar way as The-

orem 4.1. With the aid of Theorem 6.10, the following global existence result is

standard via a continuation argument.

Theorem 6.11. Assume further that

d = α1α2 ∈ (1, 3/2],

and that there exists k ≥ 3/2 + d, k1 > 0 such that

ck ≤ κ(c) ≤ k1c
3/2+d, c ≤ 1.

Then exists a solution to the system of (6.1-6.3) for all T > 0.
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